
  

  

  

  

  

  

  

  

  

  

  

  

  

Fortify Security Report
Jun 17, 2015

dkwakkel



On Jun 2, 2015, a source code review was performed over the poi code base. 3,213 files, 178,513 LOC (Executable) were scanned

and reviewed for defects that could lead to potential security vulnerabilities. A total of 2340 reviewed findings were uncovered

during the analysis.

  

  

The Issues Category section provides Fortify recommendations for addressing issues at a generic level.  The recommendations for

specific fixes can be extrapolated from those generic recommendations by the development group.

Executive Summary
Issues Overview

Issues by Fortify Priority Order

Refined by: category:"weak encryption\: inadequate rsa padding" AND category:"weak encryption\: insecure mode of operation"

Recommendations and Conclusions

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 2 of 7



The scan found 2340 issues.

  

Results Outline
Overall number of results

Vulnerability Examples by Category

Category: Weak Encryption: Insecure Mode of Operation (4 Issues)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Number of Issues

<Unaudited>

Not an Issue

Reliability Issue

Bad Practice

Suspicious

Exploitable

A
n

a
ly

si
s

Abstract:
Cryptographic encryption algorithms should not be used with an insecure mode of operation.

Explanation:
A mode of operation of a block cipher is an algorithm that describes how to repeatedly apply a cipher's single-block operation to
securely transform amounts of data larger than a block. Some of the modes of operation include ECB (Electronic Codebook),
CBC (Cipher Block Chaining) and CFB (Cipher Feedback).

ECB mode is inherently weak, because it results in the same ciphertext for identical blocks of plaintext. CBC mode does not
have this weakness, making it the superior choice.

Example 1: The following code uses AES cipher with ECB mode:

...

SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");

Cipher cipher = Cipher.getInstance("AES/ECB/PKCS7Padding", "BC");

cipher.init(Cipher.ENCRYPT_MODE, key);

...

Cipher Transformation Modes:

The first argument to Cipher.getInstance is a string parameter transformation in the form "algorithm/mode/padding" or
"algorithm".  If the mode is not specified, then the mode selected is the provider-specific default, which is likely ECB (electronic
codebook) mode for Java and Android.

ECB mode is inherently a weaker encryption mode because identical blocks of plaintext is encrypted into identical blocks of
ciphertext.  CBC (cipher-block chaining) mode is superior because it does not have this weakness.

Example: gaining a Cipher instance with the weak ECB transformation mode:

Cipher c = Cipher.getInstance("AES/ECB/PKCS5Padding");

Example: gaining a Cipher instance with default transformation mode, which could be the weak ECB mode:

Cipher c = Cipher.getInstance("AES");

This finding is from research found in "An Empirical Study of Cryptographic Misuse in Android Applications".
http://www.cs.ucsb.edu/~chris/research/doc/ccs13_cryptolint.pdf

Recommendations:

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 3 of 7



Avoid using ECB mode of operation when encrypting data larger than a block. CBC mode is superior because it does not
produce identical blocks of ciphertext for identical blocks of plaintext. However, CBC mode is somewhat inefficient and poses
serious risk if used with SSL [1]. Instead, use CCM (Counter with CBC-MAC) mode, or, if performance is a concern, GCM
(Galois/Counter Mode) mode where they are available.

Example 2: The following code uses AES cipher with CBC mode:

...

SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding", "BC");

cipher.init(Cipher.ENCRYPT_MODE, key);

...

AgileEncryptor.java, line 204 (Weak Encryption: Insecure Mode of Operation)

Fortify Priority: Low Folder Low
Kingdom: Security Features
Abstract: The function confirmPassword() in AgileEncryptor.java uses a cryptographic

encryption algorithm with an insecure mode of operation on line 204.
Sink: AgileEncryptor.java:204 getInstance()
202             header.setEncryptedHmacKey(encryptedHmacKey);

203

204             cipher = Cipher.getInstance("RSA");

205             for (AgileCertificateEntry ace : ver.getCertificates()) {

206                 cipher.init(Cipher.ENCRYPT_MODE, ace.x509.getPublicKey());

Analysis: Suspicious

AgileDecryptor.java, line 222 (Weak Encryption: Insecure Mode of Operation)

Fortify Priority: Low Folder Low
Kingdom: Security Features
Abstract: The function verifyPassword() in AgileDecryptor.java uses a cryptographic

encryption algorithm with an insecure mode of operation on line 222.
Sink: AgileDecryptor.java:222 getInstance()
220         if (ace == null) return false;

221

222         Cipher cipher = Cipher.getInstance("RSA");

223         cipher.init(Cipher.DECRYPT_MODE, keyPair.getPrivate());

224         byte keyspec[] = cipher.doFinal(ace.encryptedKey);

