

Fortify Security Report
Jun 17, 2015

dkwakkel

On Jun 2, 2015, a source code review was performed over the poi code base. 3,213 files, 178,513 LOC (Executable) were scanned

and reviewed for defects that could lead to potential security vulnerabilities. A total of 2342 reviewed findings were uncovered

during the analysis.

The Issues Category section provides Fortify recommendations for addressing issues at a generic level. The recommendations for

specific fixes can be extrapolated from those generic recommendations by the development group.

Executive Summary
Issues Overview

Issues by Fortify Priority Order

Refined by: category:"system information leak\: external"

Low 36

Recommendations and Conclusions

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 2 of 17

The scan found 2342 issues.

Results Outline
Overall number of results

Vulnerability Examples by Category

Category: System Information Leak: External (36 Issues)

0 5 1 0 1 5 2 0 2 5 3 0 3 5

Number of Issues

<Unaudited>

Not an Issue

Reliability Issue

Bad Practice

Suspicious

Exploitable

A
n

a
ly

si
s

Abstract:
Revealing system data or debugging information helps an adversary learn about the system and form a plan of attack.

Explanation:
An external information leak occurs when system data or debugging information leaves the program to a remote machine via a
socket or network connection. External leaks can help an attacker by revealing specific data about operating systems, full
pathnames, the existence of usernames, or locations of configuration files, and are more serious than internal information leaks
which are more difficult for an attacker to access.

Example 1: The following code leaks Exception information in the HTTP response:

protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {

...

PrintWriter out = res.getWriter();

try {

...

} catch (Exception e) {

out.println(e.getMessage());

}

}

This information can be exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an
attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL
injection attack. Other error messages can reveal more oblique clues about the system. In the example above, the leaked
information could imply information about the type of operating system, the applications installed on the system, and the amount
of care that the administrators have put into configuring the program.

In the mobile world, information leaks are also a concern. The essence of mobile platforms is applications that are downloaded
from various sources and run alongside each other on the same device. The likelihood of running a piece of malware next to a
banking application is high, which is why application authors need to be careful about what information they include in messages
addressed to other applications running on the device.

Example 2: The code below broadcasts the stack trace of a caught exception to all the registered Android receivers.

...

try {

...

} catch (Exception e) {

String exception = Log.getStackTraceString(e);

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 3 of 17

Intent i = new Intent();

i.setAction("SEND_EXCEPTION");

i.putExtra("exception", exception);

view.getContext().sendBroadcast(i);

}

...

Here is another scenario specific to the mobile world. Most mobile devices now implement a Near-Field Communication (NFC)
protocol for quickly sharing information between devices using radio communication. It works by bringing devices to close
proximity or simply having them touch each other. Even though the communication range of NFC is limited to just a few
centimeters, eavesdropping, data modification and various other types of attacks are possible, since NFC alone does not ensure
secure communication.

Example 3: The Android platform provides support for NFC. The following code creates a message that gets pushed to the other
device within the range.

...

public static final String TAG = "NfcActivity";

private static final String DATA_SPLITTER = "__:DATA:__";

private static final String MIME_TYPE = "application/my.applications.mimetype";

...

TelephonyManager tm = (TelephonyManager)Context.getSystemService(Context.TELEPHONY_SERVICE);

String VERSION = tm.getDeviceSoftwareVersion();

...

NfcAdapter nfcAdapter = NfcAdapter.getDefaultAdapter(this);

if (nfcAdapter == null)

return;

String text = TAG + DATA_SPLITTER + VERSION;

NdefRecord record = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,

MIME_TYPE.getBytes(), new byte[0], text.getBytes());

NdefRecord[] records = { record };

NdefMessage msg = new NdefMessage(records);

nfcAdapter.setNdefPushMessage(msg, this);

...

NFC Data Exchange Format (NDEF) message contains typed data, a URI, or a custom application payload. If the message
contains information about the application, such as its name, MIME type, or device software version, this information could be
leaked to an eavesdropper.

Recommendations:
Write error messages with security in mind. In production environments, turn off detailed error information in favor of brief
messages. Restrict the generation and storage of detailed output that can help administrators and programmers diagnose
problems. Be careful, debugging traces can sometimes appear in non-obvious places (embedded in comments in the HTML for
an error page, for example).

