GNSS Innovations and Implementations in Aviation

By: Karen Van Dyke
US Dept. of Transportation
Research and Innovative Technology Administration
Volpe National Transportation Systems Center
Date: May 26, 2008

Federal Aviation Administration

Federal Aviation Administration

Vision: To improve the safety and efficiency of aviation, while being responsive to our customers and accountable to the public

Air Traffic Organization

Safety. Service. Value.

Leading Aviation Services into the Future

Today's ground based, human-centered Air Transportation System is reaching its technological and capacity limits

NextGen is multi-agency cooperation and investment to transform U.S. air transportation to a system that will meet future needs, domestically as well as internationally.

The NextGen Vision

A system that is based on satellite navigation and control, digital non-voice communication and advanced networking, and a sharing of decision making between the ground and the cockpit.

•A strong commitment to provide a systematic, well-informed and performance-based approach to transitioning to satellite based systems and to tackling aviation emissions and other environmental issues

NextGen: Improving Service Delivery

From Today's NAS...

Ground-based navigation and surveillance

ATC communications by voice

Disconnected information systems

Air traffic "control"

Fragmented weather forecasting

Airport operations limited by visibility conditions

...To the NextGen System

Satellite-based navigation and surveillance

Routine information sent digitally

Information more readily accessible

Air traffic "management"

Forecasts embedded into decisions

Operations continue into lower visibility conditions

"Greening Aviation" with NextGen

- Win-win strategies reducing noise, emissions, flight time and fuel burn
 - Accelerating the development and deployment of RNAV navigation procedures
 - SBAS (WAAS)
 - Direct Routes and precision approach
 - GBAS (LAAS)
 - Cat II/III approaches on non ILS airports
 - Continuous Decent Arrival (CDA)
 - Elimination of step down procedures for specific airframes and airports

Navigation Services Vision

Provide safe, cost effective *position, navigation, and timing* services to meet operational needs of aviation customers

Note – Navigation services vision serves the FAA Mission and ATO Corporate Principles

Path to Performance-based NAS

- The Next Generation Air Transportation System (NextGen) Plan Defines A System That Can Meet Demands For The 21st Century
 - Precision Navigation is one of the 9 Key capabilities
 - http://www.jpdo.gov
- The Roadmap for Performance-Based
 Navigation v2 was published in 2006
 - http://www.faa.gov/about/office_org/headquarte rs_offices/avs/offices/afs/afs400/rnp/media/RN Proadmap.pdf
- FAA Navigation Services has developed the Navigation Evolution Roadmap that defines the infrastructure now and in the future for implementation of RNAV, RNP and NextGen
 - Draft in coordination with industry before FAA Administrator will sign.

Performance-Based Navigation in the United States

- Complete Transition By 2025
- Consistent With ICAO Global Vision
- Operational Capability Based On GPS And Augmentations
- Enhance Safety, Capacity, Efficiency
- Reduce Cost For Legacy Navigation Systems

Int'l Cooperation... A Necessity

• U.S. Assigned Airspace Equals 77 Million Square Kilometers

ICAO: Basic Elements of PBN Implementation (RNAV or RNP)

Airworthiness & Operator Requirements

Atlanta (ATL) Departure Procedures Before RNAV

Departures are vectored

- Headings, altitudes and speeds issued by controllers
- Large number of voice transmissions required
- Significant dispersion
 - Tracks are inconsistent and inefficient
- Limited exit points

Atlanta (ATL) Departure Procedures After RNAV

Departures fly RNAV tracks (not vectored)

- Headings, altitudes and speeds are automated (via avionics)
- Voice transmissions reduced (30-50%)

Dispersions reduced

- Tracks are more consistent and more efficient
- Additional exit points available

WAAS Architecture

2 Operational Control Centers

2 Geostationary Satellite Links

3 Master Stations

4 Signal Generator System/ Ground Earth Stations

38 Reference Stations

- Existing Procedures (as of 4/10/08 publication cycle):
 - 4,461 GPS NPA (LNAV)
 - 1,294 LNAV/VNAV
 - 1051 LPVs (14 of which are below 250')

New WAAS Procedures

LPV-200' Minimum

- − Minimum decision height of new LPV approaches lowered 250' \rightarrow 200'
- First approach published in 2006
- Will re-evaluate LPVs' for lower decision height after flight inspection aircraft upgrade (2011)

