<u>North Aleutian Basin Play 6: Mesozoic Buried Granitic Hills (Jurassic-Cretaceous Magmatic Rocks)</u>

Geological Assessment

<u>GRASP UAI</u>: AAAAA HAG <u>Play Area</u>: 46,810 square miles <u>Play Water Depth Range</u>: 15-400 feet <u>Play Depth Range</u>: 6,000-12,000 feet <u>Play Exploration Chance</u>: 0.04095

Cretaceous Magr OCS Plann Undiscovered T	Play 6, Mesozoic Buried Granitic Hills (Jurassic- Cretaceous Magmatic Rocks), North Aleutian Basin OCS Planning Area, 2006 Assessment, Undiscovered Technically-Recoverable Oil & Gas												
Assessment Results as of November 2005 Resource Resources * Commodity													
Commodity (Units) F95 Mean F05													
BOE (Mmboe)	0	67	330										
Total Gas (Tcfg)	0.000	0.206	1.169										
Total Liquids (Mmbo)	0	30	122										
Free Gas** (Tcfg)	0.000	0.195	1.128										
Solution Gas (Tcfg)	0.000	0.010	0.041										
Oil (Mmbo)	0	26	93										
Condensate (Mmbc)	0	5	29										
	* Risked, Technically-Recoverable ** Free Gas Includes Gas Cap and Non-Associated Gas												

F95 = 95% chance that resources will equal or exceed the given quantity

F05 = 5% chance that resources will equal or exceed the given quantity

BOE = total hydrocarbon energy, expressed in barrels-of-oilequivalent, where 1 barrel of oil = 5,620 cubic feet of natural gas

- Mmb = millions of barrels
- Tcf = trillions of cubic feet
- Table 1

Play 6, the "Mesozoic Buried Granitic Hill" play, is a subordinate play in the North Aleutian Basin OCS Planning Area, with 3% (67 Mmboe) of the Planning Area energy endowment (2,287 Mmboe). The overall assessment results for play 6 are shown in table 1. Oil and gas-condensate liquids form 45% of the hydrocarbon energy endowment of play 6. Table 5 reports the detailed assessment results by commodity for play 6.

Table 3 summarizes the volumetric inputdata developed for the *GRASP* computermodel of North Aleutian basin play 6.4 reports the risk model used for play 6.The location of play 6 is shown in figure 1.

The rocks comprising the Mesozoic Buried Granitic Hill play correspond to the Mesozoic plutonic complex exposed in the Alaska Range to the northeast of the North Aleutian basin. The latter rocks are the roots of a volcanic arc system of Jurassic and Cretaceous age. The volcanic arc system is long-lived and remains active today as the chain of large, active volcanoes along the backbone of the Alaska Peninsula.

Jurassic and Cretaceous plutonic rocks are overlain unconformably by Tertiary strata in wells in the northeastern parts of the North Aleutian basin. This plutonic complex was penetrated by 3 wells (Great Basins 1, Great Basins 2, and Becharof Lake 1 wells) at depths ranging from 8,780 to 10,860 feet. Plutonic rocks (quartz diorite) in the lowermost 15 ft of the Port Heiden 1 well have been variously assigned to the Middle Jurassic or the Eocene-Oligocene Meshik volcanics. Radiometric dating of some of these plutonic rocks by the K-Ar method have yielded ages of 96.3 Ma (Great Basins 2 well), 120 Ma, and 177 Ma (Great Basins 1 well), or, ranging from mid-Cretaceous to Middle Jurassic in equivalent stratigraphic

age.

No pools of oil or gas were encountered in any of the well penetrations of the Mesozoic magmatic arc complex. A gas seep at "Gas Rocks" along the southwest shore of Becharof Lake is located along the projected trace of the Bruin Bay fault. This gas seep consists mostly of carbon dioxide and nitrogen.