Analysis: Suspicious

CryptoFunctions.java, line 215 (Weak Encryption: Insecure Mode of Operation)

Fortify Priority: Low Folder Low
Kingdom: Security Features
Abstract: The function getCipher() in CryptoFunctions.java uses a cryptographic encryption

algorithm with an insecure mode of operation on line 215.
Sink: CryptoFunctions.java:215 getInstance()
213             } else if (cipherAlgorithm.needsBouncyCastle) {

214                 registerBouncyCastle();

215                 cipher = Cipher.getInstance(cipherAlgorithm.jceId + "/" + chain.jceId
+ "/" + padding, "BC");

216             } else {

217                 cipher = Cipher.getInstance(cipherAlgorithm.jceId + "/" + chain.jceId
+ "/" + padding);

Analysis: Suspicious

CryptoFunctions.java, line 217 (Weak Encryption: Insecure Mode of Operation)

Fortify Priority: Low Folder Low
Kingdom: Security Features
Abstract: The function getCipher() in CryptoFunctions.java uses a cryptographic encryption

algorithm with an insecure mode of operation on line 217.

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 4 of 7



Sink: CryptoFunctions.java:217 getInstance()
215                 cipher = Cipher.getInstance(cipherAlgorithm.jceId + "/" + chain.jceId

+ "/" + padding, "BC");

216             } else {

217                 cipher = Cipher.getInstance(cipherAlgorithm.jceId + "/" + chain.jceId
+ "/" + padding);

218             }

219

Analysis: Suspicious

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 5 of 7



Category: Weak Encryption: Inadequate RSA Padding (2 Issues)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Number of Issues

<Unaudited>

Not an Issue

Reliability Issue

Bad Practice

Suspicious

Exploitable

A
n

a
ly

si
s

Abstract:
Public key RSA encryption is performed without using OAEP padding, thereby making the encryption weak.

Explanation:
In practice, encryption with an RSA public key is usually combined with a padding scheme. The purpose of the padding scheme
is to prevent a number of attacks on RSA that only work when the encryption is performed without padding.

Example 1: The following code performs encryption using an RSA public key without using a padding scheme:

public Cipher getRSACipher() {

Cipher rsa = null;

try {

rsa = javax.crypto.Cipher.getInstance("RSA/NONE/NoPadding");

}

catch (java.security.NoSuchAlgorithmException e) {

log("this should never happen", e);

}

catch (javax.crypto.NoSuchPaddingException e) {

log("this should never happen", e);

}

return rsa;

}

This category was derived from the Cigital Java Rulepack. http://www.cigital.com/

Recommendations:
In order to use RSA securely, OAEP (Optimal Asymmetric Encryption Padding) must be used when performing encryption.

Example 2: The following code performs encryption with an RSA public key using OAEP padding:

public Cipher getRSACipher() {

Cipher rsa = null;

try {

rsa = javax.crypto.Cipher.getInstance("RSA/ECB/OAEPWithMD5AndMGF1Padding");

}

catch (java.security.NoSuchAlgorithmException e) {

log("this should never happen", e);

}

catch (javax.crypto.NoSuchPaddingException e) {

log("this should never happen", e);

}

return rsa;

}

AgileEncryptor.java, line 204 (Weak Encryption: Inadequate RSA Padding)

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 6 of 7



Fortify Priority: Low Folder Low
Kingdom: Security Features
Abstract: The method confirmPassword() in AgileEncryptor.java performs public key RSA

encryption without OAEP padding, thereby making the encryption weak.
Sink: AgileEncryptor.java:204 getInstance()
202             header.setEncryptedHmacKey(encryptedHmacKey);

203

204             cipher = Cipher.getInstance("RSA");

205             for (AgileCertificateEntry ace : ver.getCertificates()) {

206                 cipher.init(Cipher.ENCRYPT_MODE, ace.x509.getPublicKey());

Analysis: Suspicious

AgileDecryptor.java, line 222 (Weak Encryption: Inadequate RSA Padding)

Fortify Priority: Low Folder Low
Kingdom: Security Features
Abstract: The method verifyPassword() in AgileDecryptor.java performs public key RSA

encryption without OAEP padding, thereby making the encryption weak.
Sink: AgileDecryptor.java:222 getInstance()
220         if (ace == null) return false;

221

222         Cipher cipher = Cipher.getInstance("RSA");

223         cipher.init(Cipher.DECRYPT_MODE, keyPair.getPrivate());

224         byte keyspec[] = cipher.doFinal(ace.encryptedKey);

Analysis: Suspicious

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 7 of 7


	Executive Summary
	Issues Overview
	Issues by Fortify Priority Order
	Recommendations and Conclusions

	Results Outline
	Overall number of results
	Vulnerability Examples by Category
	Weak Encryption: Insecure Mode of Operation
	Weak Encryption: Inadequate RSA Padding