LP Approach

- Flown like a Localizer approach
- Can be developed at approaches that fail to meet LPV criteria due to obstacle clearance surface (OCS) penetrations (same TERPS for ILS)
- Criteria development in formal coordination; Publication starting in 2008
- Unlike an ILS, will have LPV or LP on approach chart, but not both.
- If WAAS correction is lost, avionics defaults to LNAV procedure

WAAS LPV Coverage

Current WAAS Vertical Navigation Service Snapshot Display

WAAS RNP Coverage

Current WAAS RNP 0.3 Navigation Service Display

WAAS Performance

	GPS Standard	GPS Actual	WAAS LPV-200 Standard	WAAS LPV-200 Actual
Horizontal 95%	36 m	2.74 m	16 m	1.08 m
Vertical 95%	77 m	*3.89 m	4 m	1.26 m

* Use of GPS vertical not authorized for aviation without augmentation (SBAS or GBAS)

WAAS Performance evaluated based on a total of 1,761 million samples (or 20,389 user days)

WAAS Phases

- Phase I: IOC (July 2003)
 - Provided LNAV/VNAV/Limited LPV Capability
- Phase II: Full LPV (2003 2008)
 - Improved LPV availability in CONUS and Alaska
 - Consists of additional WRS, hardware updates, software optimization, improved human factors, and GEO replacement

Phase III: Full LPV-200 (Cat I Equivalent) Performance (2009 – 2013)

- Development, modifications, and enhancements to include tech refresh
- Steady state operations and maintenance

Phase IV: Dual Frequency Operations (2013 – 2028)

- Originally scheduled for 2009
 - Delayed to align with DoD's GPS Modernization Program (L5)
- Will significantly improve availability and continuity during severe solar activity
- Provide additional protection against unintentional GPS interference
- Will continue to support single frequency users
- Steady state operations and maintenance

GNSS Evolutionary Architecture Study (GEAS)

- Chartered under the FAA to investigate future directions for GNSS architectures
 - Recognized that integrity provision is one of the most challenging aspects
 - Develop Architectural Alternatives to provide Worldwide LPV-200 Service in the ~2020-2030 Timeframe
 - Support for multiple modes of transportation and multiple user communities

Strategic planning for:

- GPS modernization
- L5 standards development
- Near-term WAAS development
- Long-term provision of navigation

GEAS Architecture Options

- Architectures Under Investigation by the GEAS
 - GPS Integrity Channel (GIC)
 - Relative RAIM (RRAIM)
 - Absolute RAIM (ARAIM)
- Meeting the 6 Second Time to Alarm (TTA) Requirement is a Significant Challenge for Any Architecture Providing a Global Service for Aviation
- All Three Alternatives Tradeoff the Degree of Aircraft Based Augmentation (ABAS), Constellation Size, User Range Accuracy, and Corrections/Integrity Augmentation

Preliminary Results

Architecture								
	24 minus 1	24	27 minus 1	27	30 minus 1	30		
GIC	86.6%	100%	97.8%	100%	100%	100%		
RRAIM with 30 s coasting	81.2%	99.4%	96.8%	100%	100%	100%		
RRAIM with 60 s coasting	74.4%	98.5%	92.8%	100%	100%	100%		
RRAIM with 300 s coasting	28.0%	76.1%	52.3%	99.6%	93.9%	100%		
ARAIM	7.80%	44.7%	30.6%	94.1%	90.5%	100%		

Note: Predictions Valid for WAAS-Like Integrity Assured URA's of 1 Meter or Less

GEAS Next Steps

- Phase 1 Report Completed
- Future Work Plan
 - WAAS RRAIM Architecture
 - Detailed Analysis and Design Leading to Implementation of the RRAIM Architecture as the Dual Frequency Architecture for WAAS
 - Support to GPS-III/OCX Integrity & Continuity Assurance Activities
 - Provide Assistance to GPS Wing Program Office Team

FAA Satellite Navigation Vision

LAAS Capabilities

- The Local Area Augmentation System (LAAS) Represents the U.S. Approach to the International Goal of an Interoperable GBAS Capability
- LAAS Provides a Navigation Signal That Supports the Most Demanding RNP Requirements
- LAAS is complementary to SBAS
- One LAAS Can Cover the Entire Terminal Area and Enables
 Precision Guidance
 - Precision approach for Category I, II & III
 - Multiple runway coverage
 - Complex procedures Guided missed approaches and departure procedures
 - Aircraft surface navigation

