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ABSTRACT

Considerable progress has been made in recent years with using satellite data to generate maps of rain rate
with grid resolutions of 18–58 square. In parallel with these efforts, much work has been devoted to the problem
of attaching error estimates to these products. There are two main sources of error, the intrinsic errors in the
remote sensing measurements themselves (retrieval errors) and the lack of continuity in the coverage by low
earth-orbiting satellites (sampling error). Perhaps a dozen or so studies have attempted to estimate the sampling-
error component. These studies have been based on rain gauge and radar-derived data, and the estimates vary
so much that it is clear that the sampling error cannot be represented satisfactorily by a single value.

These studies are reviewed. Some of the results reported in these studies are based on a method referred to
in this paper as ‘‘resampling by shifts.’’ The authors find that the method unfortunately tends to produce estimates
that are subject to too much uncertainty to be used quantitatively. After setting these results aside, the authors
find that the variability in the remaining sampling-error estimates can be explained to a considerable extent
using assumptions common to many statistical models of rain. All such models predict that sampling error
relative to the average rain rate R is proportional to R21/2. Although the sampling error at any given site seems
(to the extent that data have been examined) to change with R in the way predicted by the model, the propor-
tionality constant in this relationship seen in the various studies appears to change from site to site. This constant
can be obtained from the satellite estimates themselves if retrieval errors are not correlated over scales of the
order of the grid-box size.

1. Introduction

Global maps of monthly rainfall are now routinely
produced using data from satellites and a variety of
techniques for retrieving rainfall estimates from the
data. These maps can in principle be further combined
with each other and with ground-based measurements
to produce still better products (e.g., Huffman et al.
1995; Xie and Arkin 1996).

The maps can be used in a number of ways. They
may be compared with the output of climate models to
help evaluate the ability of the climate models to pro-
duce realistic distributions of precipitation. The algo-
rithms used to convert the satellite data into rainfall
estimates can be validated by comparing the maps to
surface measurements. The maps can be used to look
for signs of climate change and to obtain energy and
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moisture budgets to help understand climate timescale
dynamics.

In all of these cases, quantitative work with the da-
tasets requires that the datasets be accompanied by an
error estimate for each gridded value. Valid error esti-
mates almost certainly depend on location, season, type
of rain, etc. Some of the reasons for this are investigated
here using theoretical models and analysis of rain-rate
data derived from ground-based radars and rain gauges.
A simple formula is proposed for root-mean-square
(rms) error as a function of rainfall amount and satellite
sampling characteristics.

This work had its origins in error studies undertaken
in preparation for the launch of the Tropical Rainfall
Measuring Mission (TRMM) satellite now in orbit. The
satellite, described by Simpson et al. (1996), was spe-
cifically designed to provide more accurate rain esti-
mates and vertical latent heating profiles than have been
possible heretofore. It is the first satellite to carry a
meteorological radar. Orbiting the earth at 350 km al-
titude at a 358 inclination, it offers extra tropical cov-
erage, higher resolution, and changing local observation
times to help map out the diurnal cycle of rainfall.

There are a number of sources of error in the monthly
averages of satellite-estimated rainfall. Since the sat-
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ellite is unable to provide continuous coverage of a giv-
en area, averages of its observations will suffer from
sampling error. Even when the satellite is viewing a
given area, rain rates within the area must be inferred
with remote sensing methods and are therefore subject
to retrieval errors. Various mechanical and electronic
problems, geolocation and data transmission problems,
computer software problems, etc. can all contribute to
the uncertainties. Astin (1997) reviews recent studies of
sources of error in global, gridded averages of satellite-
derived fields.

Early studies of the potential accuracy of TRMM
monthly averages of rainfall made plausible assump-
tions to simplify the task. One important assumption
was that the retrieval errors in rain-rate estimates for
each field of view (FOV) of the satellite instrument are
independent (uncorrelated from FOV to FOV). A back-
of-the-envelope calculation (Wilheit 1988; Bell et al.
1990) suggests that even if rain-rate estimates for each
FOV are accompanied by a random factor-of-2 retrieval
error, the net error averaged over a month will be small
under this assumption when compared with the sam-
pling error. This assumption of uncorrelated retrieval
errors requires further examination, however.

Laughlin (1981) was the first to attempt an estimate
of the sampling error relevant to TRMM monthly av-
erages. Microwave data from satellites are most easily
converted to rain-rate estimates when the data are taken
over the open ocean; and it is over the oceans that rain
data are particularly scarce. Estimates of TRMM ac-
curacies over the ocean are therefore of special interest.
Using radar-derived rain data taken over the open ocean
near the intertropical convergence zone during the Glob-
al Atmospheric Research Program (GARP) Atlantic
Tropical Experiment (GATE), Laughlin (1981) was able
to show that monthly averages of satellite-observed rain
in the GATE area would have rms sampling errors of
the order of 10% of the mean. Subsequent studies
(McConnell and North 1987; Shin and North 1988; Bell
et al. 1990; North et al. 1993; Bell and Kundu 1996)
using the same data but more realistic representations
of both rain statistics and satellite sampling arrived at
a similar conclusion.

