FORTIFY

4

Fortify Security Report
Jun 17, 2015
dkwakkel



Fortify Security Report FORTIFY

Executive Summary

Issues Overview

On Jun 2, 2015, a source code review was performed over the poi code base. 3,213 files, 178,513 LOC (Executable) were scanned

and reviewed for defects that could lead to potential security vulnerabilities. A total of 2340 reviewed findings were uncovered
during the analysis.

Issues by Fortify Priority Order
Refined by: category:"weak encryption\: inadequate rsa padding” AND category:"weak encryption\: insecure mode of operation”

Recommendations and Conclusions

The Issues Category section provides Fortify recommendations for addressing issues at a generic level. The recommendations for
specific fixes can be extrapolated from those generic recommendations by the devel opment group.

Page 2 of 7



Fortify Security Report FORTIFY

Results Outline

Overal number of results

The scan found 2340 issues.

Vulnerability Examples by Category

Category: Weak Encryption: Insecure Mode of Operation (4 Issues)

Number of Issues
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

<Unaudited> -
Not an Issue -

Reliability Issue -

Analysis

Bad Practice -

Suspicious

Exploitable -

Abstract:
Cryptographic encryption algorithms should not be used with an insecure mode of operation.
Explanation:

A mode of operation of ablock cipher is an algorithm that describes how to repeatedly apply a cipher's single-block operation to
securely transform amounts of data larger than a block. Some of the modes of operation include ECB (Electronic Codebook),
CBC (Cipher Block Chaining) and CFB (Cipher Feedback).

ECB mode is inherently weak, because it results in the same ciphertext for identical blocks of plaintext. CBC mode does not
have this weakness, making it the superior choice.

Example 1: The following code uses AES cipher with ECB mode:

SecretKeySpec key = new SecretK eySpec(keyBytes, "AES");
Cipher cipher = Cipher.getinstance("AES/ECB/PK CS7Padding”, "BC");
cipher.init(Cipher.ENCRY PT_MODE, key);

Cipher Transformation Modes:

Thefirst argument to Cipher.getinstance is a string parameter transformation in the form "a gorithm/mode/padding" or
"agorithm". If the mode is not specified, then the mode selected is the provider-specific default, which islikely ECB (electronic
codebook) mode for Java and Android.

ECB mode is inherently aweaker encryption mode because identical blocks of plaintext is encrypted into identical blocks of
ciphertext. CBC (cipher-block chaining) mode is superior because it does not have this weakness.

Example: gaining a Cipher instance with the weak ECB transformation mode:

Cipher ¢ = Cipher.getInstance(" AESJECB/PK CS5Padding");

Example: gaining a Cipher instance with default transformation mode, which could be the weak ECB mode:
Cipher ¢ = Cipher.getinstance("AES");

Thisfinding is from research found in "An Empirical Study of Cryptographic Misuse in Android Applications’.
http://www.cs.ucsh.edu/~chris/research/doc/ccs13_cryptolint.pdf

Recommendations:

F Page 3 of 7




Fortify Security Report FORTIFY

Avoid using ECB mode of operation when encrypting data larger than a block. CBC mode is superior because it does not
produce identical blocks of ciphertext for identical blocks of plaintext. However, CBC mode is somewhat inefficient and poses
serious risk if used with SSL [1]. Instead, use CCM (Counter with CBC-MAC) mode, or, if performance is a concern, GCM
(Galois/Counter Mode) mode where they are available.

Example 2: The following code uses AES cipher with CBC mode:

SecretKeySpec key = new SecretK eySpec(keyBytes, "AES");
Cipher cipher = Cipher.getinstance(" AES/CBC/PK CS5Padding”, "BC");
cipher.init(Cipher. ENCRY PT_MODE, key);

AdileEncryptor.java, line 204 (Weak Encryption: Insecure Mode of Operation)

Fortify Priority: Low Folder Low

Kingdom: Security Features

Abstract: The function confirmPassword() in AgileEncryptor.java uses a cryptographic
encryption algorithm with an insecure mode of operation on line 204.

Sink: AgileEncryptor.java:204 getinstance()

202 header . set Encr ypt edHmacKey( encr ypt edHmackKey) ;

203

204 ci pher = Cipher. getl nstance("RSA");

205 for (AgileCertificateEntry ace : ver.getCertificates()) {

206 ci pher.init(C pher. ENCRYPT_MIDE, ace.x509. get PublicKey());

Anaysis: Suspicious

AdgileDecryptor.java, line 222 (Weak Encryption: Insecure Mode of Operation)

Fortify Priority: Low Folder Low

Kingdom: Security Features

Abstract: The function verifyPassword() in AgileDecryptor.java uses a cryptographic
encryption algorithm with an insecure mode of operation on line 222.

Sink: AgileDecryptor.java:222 getinstance()

220 if (ace == null) return false;

221

222 Ci pher ci pher = Cipher. getlnstance("RSA");

223 ci pher.init (Ci pher. DECRYPT_MXDE, keyPair.getPrivate());

224 byt e keyspec[] = ci pher. doFi nal (ace. encrypt edKey) ;

Anaysis: Suspicious

CryptoFunctionsjava, line 215 (Weak Encryption: Insecure Mode of Operation)

Fortify Priority: Low Folder Low

Kingdom: Security Features

Abstract: The function getCipher() in CryptoFunctions.java uses a cryptographic encryption
algorithm with an insecure mode of operation on line 215.

