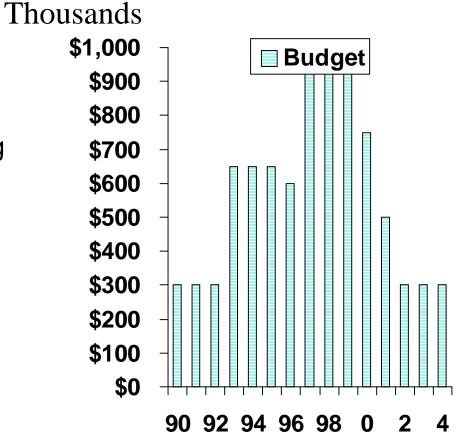
GRI Perspective on Fuel Cell R&D

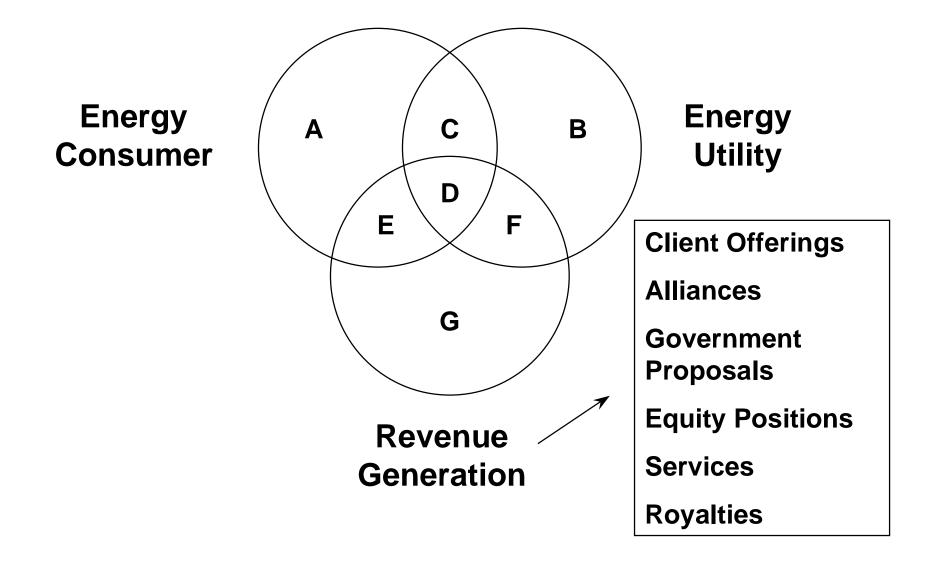
Joint DOE/EPRI/GRI Fuel Cell Technology Review Conference Chicago, IL August 3-5, 1999

Dr. Kevin Krist Gas Research Institute Chicago, Illinois

Outline


- Approach
- Research
 - Reduced-Temperature, Electrode-Supported, Planar (RTESP) SOFC
 - Tubular SOFC
- Conclusions

Approach: Basic SOFC Research to Complement Advanced Turbine and Engine Development


- Higher maximum and part-load efficiency option
- Higher reliability
 - Few moving parts, negligible emissions, quiet, modular
- Effective coupling with gas turbines, chillers

GRI is Focusing on RTESP and Tubular SOFCs

- Phase I (1990-1996) \bullet
 - RTESP single cells, operating at 650°C
- Phase II (1997-2000)
 - Reliable, high-performance **RTESP** stacks
 - Tubular SOFC cost reduction

Non Tariff-Based Fuel Cell Projects

RTESP SOFCs

- Thin YSZ electrolyte on thick porous electrode support
- Operates at ~650°C instead of 1000°C
 - Easier sealing, better reliability
 - Low-cost, metallic components
 - Less insulation
- Uses natural gas directly
- High-efficiency and power density and small size leads to low cost
 - Objective: Total system cost <\$700/kW in small production volumes

	Proton Exchange Membrane (PEM) FC	Reduced-Temperature, Electrode- Supported, Planar (RTESP) SOFC
Balance of Plant		
Components		
Fuel Processor	Yes	No
High-Temperature Shift	Yes	No
Low-Temperature Shift	Yes	No
Preferential Oxidation	Yes	No
Water Treatment	Yes	No
Water Management	Yes	For start-up only
/Condensation		
Humidification	Yes	No
Water Cooling Loop	Yes	No
Fuel Clean-Up	Yes	Yes
Air Pre-Heater	No	Yes (But potentially small
		or unnecessary)
Insulation	Yes	Yes (But less than for higher
		temperature SOFCs)
Inverter/Switchgear.	Yes	Yes
Turbomachinery	Used sometimes. Increases	No
	efficiency but decreases reliability	
Controls	Complex	Simpler

RTESP SOFC R&D: U-Utah / MSRI

GRI/EPRI R&D Since 1993

• NIST-ATP Contract Initiated 11/98

- Participants: U-Utah/MSRI/GRI/HBT
- ~\$3MM over 3 yrs
- GRI subcontractor: ~\$60K/yr

Status

- High performance cells
- <1kW bench-scale stacks</p>
- GRI/EPRI Patents

RTESP SOFC R&D: U-Utah / MSRI

• EPRI/GRI/MSRI/U-Utah Consortium formed

- Commercialization and R&D Teams
- Intellectual property unified
- Industry partner search underway
- Pre-commercial prototype in 3-4 years

RTESP SOFC R&D: AlliedSignal

- High-performance single cells
- Small stack designs

RTESP SOFC R&D: U-Penn

- Hydrocarbon-Fueled RTESP
 SOFCs
 - Dry methane oxidation
 - Simplified cell materials
 - Cell fabrication method
- GRI Patents

RTESP SOFC R&D: U-FL

- Bilayer Ceramic Electrolyte
 Membranes
 - Syn-Gas Production
 - 550°C Fuel Cells
- GRI Patents

RTESP SOFC R&D: Other Contractors

- Lawrence Berkeley
 Laboratory
- Northwestern University
- University of Missouri-Rolla
- Institute of Gas Technology
- GRI Patents

RTESP SOFC R&D: TDA Research /Bechtel

- Technical Evaluation of SOFC
 Issues
 - RTESP SOFC Conceptual System Design
 - Manufacturing Cost Evaluation
 - Residential Applications (Poster)

Tubular SOFCs for >250kW Applications

- Seal-less design, tolerance to thermal stress
- Operability in high-efficiency, pressurized SOFC/turbine cycles
- Efficient and Reliable
- Reduce Size and Cost

Tubular SOFC R&D: Siemens- Westinghouse, U-Utah Lawrence Berkeley N.L. Penn State U.

- Design and fabrication of multicompartment cells
 - Improved linear and volumetric power density
- Sintered cell fabrication methods
- Materials for improved power density

Conclusions

- Low-cost and reliability are needed to expand FCs beyond niche markets
 - Achieving these targets in small production volumes will accelerate the introduction of FCs
- Along with other FCs, RTESP SOFCs are an important candidate technology
 - They eliminate most of the balance of plant
 - They may be the lowest cost option
- Tubular SOFC cost reductions will lead to very efficient power generation in large applications
- GRI is partnering with EPRI, DOE, state governments, its members, and contractors to advance FC technology