Studies of sampling error using data from other re-
gions followed. Seed and Austin (1990) estimated sam-
pling error with radar-derived rain rates from Patrick
Air Force Base in Florida. They were the first to extend
sampling studies to datasets different from the GATE
data, and the first to raise the possibility that the GATE
data may have given lower relative sampling-error es-
timates than might generally be the case. Soman et
al.(1995, 1996) and Li et al. (1996) further enlarged the
catalog of sites for which sampling-error estimates have
been studied by using data from the vicinity of Darwin,
Australia. Steiner (1996) carried out an extensive study
of sampling error based on rain-gauge and some radar
data from Darwin, as well as rain-gauge data from Mel-
bourne, Florida. Oki and Sumi (1994) describe a so-

phisticated study using rain data over southern Japan.
Weng et al. (1994) also looked at data from Japan. The
error estimates obtained in these studies vary substan-
tially and are often much larger than the earlier GATE-
based estimates.

Chang et al. (1993) and Weng et al. (1994) examined
the errors in averages of rain rates obtained from Special
Sensor Microwave/Imager (SSM/I) instruments on the
Defense Meteorological Satellite Program satellites.
Berg and Avery (1995) develop a careful error budget
analysis for SSM/I averages. All of these studies suggest
that sampling error, as a fraction of the mean, is larger
for regions with less rain.

Such a dependence is intuitively plausible and can
be shown to follow quantitatively from simple as-
sumptions about the statistical characteristics of rain-
fall. One of the purposes of this paper is to explore
this relationship to see how well it can be used to
describe the variations in sampling error found in stud-
ies such as those mentioned above. Ideally, such a re-
lationship could be used to estimate the error in sat-
ellite-derived rain maps without requiring ground-
based data from each location, which are, practically
speaking, impossible to obtain.

In section 2 it will be shown that if rain events occur
in well-separated places in a grid box more or less
independently, with varying intensities and spatial ex-
tents but with the same statistical distribution, then the
sampling error in satellite averages can be predicted
knowing just the sampling provided by the satellite
and the mean rain rate. If A 5 the grid-box area, R 5
the mean rain rate, and S 5 the number of satellite
visits during a month, the relative sampling error is
predicted to be ssamp /R 5 k(RAS)21/2 , where k is a site-
dependent constant but is not expected to depend
strongly on location or season. A somewhat similar
relationship has been suggested by Huffman (1997).
Although quite a few assumptions are made in order
to reach this point, these assumptions, though not al-
ways articulated, are often found in discussions of error
estimates for satellite data. The relationship ssamp/R 5
k(RAS)21/2 provides a framework for evaluating data-
sets generated by satellites. At the very least, the error
estimates made using these assumptions are almost cer-
tainly lower bounds for the true rms error and should
serve as a foundation for more elaborate attempts to
grapple with the problem.

In section 3 the satellite sampling-error studies
mentioned above will be discussed in this framework.
Section 4 suggests some reasons for changes in the
constant k and discusses methods for estimating it
directly from satellite data. Our conclusions are pre-
sented in section 5. Appendix A fills in some math-
ematical details of the simple model omitted from the
text. Appendix B describes in detail the problems as-
sociated with the method of ‘‘resampling by shifts’’
used in some studies to estimate satellite sampling
error.
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2. Simple theory

a. Definitions

A statistical framework for characterizing the errors
in monthly averages of rainfall over 58 3 58 grid boxes
on the earth will be developed first. Producing maps of
rainfall at this resolution is one of the principal goals
of TRMM. The averaging time and area are somewhat
arbitrary, but the accuracy of the averages will decrease
if the box area or time span for the averages is decreased.
The choice made for TRMM averages anticipates that,
at this resolution, grid-box averages in the rainiest areas
of the Tropics should have accuracies in the neighbor-
hood of 10%, which will make meaningful quantitative
comparisons with climate model behavior possible
(Simpson et al. 1988).

The monthly averaged rain rate for a grid box with
area A is defined as

T1 1
2R 5 dt d x R(x t), (2.1)E ET A0 A

where R(x, t) is the instantaneous rain rate at location
x and time t, T 5 1 month, and #A denotes integration
over the grid-box area. The beginning of the month is
arbitrarily set at t 5 0. Although the basic quantity
discussed here is always the average rain rate R, readers
who prefer to work with rain accumulation TR can con-
vert all the results given here to those units by multi-
plying by the appropriate factor of T.

