Report for 2005MT64B: STUDENT FELLOWSHIP: Watershed carbon distribution and flux across environmental gradients

Publications

• There are no reported publications resulting from this project.

Report Follows

May 23, 2006

Susan Higgins, Communications Director Montana Water Center 101 Huffman Hall Montana State University Bozeman, MT 59717 Re: Montana Water Center Student Research Fellowship Final Report

Dear Ms. Higgins,

I am writing to give a final report on my research project "Watershed carbon distribution and flux across environmental gradients", which is supported in part by the Montana Water Center Student Research Fellowship Program. I am including my abstract with contact information, my research accomplishments, and conclusions.

Abstract:

The spatial and temporal controls on soil CO₂ production and efflux have been identified as an outstanding gap in our understanding of carbon cycling. We investigated the primary driving factors and their variability over space and time of soil CO₂ concentration and efflux across environmental gradients in the 550 ha Stringer Creek watershed, Little Belt Mountains, Montana. We collected measurements of soil temperature, soil moisture, C:N ratios, CO₂ efflux, and soil air CO₂ concentrations at two depths (20 cm and 50 cm) at 32 locations across riparian/hillslope transitions in a high elevation mountain watershed in the northern Rocky Mountains. We found that aspect exerted a large control on soil CO₂ concentrations and efflux as western aspects had larger CO₂ concentrations and efflux than eastern aspects. We also found that riparian landscape positions showed greater variability in soil CO₂ concentrations and efflux than hillslope landscape positions. In addition, we installed and collected hourly data from groundwater monitoring wells at over half of the sampling locations in order to determine the effect of groundwater fluctuations on soil CO₂ concentrations and efflux. We found a large increase in soil CO₂ concentrations and efflux as riparian landscape positions changed from saturated to unsaturated conditions. We also examined the diurnal variation in soil CO₂ concentrations and efflux and found that both CO₂ concentrations and efflux reached their maximum during the late afternoon. We conclude that environmental gradients related to catchment topography in soil moisture and soil temperature led to CO₂ concentration and efflux heterogeneity through space and time. We suggest that controlling variables such as riparian versus hillslope landscape position, aspect, differences in C:N ratios, and groundwater fluctuations are the primary controls on heterogeneity in CO₂ concentration and efflux across riparian/hillslope transitions.

Contact Information:

Vince Pacific Department of Land Resources and Environmental Sciences Montana State University 334 Leon Johnson Hall PO BOX 173120 Bozeman, MT 59717 (406) 994-5705 vpacific@montana.edu Collaborators that will be listed on poster and in pamphlet (in order of "importance")

Diego A. Riveros Department of Land Resources and Environmental Sciences Montana State University 334 Leon Johnson Hall PO BOX 173120 Bozeman, MT 59717 (406) 994-5705 driveros@montana.edu

Brian L. McGlynn Department of Land Resources and Environmental Sciences Montana State University 334 Leon Johnson Hall PO BOX 173120 Bozeman, MT 59717 (406) 994-7690 bmcglynn@montana.edu

Daniel Welsch Department of Geography Frostburg State University Frostburg, MD 21532 (301) 687-4891 dwelsch@frostburg.edu

Howard A. Epstein Department of Environmental Sciences University of Virginia 211 Clark Hall Charlottesville, VA 22904 (434) 924-4308 ext 688

Research Accomplishments:

For this project, I installed $120+CO_2$ monitoring wells, 60+ soil surface CO_2 efflux plots, and 60+ groundwater wells and piezometers. My experimental design was set up to determine differences in CO_2 production and efflux across different riparian/hillslope transitions throughout the Stringer Creek watershed in the Little Belt Mountains of central Montana.

Conclusions:

 CO_2 concentrations and efflux were highly variable, both within and between dominant landscape elements. This heterogeneity was the result of a fluctuating groundwater table, differences in soil moisture, soil temperature, soil nutrient status, organic matter availability, CO_2 concentration gradients, and soil diffusional properties, all of which changed with landscape position. My most significant results are as follows:

- 1. Excess soil moisture inhibited soil CO_2 production in riparian landscape positions. Riparian zones showed greater variability in soil CO_2 concentrations than the hillslope zones along the same transect. Once the water table dropped in the riparian zone, soil saturation no longer inhibited respiration, and CO_2 concentrations quickly climbed up to two orders of magnitude.
- 2. Soil CO₂ concentrations and efflux were controlled by soil temperature in hillslope landscape positions. Soil CO₂ concentrations increased as soil temperatures increased and soil moisture levels remained nearly constant. There was also a small peak in hillslope soil CO₂ concentrations at the end of August, which was controlled by soil moisture as soil temperature remained nearly constant. Thus, the relative control of soil temperature vs. soil moisture on soil respiration reversed on hillslopes during warm summer months when soil moisture limited respiration.
- 3. Soil CO₂ efflux diurnal fluctuation was controlled by variations in soil temperature. Peak flux rates occurred late in the afternoon at levels 2-5 times as high as those measured late at night or early in the morning.
- 4. Riparian zone soils showed much higher CO₂ concentrations than those soils located in hillslope landscape positions along the same transect. This was attributed to the proximity of the water table in riparian landscape positions.
- **5.** The snowpack (1-2 m) exerted a strong influence on soil CO₂ concentrations and efflux as it insulated the ground and formed a poorly permeable layer. This resulted in a large buildup of CO₂ underneath the snowpack and a decrease in CO₂ efflux.

These results were presented at the Montana Chapter of the American Water Resources Association meeting (October, 2005) in Bozeman, MT and the Fall Meeting of the American Geophysical Union (December, 2005) in San Francisco, CA. I acknowledged financial support from the Montana Water Center at both of these presentations.

Sincerely,

Vince Pacific Watershed Hydrology Graduate Research Group Montana State University - Bozeman (406)-994-5705 <u>vpacific@montana.edu</u>