On the eastern Alaska Peninsula and western Alaska Range, the Bruin Bay fault forms the contact between a Mesozoic volcanoplutonic arc terrane on the north and a Mesozoic sedimentary basin on the south. The Bruin Bay fault is extrapolated offshore as the boundary between a northern area of high-frequency, high-amplitude magnetic anomalies and a southern area of lowfrequency, low-amplitude magnetic anomalies. We speculate that the magnetic anomaly field north of the projected Bruin Bay fault corresponds to the volcanoplutonic arc terrane exposed north of the Bruin Bay fault onshore. These rocks were penetrated beneath Tertiary strata in three wells (Great Basins 1, Great Basins 2, and Becharof Lake 1 wells) in the northeast part of North Aleutian basin. The magnetic anomaly field south of the projected Bruin Bay fault represents an offshore extension of the deformed Mesozoic sedimentary rocks of the Alaska Peninsula, as demonstrated by well penetrations of Mesozoic rocks at several wells to the west in St. George basin and at the Cathedral River 1. David River 1/1A, and Hoodoo Lake 2 wells on the Alaska Peninsula. The area of play 6 corresponds to the area of the highfrequency, high-amplitude magnetic anomaly field north of the offshore extension of the Bruin Bay fault. This magnetic anomaly field is interpreted to mark a substrate of Mesozoic volcanoplutonic rocks that underlies the northern

ninety-two percent of the North Aleutian Basin OCS Planning Area.

The Mesozoic basement rocks penetrated at the Great Basins 1 well are described from cores as polymictic conglomerates passing downward into granitic gneiss (with large orthoclase porphyroblasts) and lamprophyre (rich in dark minerals and transitional to gabbros). The Great Basins 2 well penetrated diorite and granite, brecciated and seamed with calcite veins. The Mesozoic rocks penetrated at the Becharof Lake 1 well are described as metamorphic green schist, meta-gabbro, and meta-diorite, highly fractured and veined by feldspar and quartz.

All of the undiscovered potential oil and gas resources of play 6 are associated with hypothetical pools lodged in fractured "granitic" (here referring to any felsic pluton or massive felsic volcanic flow) rocks that core basement uplifts of Tertiary age. These granite-cored uplifts were repeatedly exposed to weathering and erosion through early Tertiary (perhaps also Late Cretaceous) time. We hypothesize that fractures in the granites provided avenues for deep invasion by meteoric waters during times of surface exposure. The meteoric waters may have enlarged fractures through dissolution and created a bulk porosity that was later occupied by petroleum (following deep reburial). In addition to an abundance of fractures, fractures must be lengthy and sufficiently diverse in orientations and depth of penetration in the granitic body to establish effective connectivity across pool areas of thousands of acres. The granitecored basement uplifts were eventually (in Late Eocene time, approx. 40 Ma) sealed beneath a regional shale within the lower part of the Stepovak Formation. We hypothesize that gas and oil arising from Type III and coaly source rocks of Tertiary

age in deep areas of the North Aleutian basin that surround the basement uplifts migrated up the bounding faults and invaded the fractured and weathered granites at the crest of the basement uplifts.

Features similar to the North Aleutian basin buried hills form important exploration targets in the Bohai (North China) basin and offshore Vietnam. Buried hills form an important play concept for exploration of the Mesozoic assemblage in ultra-deep waters of the U.S. Gulf of Mexico. In the productive analog from Vietnam, the granitic rocks range in age from 97 to 178 Ma (mid-Cretaceous to Middle Jurassic) and feature bulk porosity values ranging from up to 25.0%. Effective porosity averages between 2.5% and 3.8% and is roughly distributed in halves as "fracture porosity" and as "caverns" or "microcaverns", the latter the legacy of dissolution of fracture surfaces by both hydrothermal and meteoric fluids. Vietnam's largest field (Bach Ho) is lodged in a fractured granitic reservoir and produces approximately 280,000 bbl/day. Paul Post (pers. comm., August 2003) of the Minerals Management Service has compiled data on the buried hill oil and gas fields of China and Vietnam. Pool volumes can exceed 1 billion barrels of oil and 2 trillions of cubic feet of gas. Productive columns can range up to 3,300 feet. Initial production rates can exceed 18,000 barrels of oil per day. Oil recovery factors can range up to 900 bbl/acre-foot (F50 = 158bbl/acre-foot). The variability in these fractured reservoirs is such that the upper parts of the reservoir can be sparsely fractured while better fracture systems exist deeper in the buried hill. Many hydrocarbon accumulations in Vietnam and China (and elsewhere) may have been missed because exploration wells stopped drilling as soon as granitic rocks were encountered in the belief that it was economic basement and no

hydrocarbons could be housed there. The data compiled and analyzed by Paul Post for analog features in China and Vietnam formed the basis for the pay thickness and oil and gas yields used in the play 6 resource model (prospect areas are based on MMS seismic mapping).