Even brief error messages that do not reveal stack traces or database dumps can potentially aid an attacker. For example, an
"Access Denied" message can reveal that a file or user exists on the system. Due to this, it's advised to always keep information
instead of sending it to a resource directly outside the program.

Example 4: The code below broadcasts the stack trace of a caught exception within your app only, so that it cannot be leaked to
other apps on the system. There is also the added bonus that this is more efficient than globally broadcasting through the system.

...

try {

...

} catch (Exception e) {

String exception = Log.getStackTraceString(e);

Intent i = new Intent();

i.setAction("SEND_EXCEPTION");

i.putExtra("exception", exception);

LocalBroadcastManager.getInstance(view.getContext()).sendBroadcast(i);

}

...

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 4 of 17

If you are concerned about leaking system data via NFC on an Android device, you could do one of the following three things.
Either do not include system data in the messages pushed to other devices in range, or encrypt the payload of the message, or
establish secure communication channel at a higher layer.

Tips:
1. Do not rely on wrapper scripts, corporate IT policy, or quick-thinking system administrators to prevent system information
leaks. Write software that is secure on its own.

2. This category of vulnerability does not apply to all types of programs. For example, if your application executes on a client
machine where system information is already available to an attacker, or if you print system information only to a trusted log file,
you can use AuditGuide to filter out this category.

ChunkedCipherOutputStream.java, line 127 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function writeChunk() in ChunkedCipherOutputStream.java might reveal system

data or debugging information by calling write() on line 127. The information
revealed by write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: ChunkedCipherOutputStream.java:127 java.io.OutputStream.write()
125

126 int ciLen = _cipher.doFinal(_chunk, 0, posInChunk, _chunk);

127 out.write(_chunk, 0, ciLen);

128 }

129

Analysis: Suspicious

NDocumentOutputStream.java, line 123 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in NDocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 123. The information revealed by
write() could help an adversary form a plan of attack.

Source: NPOIFSDocument.java:225 java.lang.Throwable.getMessage()
223 }

224 } catch (IOException e) {

225 result = e.getMessage();

226 }

227 results[0] = result;

Sink: NDocumentOutputStream.java:123 java.io.OutputStream.write()
121

122 if (_buffer != null) {

123 _buffer.write(b);

124 checkBufferSize();

125 } else {

Analysis: Suspicious

NDocumentOutputStream.java, line 126 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in NDocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 126. The information revealed by
write() could help an adversary form a plan of attack.

Source: HSLFSlideShow.java:358 Read ie()
356 			currentUser = new CurrentUserAtom(directory);

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 5 of 17

357 		} catch(IOException ie) {

358 			logger.log(POILogger.ERROR, "Error finding Current User Atom:\n" + ie);

359 			currentUser = new CurrentUserAtom();

360 		}

Sink: NDocumentOutputStream.java:126
org.apache.poi.poifs.filesystem.NDocumentOutputStream.write()

124 checkBufferSize();

125 } else {

126 write(b, 0, b.length);

127 }

128 }

Analysis: Suspicious

LittleEndianOutputStream.java, line 84 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in LittleEndianOutputStream.java might reveal system data or

debugging information by calling write() on line 84. The information revealed by
write() could help an adversary form a plan of attack.

Source: POIFSDocument.java:367 java.lang.Throwable.getMessage()
365 			}

366 		} catch (IOException e) {

367 			result = e.getMessage();

368 		}

369 		results[0] = result;

Sink: LittleEndianOutputStream.java:84 java.io.FilterOutputStream.write()
82 		// suppress IOException for interface method

83 		try {

84 			super.write(b);

85 		} catch (IOException e) {

86 			throw new RuntimeException(e);

Analysis: Suspicious

MemoryPackagePartOutputStream.java, line 93 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in MemoryPackagePartOutputStream.java might reveal system

data or debugging information by calling write() on line 93. The information revealed
by write() could help an adversary form a plan of attack.