GBAS Status

- HMI analysis to validate that the CAT I system meets integrity design requirements
- Continuation of regulatory approval for the HI LAAS at Memphis, TN in 2008
- Facility and Service Approval at Memphis in early 2009
- Continued data collection/flight test to validate operational benefits (national/international)
- Coordination of development and approval activities with International community
- R&D to develop and validate CAT II/III requirements to support a 2008 CAT II/III decision point

LAAS International Efforts

Sydney, Australia

Frankfurt, Germany

Bremen, Germany

The Challenge of Controlled Descent

Continuous Descent Arrivals

(CDA): An arrival which flies a continuous decent path rather than the traditional step downs or intermediate flight operations.

- Use RNAV/RNP arrivals with optimized vertical profile
- Benefit to airlines: 200 400 LBS of fuel per arrival
- Benefit to airports: reduced emissions and reduced noise

CDA Features

Key Features:

• RNAV STAR

Fixed lateral path

Optimized Vertical Profile

- Minimize level segments
- Idle descent with minimal speed intervention
- Uses existing Descend Via phraseology

Benefits

- Uses FMS capabilities to manage energy and reduce cockpit workload
- Reduces pilot/controller communications
- Fuel savings
- Reduced noise
- Reduced emissions

Inter-aircraft separations priority

- Evaluate metering scheme
- Limit controller intervention below initiation altitude

GNSS Summary

- The U.S. is transitioning to a performance based CNS/ATM system
- GNSS is one of the cornerstones of NextGen
- RNAV/RNP is being implemented throughout the U.S. National Airspace
- SBAS (WAAS) will complete LPV development in September 2008
- WAAS LPV-200 will begin in FY09
- GBAS (LAAS) will complete System Design Assurance for Cat I in December 2008
- GBAS Develop and validate Cat II/III requirements in FY09
- Develop CAT-III prototype LAAS Ground Facility and user avionics by ~2010
- GNSS is an enabler for CDA

Automatic Dependent Surveillance (ADS-B)

ADS-B Program

Benefits

- Safety Improvements By Increasing Situational Awareness Both In-flight And On The Ground
- Increased Operational Efficiency Through Higher Air Traffic Throughput

Schedule

- Final Rulemaking Issued
- Avionics Implementation
- Ground Infrastructure Completion
- FAA Lifecycle Costs To 2035 ~ \$2.4B

ADS-B is a Primary Building Block for NextGen

2010

2013

2010-2020

Navigation Service Roles & Responsibilities

- Provide safe, cost effective position, navigation, and timing services to meet the needs of aviation customers
- Provide precision approach and landing capability to runway ends in the National Airspace System
- Provide non-precision approach and landing capability to runway ends in the National Airspace System
- Provide missed approach capability to runway ends in the National Airspace System
- Provide navigation capability to aircraft flying in the National Airspace System
- Support the operational availability of navigation services/systems in the National Airspace System

WAAS Enterprise Schedule

Navigation Roadmap

Navigation Roadmap Decisions

- 5 2007 VOR decision for drawdown based on GNSS
- 6 2007 Develop rightsizing DME Requirements, e.g., service volume, architecture, pathway

- 2008 Decision on NextGen CAT I landing system
- 24 2008 Decision on NextGen CAT II/III service, pending feasibility & schedule of potential ABAS/GBAS solutions and risk mitigation strategies
- 69 2012 Begin ILS CAT I drawdown limited backup at OEP airports
- 70 2012 Determine if CAT II minima is the appropriate requirement at specific airports
- 81) 2015 VOR decision on complete drawdown

2020 - Decision on complete ILS CAT I drawdown

Navigation Roadmap Decisions (cont.)

- 2008 NCIME Acquisition Decision
- 2009 GPS Signal Monitoring Acquisition Decision
- 2014 Signal Monitor Integration with GPS OCX Acquisition Decision
- ³⁹ 2019 GPS Integrity Message Service ISD and WAAS Transition Decision
- 2009 Develop phased approach for DME service to support RNAV/RNP
- 2007 See Surveillance Roadmap
- > 2007 See Aircraft Roadmap
- > 2008 See Aircraft Roadmap