Three major risk factors for play 6 relate to: 1) reservoir (requires extensive fractures, enhanced by weathering, and of sufficient vertical and horizontal lengths and diversity of orientation to achieve connectivity across an area of tens of thousands of acres); 2) adequate source (no attractive source formation in known Tertiary-age rocks); and 3) migration (hydrocarbons generated in deep basin areas surrounding basement uplifts must first migrate vertically up bounding faults to reach the horsts, but then must encounter sealing levels on the same faults that act to divert hydrocarbons into the crests of uplifts; there is some risk that these faults will instead allow the hydrocarbons to escape upwards into overlying Tertiary sedimentary rocks).

A maximum of 15 hypothetical pools is forecast by the aggregation of the risk model and the prospect numbers model for play 6. These pools range in mean conditional (unrisked) recoverable volumes from 2 Mmboe (pool rank 15) to 148 Mmboe (pool rank 1). Pool rank 1 ranges in possible conditional recoverable volumes from 9 Mmboe (F95) to 469 Mmboe (F05), or, in the gas case, from 0.05 Tcfge (F95) to 2.64 Tcfge (F05). Table 2 shows the conditional sizes of the 10 largest pools in play 6.

Assessme	Pools nt Results as o	f November 2	005										
BOE Resources *													
F95 Mean F05													
1 9 148 469													
2	3	42	131										
3	1.6	21	64										
4	1.1	13	40										
5 0.8 9 28													
6 0.64 7 21													
6 0.64 7 21 7 0.54 6 16													
8	0.47	4.7	13										
9	0.40	4.0	11										
10	0.35	3.5	10										
10 0.35 3.5 10 * Conditional, Technically-Recoverable, Millions of Barrels Energy-Equivalent (Mmboe), from "PSRK.out" file F95 = 95% chance that resources will equal or exceed the given quantity F05 = 5% chance that resources will equal or exceed the given quantity BOE = total hydrocarbon energy, expressed in barrels-of-oil- equivalent, where 1 barrel of oil = 5,620 cubic feet of natural													

Table 2

In the computer simulation for play 6 a total of 13,089 "simulation pools" were sampled for size. These simulation pools can be grouped according to the USGS size class system in which sizes double with each successive class. Pool size class 10 contains the largest share (2,483, or 19%) of simulation pools "discovered" among the 10,000 trials conducted by the computer simulation for play 6. Pool size class 10 ranges from 16 to 32 Mmboe. The 4 largest simulation pools for play 6 fall within pool size class 18, which ranges in size from 4,096 to 8,192 Mmboe (23-46 Tcfge). Table 6 reports statistics for the simulation pools developed in the GRASP computer model for play 6.

GRASP Play Data Form (Minerals Management Service-Alaska Regional Office)

<u>Basin</u>: North Aleutian Basin <u>Play Number</u>: 6 <u>Play UAI Number</u>: AAAAA HAG

Assessor(s): K.W. Sherwood, D. Comer, J. Larson <u>Date</u>: December 2004 <u>Play Name</u>: Mesozoic Buried Granitic Hills (Jurassic-Cretaceous Magmatic Rocks)

Play Depth Range: 6,000-12,000 feet (mean = 9,000 ft)

Play Water Depth Range: 15-400 feet (mean = 300 ft)

Exploration Chance

0.04095

Expected Oil Gravity: 35° API

0.117

Play Area: 46,810 mi² (30 million acres)

Reservoir Thermal Maturity: Fractured Granite Reservoir

(0.34%-0.60% Ro projected from depth range)

POOLS Module (Volumes of Pools, Acre-Feet)