Source: HSLFSlideShow.java:358 Read ie()
356 			currentUser = new CurrentUserAtom(directory);

357 		} catch(IOException ie) {

358 			logger.log(POILogger.ERROR, "Error finding Current User Atom:\n" + ie);

359 			currentUser = new CurrentUserAtom();

360 		}

Sink: MemoryPackagePartOutputStream.java:93 java.io.OutputStream.write()
91 	@Override

92 	public void write(byte[] b) throws IOException {

93 		_buff.write(b);

94 	}

95 }

Analysis: Suspicious

ChunkedCipherOutputStream.java, line 81 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 6 of 17

Abstract: The function write() in ChunkedCipherOutputStream.java might reveal system data
or debugging information by calling write() on line 81. The information revealed by
write() could help an adversary form a plan of attack.

Source: POIFSDocument.java:367 java.lang.Throwable.getMessage()
365 			}

366 		} catch (IOException e) {

367 			result = e.getMessage();

368 		}

369 		results[0] = result;

Sink: ChunkedCipherOutputStream.java:81
org.apache.poi.poifs.crypt.ChunkedCipherOutputStream.write()

79

80 public void write(byte[] b) throws IOException {

81 write(b, 0, b.length);

82 }

Analysis: Suspicious

HWPFOutputStream.java, line 48 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in HWPFOutputStream.java might reveal system data or

debugging information by calling write() on line 48. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: HWPFOutputStream.java:48 java.io.ByteArrayOutputStream.write()
46 public synchronized void write(byte[] buf, int off, int len)

47 {

48 super.write(buf, off, len);

49 _offset += len;

50 }

Analysis: Suspicious

ChunkedCipherOutputStream.java, line 81 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in ChunkedCipherOutputStream.java might reveal system data

or debugging information by calling write() on line 81. The information revealed by
write() could help an adversary form a plan of attack.

Source: HSLFSlideShow.java:358 Read ie()
356 			currentUser = new CurrentUserAtom(directory);

357 		} catch(IOException ie) {

358 			logger.log(POILogger.ERROR, "Error finding Current User Atom:\n" + ie);

359 			currentUser = new CurrentUserAtom();

360 		}

Sink: ChunkedCipherOutputStream.java:81
org.apache.poi.poifs.crypt.ChunkedCipherOutputStream.write()

79

80 public void write(byte[] b) throws IOException {

81 write(b, 0, b.length);

82 }

Analysis: Suspicious

LittleEndianOutputStream.java, line 84 (System Information Leak: External)

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 7 of 17

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in LittleEndianOutputStream.java might reveal system data or

debugging information by calling write() on line 84. The information revealed by
write() could help an adversary form a plan of attack.

Source: NPOIFSDocument.java:225 java.lang.Throwable.getMessage()
223 }

224 } catch (IOException e) {

225 result = e.getMessage();

226 }

227 results[0] = result;

Sink: LittleEndianOutputStream.java:84 java.io.FilterOutputStream.write()
82 		// suppress IOException for interface method

83 		try {

84 			super.write(b);

85 		} catch (IOException e) {

86 			throw new RuntimeException(e);

Analysis: Suspicious

NDocumentOutputStream.java, line 123 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in NDocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 123. The information revealed by
write() could help an adversary form a plan of attack.

Source: HSLFSlideShow.java:358 Read ie()
356 			currentUser = new CurrentUserAtom(directory);

357 		} catch(IOException ie) {

358 			logger.log(POILogger.ERROR, "Error finding Current User Atom:\n" + ie);

359 			currentUser = new CurrentUserAtom();

360 		}

Sink: NDocumentOutputStream.java:123 java.io.OutputStream.write()
121

122 if (_buffer != null) {

123 _buffer.write(b);

124 checkBufferSize();

125 } else {

Analysis: Suspicious

MemoryPackagePartOutputStream.java, line 93 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in MemoryPackagePartOutputStream.java might reveal system

data or debugging information by calling write() on line 93. The information revealed
by write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: MemoryPackagePartOutputStream.java:93 java.io.OutputStream.write()
91 	@Override

92 	public void write(byte[] b) throws IOException {

93 		_buff.write(b);

94 	}

95 }

Analysis: Suspicious

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 8 of 17

LittleEndianOutputStream.java, line 84 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in LittleEndianOutputStream.java might reveal system data or

debugging information by calling write() on line 84. The information revealed by
write() could help an adversary form a plan of attack.