Sink: CryptoFunctions.java:215 getinstance()

213 } else if (cipherA gorithm needsBouncyCastle) {

214 regi st er BouncyCastl e() ;

215 ci pher = Cipher.getlnstance(ci pherAlgorithmjceld + "/" + chain.jceld
+ "/" + padding, "BC');

216 } else {

217 ci pher = Cipher. getlnstance(ci pherAlgorithmjceld + "/" + chain.jceld
+ "/" + padding);

Anaysis: Suspicious

CryptoFunctions,java, line 217 (Weak Encryption: Insecure Mode of Operation)

Fortify Priority: Low Folder Low

Kingdom: Security Features

Abstract: The function getCipher() in CryptoFunctions.java uses a cryptographic encryption

agorithm with an insecure mode of operation on line 217.

=3 Page 4 of 7



Fortify Security Report [FORTIFY

Sink: CryptoFunctions.java:217 getinstance()

215 ci pher = Cipher. getlnstance(ci pherAlgorithmjceld + "/" + chain.jceld
+ "/" + padding, "BC');

216 } else {

217 ci pher = Cipher. getlnstance(ci pherAlgorithmjceld + /" + chain.jceld
+ "/" + padding);

218 }

219

Anaysis Suspicious

F Page 5of 7



Fortify Security Report [FORTIFY

Category: Weak Encryption: Inadequate RSA Padding (2 | ssues)

Number of Issues
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

<Unaudited> 1
Not an Issue
B
2 Reliability Issue 1
©
E Bad Practice -
Suspicious
Exploitable -
Abstract:
Public key RSA encryption is performed without using OA EP padding, thereby making the encryption weak.
Explanation:

In practice, encryption with an RSA public key is usually combined with a padding scheme. The purpose of the padding scheme
isto prevent a number of attacks on RSA that only work when the encryption is performed without padding.

Example 1: The following code performs encryption using an RSA public key without using a padding scheme:

public Cipher getRSACipher() {

Cipher rsa=null;

try {

rsa = javax.crypto.Cipher.getlnstance("RSA/NONE/NoPadding");
}
catch (java.security.NoSuchAlgorithmException €) {
log("this should never happen”, €);

}
catch (javax.crypto.NoSuchPaddingException €) {
log("this should never happen”, €);

}
return rsa;

}
This category was derived from the Cigital Java Rulepack. http://www.cigital.com/

Recommendations:

In order to use RSA securely, OAEP (Optimal Asymmetric Encryption Padding) must be used when performing encryption.
Example 2: The following code performs encryption with an RSA public key using OAEP padding:

public Cipher getRSACipher() {

Cipher rsa=null;

try {

rsa = javax.crypto.Cipher.getlnstance(" RSA/ECB/OAEPWithM D5AndM GF1Padding");
}
catch (java.security.NoSuchAlgorithmException €) {
log("this should never happen”, €);

}
catch (javax.crypto.NoSuchPaddingException €) {
log("this should never happen”, €);

}
return rsa;

}

AdgileEncryptor.java, line 204 (Weak Encryption: Inadequate RSA Padding)

F Page 6 of 7



Fortify Security Report FORTIFY

Fortify Priority: Low Folder Low

Kingdom: Security Features

Abstract: The method confirmPassword() in AgileEncryptor.java performs public key RSA
encryption without OAEP padding, thereby making the encryption weak.

Sink: AgileEncryptor.java:204 getinstance()

202 header . set Encr ypt edHmacKey( encr ypt edHrackKey) ;

203

204 ci pher = Cipher. getl nstance("RSA");

205 for (AgileCertificateEntry ace : ver.getCertificates()) {

206 ci pher.init(C pher. ENCRYPT_MIDE, ace.x509. get PublicKey());

Andysis Suspicious

AdgileDecryptor.java, line 222 (Weak Encryption: Inadequate RSA Padding)

Fortify Priority: Low Folder Low

Kingdom: Security Features

Abstract: The method verifyPassword() in AgileDecryptor.java performs public key RSA
encryption without OAEP padding, thereby making the encryption weak.

Sink: AgileDecryptor.java:222 getinstance()

220 if (ace == null) return fal se;

221

222 Ci pher ci pher = Cipher. getl nstance("RSA");

223 ci pher.init(C pher. DECRYPT_MXDE, keyPair.getPrivate());

224 byt e keyspec[] = ci pher. doFi nal (ace. encrypt edKey) ;

Anaysis: Suspicious

_F Page 7 of 7



	Executive Summary
	Issues Overview
	Issues by Fortify Priority Order
	Recommendations and Conclusions

	Results Outline
	Overall number of results
	Vulnerability Examples by Category
	Weak Encryption: Insecure Mode of Operation
	Weak Encryption: Inadequate RSA Padding