		,	,										
Fractile	F100	F95	F90	F75	F50	Mean/Std. Dev.	F25	F15	F10	F05	F02	F01	F00
Prospect Area (acres)-Model Input*	4000		5537		13119	16454/12456			31082				92660
Prospect Area (acres)-Model Output**	1281	4235	5538	8339	13240	16493/11905	21097	27029	31445	39296	46000	50000	90285
Fill Fraction (Fraction of Area Filled)	0.02	0.07	0.08	0.12	0.15	0.17/0.08	0.2	0.25	0.28	0.33	0.4	0.45	1
Productive Area of Pool (acres)	108	523	696	1157	2008	2838/2846	3473	4615	5690	7550	9600	12000	30768
Pay Thickness (feet)	88	115	142	184	254	276/116	351	405	435	505	547	561	575

Prospect Level Chance

* model fit to prospect area data in BESTFIT

** output from @RISK after aggregation with fill fraction

MPRO Module (Numbers of Pools)

Input Play Level Chance	0.35
Output Play Level Chance*	0.3426

First Occurrence of Non Zero Pools As Reported in PSUM Module

Probability Any Pool is 100% Gas

Risk Mo	del Play	Chance			Pet	roleum System Fac	tors			Prospect	t Chance		
		0.35		Reservoir	(granites f	ractured with weat	hering enh	ancement)		0.	.3		
				Sour	rce (mainly	Tertiary coals and	Type III sh	nales)		0.0	65		
			Migratio	0.	.6								
												İ	
Fractile	F99	F95	F90	F75	F50	Mean/Std. Dev.	F25	F15	F10	F05	F02	F01	F00
Numbers of Prospects in Play	24	26	27	29	32	31.99/3.62	33	34	36	38 40		42	48
Numbers of Pools in Play						6	7	8	15				
	Zero Pool	s at F34.28	-			_							
Minimum Number of Pools	2 (F30)]	Mean	Number of	Pools	of Pools	15	I					

POOLS/PSRK/PSUM Modules (Play Resources)

	(,	,	/														
Fractile	F100	F95	F90	F75	F50	Mean/Std. Dev.	F25	F15	F10	F05 F02 F01 F							
Oil Recovery Factor (bbl/acre-foot)	5	31	43	81	158	228/191	310	444	580	610	680	710	1000				
Gas Recovery Factor (Mcfg/acre-foot)	3	27	38	73	146	218/193	290	420	541	620 695 730 1200							
Gas Oil Ratio (Sol'n Gas)(cf/bbl)	56	162	195	267	376	426/220	531	638	723	871 1073 1100 1110							
Condensate Yield ((bbl/Mmcfg)	1	14	17	21	25	25/7	29	32	34	35	37	39	50				
Pool Size Distribution Statistics from POOLS	(1,000 BO	E):	μ (mu)= 9.	814	σ² (sigma	squared)= 2.170			Random N	lumber Ge	nerator See	ed= 599,626	;				
BOE Conversion Factor (cf/bbl)	5620		Probabilit	y Any Pool	Contains I	Both Oil and Free G	as (Gas C	ap)		0.1							
Probability Any Pool is 100% Oil	0.1		Fraction of Pool Volume Gas-Bearing in Oil Pools with Gas Cap 0.9														

Table 3. Input data for North Aleutian basin play 6, 2006 assessment.