Source: HSLFSlideShow.java:358 Read ie()
356 			currentUser = new CurrentUserAtom(directory);

357 		} catch(IOException ie) {

358 			logger.log(POILogger.ERROR, "Error finding Current User Atom:\n" + ie);

359 			currentUser = new CurrentUserAtom();

360 		}

Sink: LittleEndianOutputStream.java:84 java.io.FilterOutputStream.write()
82 		// suppress IOException for interface method

83 		try {

84 			super.write(b);

85 		} catch (IOException e) {

86 			throw new RuntimeException(e);

Analysis: Suspicious

DocumentOutputStream.java, line 105 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in DocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 105. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: DocumentOutputStream.java:105 java.io.OutputStream.write()
103 {

104 limitCheck(len);

105 _stream.write(b, off, len);

106 }

Analysis: Suspicious

MemoryPackagePartOutputStream.java, line 88 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in MemoryPackagePartOutputStream.java might reveal system

data or debugging information by calling write() on line 88. The information revealed
by write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: MemoryPackagePartOutputStream.java:88
java.io.ByteArrayOutputStream.write()

86 	@Override

87 	public void write(byte[] b, int off, int len) {

88 		_buff.write(b, off, len);

89 	}

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 9 of 17

Analysis: Suspicious

ChunkedCipherOutputStream.java, line 81 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in ChunkedCipherOutputStream.java might reveal system data

or debugging information by calling write() on line 81. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: ChunkedCipherOutputStream.java:81
org.apache.poi.poifs.crypt.ChunkedCipherOutputStream.write()

79

80 public void write(byte[] b) throws IOException {

81 write(b, 0, b.length);

82 }

Analysis: Suspicious

NDocumentOutputStream.java, line 126 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in NDocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 126. The information revealed by
write() could help an adversary form a plan of attack.

Source: NPOIFSDocument.java:225 java.lang.Throwable.getMessage()
223 }

224 } catch (IOException e) {

225 result = e.getMessage();

226 }

227 results[0] = result;

Sink: NDocumentOutputStream.java:126
org.apache.poi.poifs.filesystem.NDocumentOutputStream.write()

124 checkBufferSize();

125 } else {

126 write(b, 0, b.length);

127 }

128 }

Analysis: Suspicious

DocumentOutputStream.java, line 78 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in DocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 78. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: DocumentOutputStream.java:78
org.apache.poi.poifs.filesystem.DocumentOutputStream.write()

76 throws IOException

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 10 of 17

77 {

78 write(b, 0, b.length);

79 }

Analysis: Suspicious

DocumentOutputStream.java, line 78 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in DocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 78. The information revealed by
write() could help an adversary form a plan of attack.

Source: POIFSDocument.java:367 java.lang.Throwable.getMessage()
365 			}

366 		} catch (IOException e) {

367 			result = e.getMessage();

368 		}

369 		results[0] = result;

Sink: DocumentOutputStream.java:78
org.apache.poi.poifs.filesystem.DocumentOutputStream.write()

76 throws IOException

77 {

78 write(b, 0, b.length);

79 }

Analysis: Suspicious

NDocumentOutputStream.java, line 134 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in NDocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 134. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: NDocumentOutputStream.java:134 java.io.ByteArrayOutputStream.write()
132

133 if (_buffer != null) {

134 _buffer.write(b, off, len);

135 checkBufferSize();

136 } else {

Analysis: Suspicious

LittleEndianOutputStream.java, line 84 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in LittleEndianOutputStream.java might reveal system data or

debugging information by calling write() on line 84. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: LittleEndianOutputStream.java:84 java.io.FilterOutputStream.write()

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 11 of 17

82 		// suppress IOException for interface method

83 		try {

84 			super.write(b);

85 		} catch (IOException e) {

86 			throw new RuntimeException(e);

Analysis: Suspicious

CryptoAPIEncryptor.java, line 248 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in CryptoAPIEncryptor.java might reveal system data or

debugging information by calling write() on line 248. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: CryptoAPIEncryptor.java:248 java.io.ByteArrayOutputStream.write()
246 try {

247 cipher.update(b, off, len, b, off);

248 super.write(b, off, len);

249 } catch (Exception e) {

250 throw new EncryptedDocumentException(e);

Analysis: Suspicious

NDocumentOutputStream.java, line 123 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in NDocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 123. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: NDocumentOutputStream.java:123 java.io.OutputStream.write()
121

122 if (_buffer != null) {

123 _buffer.write(b);

124 checkBufferSize();

125 } else {

Analysis: Suspicious

StreamHelper.java, line 69 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in StreamHelper.java might reveal system data or debugging

information by calling write() on line 69. The information revealed by write() could
help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 12 of 17

131 StringBuilder builder = new StringBuilder();

Sink: StreamHelper.java:69 java.io.OutputStream.write()
67 public void write(byte b[], int off, int len)

68 throws IOException {

69 out.write(b, off, len);

70 }

Analysis: Suspicious

StandardEncryptor.java, line 151 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in StandardEncryptor.java might reveal system data or

debugging information by calling write() on line 151. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: StandardEncryptor.java:151 java.io.OutputStream.write()
149 @Override

150 public void write(byte[] b, int off, int len) throws IOException {

151 out.write(b, off, len);

152 countBytes += len;

153 }

Analysis: Suspicious

LittleEndianOutputStream.java, line 93 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in LittleEndianOutputStream.java might reveal system data or

debugging information by calling write() on line 93. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: LittleEndianOutputStream.java:93 java.io.FilterOutputStream.write()
91 		// suppress IOException for interface method

92 		try {

93 			super.write(b, off, len);

94 		} catch (IOException e) {

95 			throw new RuntimeException(e);

Analysis: Suspicious

DocumentOutputStream.java, line 78 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in DocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 78. The information revealed by
write() could help an adversary form a plan of attack.

Source: HSLFSlideShow.java:358 Read ie()
356 			currentUser = new CurrentUserAtom(directory);

357 		} catch(IOException ie) {

358 			logger.log(POILogger.ERROR, "Error finding Current User Atom:\n" + ie);

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 13 of 17

359 			currentUser = new CurrentUserAtom();

360 		}

Sink: DocumentOutputStream.java:78
org.apache.poi.poifs.filesystem.DocumentOutputStream.write()

76 throws IOException

77 {

78 write(b, 0, b.length);

79 }

Analysis: Suspicious

DocumentOutputStream.java, line 78 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in DocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 78. The information revealed by
write() could help an adversary form a plan of attack.

Source: NPOIFSDocument.java:225 java.lang.Throwable.getMessage()
223 }

224 } catch (IOException e) {

225 result = e.getMessage();

226 }

227 results[0] = result;

Sink: DocumentOutputStream.java:78
org.apache.poi.poifs.filesystem.DocumentOutputStream.write()

76 throws IOException

77 {

78 write(b, 0, b.length);

79 }

Analysis: Suspicious

NDocumentOutputStream.java, line 141 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in NDocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 141. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: NDocumentOutputStream.java:141 java.io.OutputStream.write()
139 _stream_output = _stream.getOutputStream();

140 }

141 _stream_output.write(b, off, len);

142 _document_size += len;

143 }

Analysis: Suspicious

NDocumentOutputStream.java, line 126 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in NDocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 126. The information revealed by
write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 14 of 17

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: NDocumentOutputStream.java:126
org.apache.poi.poifs.filesystem.NDocumentOutputStream.write()

124 checkBufferSize();

125 } else {

126 write(b, 0, b.length);

127 }

128 }

Analysis: Suspicious

ChunkedCipherOutputStream.java, line 81 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in ChunkedCipherOutputStream.java might reveal system data

or debugging information by calling write() on line 81. The information revealed by
write() could help an adversary form a plan of attack.