0.8

	1		6 Ma	sozoic Buried	Granitic Hills
ssessment Province:	North Aleutian Basin OCS Planning Area	Play Number, Name:		ssic-Cretaceou	
Assessor(s):	K.W. Sherwood, D. Comer, J. Larson	Play UAI:			
	1-Jan-05				
tainty) based on consi	uantitative probability of success (i.e., between zero and deration of the <i>qualitative</i> assessment of ALL elements um geologic parameter assumptions have been met or e	within the component was			
				Play Chance Factors	Averge Condition Prospect Chance
-	component (1a * 1b * 1c)		1	1.0000	0.3900
Probability of eff rock of adequate	Quality, Effective, Mature Source Rock icient source rock in terms of the existence of sufficient a quality located in the drainage area of the reservoirs.	volume of mature source	1a	1.00	0.65
	sion and Migration ective expulsion and migration of hydrocarbons from the	e source rock to the	1b	1.00	0.60
	ective retention of hydrocarbons in the prospects after a	accumulation.	1c	1.00	1.00
Reservoir compo			2	0.3500	0.3000
	esence of reservoir facies with a minimum net thickness resource assessment).	and net/gross ratio (as	2a	0.35	0.30
Probability of eff	ectiveness of the reservoir, with respect to minimum effe specified in the resource assessment).	ective porosity, and	2b	1.00	1.00
Trap component			3	1.0000	1.0000
a. Presence of tra Probability of pro assessment).	p esence of the trap with a minimum rock volume (as speced as a speced by the trap with a minimum rock volume (as speced as a speced by the trap with a minimum rock volume (as speced as a speced by the trap with a minimum rock volume (as speced as a speced by the trap with a minimum rock volume (as speced as a speced by the trap with a minimum rock volume (as speced as a speced by the trap with a minimum rock volume (as speced as a speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced as a speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced by the trap with a minimum rock volume (as speced by the trap with trap with a minimum rock volume (as speced by the trap with trap with trap with trap with trap with transformed (as speced by the trap with transformed (as speced by the trap with trap with transformed (as speced trap with trap with trap with trap with transformed (as speced trap with trap with transformed (as speced trap with trap with transformed (as speced trap with trap with trap with trap with transformed (as speced trap with trap w	cified in the resource	3a	1.00	1.00
b. Effective seal n Probability of eff	nechanism ective seal mechanism for the trap.		3b	1.00	1.00
	(Marginal Probability of hydrocarbons, MPh	c)		0.3500	
	uct of All Subjective Play Chance Factors				
	Prospect Chance ¹ uct of All Subjective Conditional Prospect Chance Facto	rs			0.1170
¹ Assumes that	the Play exists (where all play chance factors = 1.0) istent with play chance and prospect distribution \$		B of Guid	de	
ploration Chance				0.	0410
	rall Play Chance and Average Conditional Prospect Cha				

 Table 4. Risk model for North Aleutian basin play 6, 2006 assessment.

North Aleutian Play 6 Summary-2006 Assessment

GRASP - Geologic and Economic Resource Assessment Model - PSUM Module Results

Minerals Management Service - Alaska OCS Region

GRASP Model Version: 8.29.2005) Computes the Geologic Resource Potential of the Play

	Play UAI: AAA	AAHAG		Play No.		6	
World	Leve	el -		World	Level	Resources	
Country	Leve	el -		UNITED	STATES	OF	AMERICA
Region	Leve	el -		MMS	-	ALASKA	REGION
Basin	Leve	el -		NORTH	ALEUTIAN	BASIN	
Play	Leve	əl -		Play		6 Mesozoic B	asement-Buried Granitic
Geologist	Shei	rwood Co	omer	Larson		Hills (Iliamr	ia Terrane)
Remarks		2005 As	sessment				
Run Date	& Time:	Da	ate	19-Sep-0	5 Time	14:08:2	2

Summary of Play Potential

Product	MEAN	Standard Deviation
BOE (Mboe)	67,016	209,860
Oil (Mbo)	25,600	170,090
Condensate (Mbc)	4,841	11,142
Free (Gas Cap & Nonassociated) Gas (Mmcfg)	195,070	446,270
Solution Gas (Mmcfg)	10,470	60,477

10000 (Number of Trials in Sample) 0.3426 (MPhc [Probability] of First Occurrence of Non-Zero Resource)

Windowing Feature: used

Empirical Probability Distributions of the Products

Greater Than Percentage	BOE (Mboe)	Oil (Mbo)	Condensate (Mbc)	Free (Gas Cap & Nonassociated) Gas (Mmcfg)	Solution Gas (Mmcfg)
100	0	0	0	0	0
99.99	0	0	0	0	0
99	0	0	0	0	0
95	0	0	0	0	0
90	0	0	0	0	0
85	0	0	0	0	0
80	0	0	0	0	0
75	0	0	0	0	0
70	0	0	0	0	0
65	0	0	0	0	0
60	0	0	0	0	0
55	0	0	0	0	0
50	0	0	0	0	0
45	0	0	0	0	0
40	0	0	0	0	0
35	0	0	0	0	0
30	27,164	2,252	3,038	121,960	973
25	60,396	5,772	6,573	267,620	2,425
20	96,037	16,262	9,431	387,800	7,535
15	141,980	35,155	12,819	514,630	13,649
10	207,720	45,269	19,950	782,150	18,734
8	244,390	65,115	21,278	859,480	28,455
6	295,250	77,087	24,734	1,053,500	33,573
5	330,010	92,683	29,339	1,128,200	40,704
4	373,570	148,740	25,376	1,055,200	65,668
2	535,220	205,240	38,587	1,550,400	87,215
1	778,890	481,900	31,407	1,266,200	226,380
0.1	2,090,100	1,837,800	14,834	552,870	781,650
0.01	7,583,800	7,257,600	6,544	276,550	1,520,100
0.001	7,645,600	7,352,500	1,704	62,374	1,575,100