Source: NPOIFSDocument.java:225 java.lang.Throwable.getMessage()
223 }

224 } catch (IOException e) {

225 result = e.getMessage();

226 }

227 results[0] = result;

Sink: ChunkedCipherOutputStream.java:81
org.apache.poi.poifs.crypt.ChunkedCipherOutputStream.write()

79

80 public void write(byte[] b) throws IOException {

81 write(b, 0, b.length);

82 }

Analysis: Suspicious

NDocumentOutputStream.java, line 102 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function checkBufferSize() in NDocumentOutputStream.java might reveal

system data or debugging information by calling write() on line 102. The information
revealed by write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: NDocumentOutputStream.java:102
org.apache.poi.poifs.filesystem.NDocumentOutputStream.write()

100 byte[] data = _buffer.toByteArray();

101 _buffer = null;

102 write(data, 0, data.length);

103 } else {

104 // So far, mini stream will work, keep going

Analysis: Suspicious

NDocumentOutputStream.java, line 126 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 15 of 17

Abstract: The function write() in NDocumentOutputStream.java might reveal system data or
debugging information by calling write() on line 126. The information revealed by
write() could help an adversary form a plan of attack.

Source: POIFSDocument.java:367 java.lang.Throwable.getMessage()
365 			}

366 		} catch (IOException e) {

367 			result = e.getMessage();

368 		}

369 		results[0] = result;

Sink: NDocumentOutputStream.java:126
org.apache.poi.poifs.filesystem.NDocumentOutputStream.write()

124 checkBufferSize();

125 } else {

126 write(b, 0, b.length);

127 }

128 }

Analysis: Suspicious

ExcelFileFormatDocFunctionExtractor.java, line 487 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in ExcelFileFormatDocFunctionExtractor.java might reveal

system data or debugging information by calling write() on line 487. The information
revealed by write() could help an adversary form a plan of attack.

Source: EscherBitmapBlip.java:129 Read e()
127 catch (Exception e)

128 {

129 extraData = e.toString();

130 }

131 StringBuilder builder = new StringBuilder();

Sink: ExcelFileFormatDocFunctionExtractor.java:487 java.io.OutputStream.write()
485

486 			}

487 			_os.write(b, off, len);

488 		}

489 	}

Analysis: Suspicious

MemoryPackagePartOutputStream.java, line 93 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in MemoryPackagePartOutputStream.java might reveal system

data or debugging information by calling write() on line 93. The information revealed
by write() could help an adversary form a plan of attack.

Source: POIFSDocument.java:367 java.lang.Throwable.getMessage()
365 			}

366 		} catch (IOException e) {

367 			result = e.getMessage();

368 		}

369 		results[0] = result;

Sink: MemoryPackagePartOutputStream.java:93 java.io.OutputStream.write()
91 	@Override

92 	public void write(byte[] b) throws IOException {

93 		_buff.write(b);

94 	}

95 }

Analysis: Suspicious

MemoryPackagePartOutputStream.java, line 93 (System Information Leak: External)

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 16 of 17

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in MemoryPackagePartOutputStream.java might reveal system

data or debugging information by calling write() on line 93. The information revealed
by write() could help an adversary form a plan of attack.

Source: NPOIFSDocument.java:225 java.lang.Throwable.getMessage()
223 }

224 } catch (IOException e) {

225 result = e.getMessage();

226 }

227 results[0] = result;

Sink: MemoryPackagePartOutputStream.java:93 java.io.OutputStream.write()
91 	@Override

92 	public void write(byte[] b) throws IOException {

93 		_buff.write(b);

94 	}

95 }

Analysis: Suspicious

NDocumentOutputStream.java, line 123 (System Information Leak: External)

Fortify Priority: Low Folder Low
Kingdom: Encapsulation
Abstract: The function write() in NDocumentOutputStream.java might reveal system data or

debugging information by calling write() on line 123. The information revealed by
write() could help an adversary form a plan of attack.

Source: POIFSDocument.java:367 java.lang.Throwable.getMessage()
365 			}

366 		} catch (IOException e) {

367 			result = e.getMessage();

368 		}

369 		results[0] = result;

Sink: NDocumentOutputStream.java:123 java.io.OutputStream.write()
121

122 if (_buffer != null) {

123 _buffer.write(b);

124 checkBufferSize();

125 } else {

Analysis: Suspicious

Fortify Security Report

Copyright 2013 Fortify Software Inc. Page 17 of 17

	Executive Summary
	Issues Overview
	Issues by Fortify Priority Order
	Recommendations and Conclusions

	Results Outline
	Overall number of results
	Vulnerability Examples by Category
	System Information Leak: External