 Table 5. Assessment results by commodity for North Aleutian basin play 6, 2006 assessment.

North Aleutian Play 6 Summary-2006 Assessment

Play 6 -	NORTH AL Mesozoic /: AAAAAH	Basement		'Granite Hills	e in the	Model Simu	lation "Pools'	' Report	ed by "F	ieldsiz	e.out" G	RASP N	lodule										
	Classifica	tion and Size)	Poo	Count Statis	stics		Pool	Types Co	ount	Mixed Po	ol Range	Oil Poo	l Range	Gas Po	Gas Pool Range Total Pool Ran		ol Range			Pool Resource Statistics (MMBOE)		
Class	Min (MMBOE)	Max (MMBOE)	Pool Count	Percentage	Trial Average	Trials w/Pool Avg		Mixed Pool	Oil Pool	Gas Pool	Min	Мах	Min	Мах	Min	Мах	Min	Мах		Min	Мах	Total Resource	Average Resource
1	0.0312	0.0625	2	0.01528	0.0002	0.000584		0	0	2	0	0	0	0	1	1 1	1	1		0.044667	0.060378	0.105046	52.522812
2	0.0625	0.125	10	0.0764	0.001	0.002918		0	0	10	0	0	0	0	1	1 1	1	1		0.076139	0.122668	0.938182	93.818232
3	0.125	0.25	35	0.2674	0.0035	0.010213		0	0	35	0	0	0	0	1	1 1	1	1		0.133691	0.245400	6.955869	198.73912
4	0.25	0.5	102	0.77928	0.0102	0.029764		0	0	102	0	0	0	0	1	1 2	1	2		0.252775	0.498527	38.854707	380.92851
5	0.5	1	250	1.910001	0.025	0.07295		11	1	238	1	1	1	1	1	1 3	1	3		0.503408	0.997195	185.708240	742.83295
6	1	2	498	3.804722	0.0498	0.145317		12	3	483	1	1	1	1	1	1 4	1	4		1.000423	1.997302	757.837493	1.52176
7	2	4	1030	7.869203	0.103	0.300554		61	16	953	1	1	1	1	1	1 3	1	3		2.002297	3.995690	3063.352000	2.97412
8	4	8	1709	13.056766	0.1709	0.498687		146	44	1519	1	2	1	1	1	1 4	1	4		4.000048	7.999813	10020.001000	5.86307
9	8	16	2302	17.587288	0.2302	0.671725		233	88	1981	1	2	1	1	1	1 5	1	6		8.001881	15.999944	26934.493000	11.70047
10	16	32	2483	18.970127	0.2483	0.72454		271	149	2063	1	3	1	2	1	1 4	1	4		16.014612	31.995534	57191.594000	23.03326
11	32	64	2173	16.601727	0.2173	0.634082		297	238	1638	1	2	1	2	1	1 6	1	6		32.009933	63.971943	98253.850000	45.21576
12	64	128	1397	10.673084	0.1397	0.407645		167	260	970	1	2	1	2	1	1 3	1	4		64.047795	127.920870	124234.169000	88.92925
13	128	256		5.600122	0.0733	0.21389		74	249	410	1	2	1	2	. 1	1 3	1	3		128.045658	255.880717	128829.654000	175.75668
14	256	512	247	1.887081	0.0247	0.072075		13	144	90	1	1	1	3	1	1 2	1	3		256.264768	511.864226	87148.264000	352.82696
15	512	1024	86	0.65704	0.0086	0.025095		5	66	15	1	1	1	2	1	1 1	1	2		523.986899	1021.573000	63065.118000	733.31530
16	1024	2048	22		0.0022	0.00642		0	19	3	0	0	1	1	1	1 1	1	2		1039.814000	2019.103000	32836.275000	1.49255
17	2048	4096	5	0.0382	0.0005	0.001459		0	5	0	0	0	1	1	C	0 0	1	1		2192.284000	3263.423000	12584.957000	2.51699
18	4096	8192	4	0.03056	0.0004	0.001167		0	4	0	0	0	1	1	C	0 0	1	1		4844.397000	7528.041000	25004.125000	6.25103
19	8192	16384	0	0	0	0		0	0	0	0	0	0	0	0	0 0	0	0		0.000000	0.000000	0.000000	0.00000
20	16384	32768	0	0	0	0		0	0	0	0	0	0	0	C	0 0	0	0		0.000000	0.000000	0.000000	0.00000
21	32768	65536	0	0	0	0		0	0	0	0	0	0	0	0	0 0	0	0		0.000000	0.000000	0.000000	0.00000
22	65536	131072	0	0	0	0		0	0	0	0	0	0	0	C	0 0	0	0		0.000000	0.000000	0.000000	0.00000
23	131072	262144	0	0	0	0		0	0	0	0	0	0	0	C	0 0	0	0		0.000000	0.000000	0.000000	0.00000
24	262144	524288	0	0	0	0		0	0	0	0	0	0	0	C	0 0	0	0		0.000000	0.000000	0.000000	0.00000
25	524288	1048576	0	0	0	0		0	0	0	0	0	0	0	C	0 0	0	0		0.000000	0.000000	0.000000	0.00000
Not Clas			1	0.00764	0.0001	0.000292	Below Class	0	0	1									Below Class	0.019493	0.019493	0.019493	19.49292
		Totals	13089	100.000008	1.3089	3.819376	Above Class	0	0	0									Above Class	0.000000	0.000000	0.000000	0.00000
	r of Pools r r of Pools t			Min and Max refer to numbers of pools of the relevant size class that Min and Max refer to aggregate resources of the relevant size class occur within any single trial in the simulation. that occur within any single trial in the simulation.																			
	r of Trials v		3427		1				1							• •							

Table 6. Statistics for simulation pools created in computer sampling run for North Aleutian basin play 6, 2006 assessment.

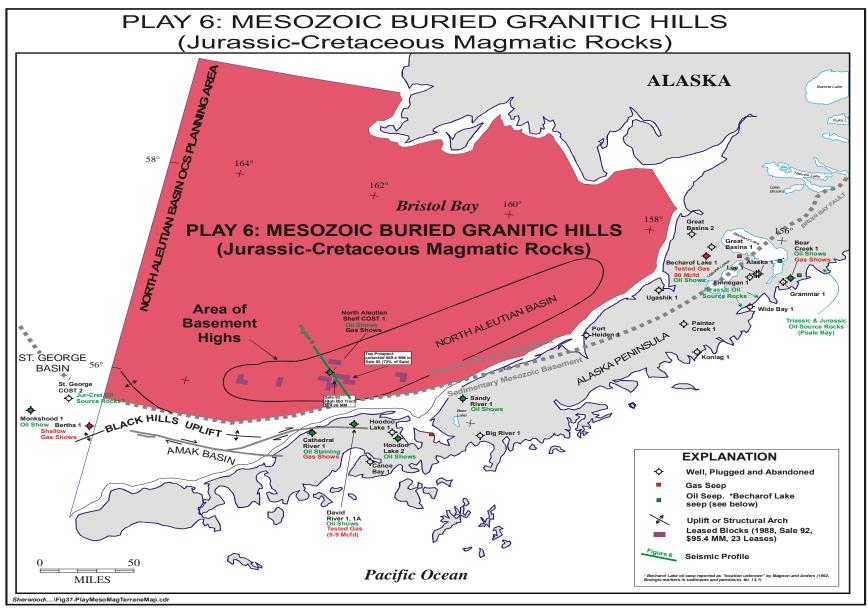


Figure 1. Map location of North Aleutian basin play 6, 2006 assessment.