Let the visit times of the satellite during the month
be denoted by {ti, i 5 1, . . . , n}, and the portion of A
seen by the satellite instrument during visit i be Ai, Ai

# A. It will be convenient to use the notation

1
2R (t) [ d x R(x, t) (2.2a)B EB B

for the instantaneous rain rate averaged over an area B,
in terms of which the true average rain rate seen by the
satellite at overpass i is defined as

Ri [ .R (t )A ii
(2.2b)

Satellite estimates of R are typically made by col-
lecting all the instrument footprints or FOVs that fall
within the area A during the month, converting the ob-
servations to rain-rate estimates, and averaging them (by
summing them and dividing by the total number of ob-
servations). The average can be adjusted to account for
nonuniform spacing of the footprints, if any. Such an
estimate is equivalent to the linear average

n1ˆ ˆR 5 w R , (2.3)O i in i51

where R̂i is defined as the best estimate of the true rain
rate Ri occurring in the area Ai that can be made using
the satellite data, and where the weights wi } Ai/A are
normalized to n21 Si wi 5 1. Still better estimates of R
can be made with different choices for wi that take into

account the space–time correlations of rain, but these
will not be considered here (see Bell and Kundu 1996).

The mean squared error of the satellite estimate (2.3)
is

5 ^(R̂ 2 R)2&,2s E (2.4)

where the angular brackets denote an average over an
ensemble of rain scenarios with a probability distribu-
tion representing the local monthly rain climatology in
the area A. Stated thus, the ensemble average is not an
especially well-defined concept, nor is it directly com-
putable from a limited dataset without further simpli-
fying assumptions. The error sE is abstract, in exactly
the same sense that the concept of a rainfall climatology
in A is an abstraction. The rain climatology for A is a
statistical characterization of what might happen in A
during a month when all the environmental factors that
affect rain statistics in A are specified (e.g., season, sea
surface temperature, large-scale wind patterns, etc.).
The rain climatology does not tell us what actually did
happen during that particular month. When sE is ob-
tained for every grid box, the result is a global ‘‘error
climatology’’ for the satellite rain estimates. Note that
sE calculated this way is an average over an ensemble
in which both R and, more importantly, R̂ vary. This
error estimate differs from the error estimate sE(R̂) that
would be obtained from an ensemble in which R varies
but R̂ is fixed at its measured value. Such an error es-
timate would certainly be interesting but is much more
difficult to obtain.

Practically speaking, only a limited stretch of data
will be available on which to base an estimate of (2.4).
One must generally assume that the rain events present
in the dataset are typical of what might occur in A. Such
is the case in all of the studies mentioned in the intro-
duction, where an ensemble of months is manufactured
from the available data either by shifting the dataset in
time (e.g., the resampling-by-shifts method) or by find-
ing a statistical model to represent the data.

The total error sE has several components. If the sat-
ellite could measure the rain in the area Ai perfectly, so
that R̂i could be replaced by Ri in (2.3), then the ‘‘perfect
instrument’’ estimate of R would be

n1
R̂ 5 w R , (2.5)Os i in i51

where the subscript s indicates that this is the satellite-
sampled estimate of the true monthly average R. The
only error in R̂s is due to imperfect coverage by the
satellite. The mean squared error (2.4) can then be writ-
ten

2 2ˆ ˆ ˆs 5 ^[(R 2 R ) 1 (R 2 R)] &E s s

2 25 ^« & 1 ^« & 1 2^« « &, (2.6)retr samp retr samp

with
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FIG. 1. Sketch of rain model where rain at one location and time
is uncorrelated with rain at locations separated by distances of order
a1/2 and by times of order t . The space–time volume AT is divided
into cells of volume a(2t).

ˆ ˆ« 5 R 2 R (2.7)retr s

ˆ« 5 R 2 R, (2.8)samp s

so that «retr is the error due to remote sensing, referred
to here as the ‘‘retrieval error;’’ and «samp is the error
due to noncontinuous sampling by the satellite.

In part because it makes further progress so much
easier, it is customary and almost irresistible to assume
that sampling and retrieval errors are uncorrelated, so
that

^« « & ø 0, (2.9a)retr samp

2 2 2s ø s 1 s , (2.9b)E retr samp

with

2 2s [ ^« &, (2.10)retr retr

2 2s [ ^« &. (2.11)samp samp

Assumption (2.9a) is at first sight plausible, because it
seems to affirm the fairly commonplace assertion that
the error made in a measurement should not depend on
when the observation is made, something usually en-
forced in laboratory settings.

It is not immediately obvious why there should be a
correlation in the retrieval error of a satellite estimate
and whether or not it happens to over- or undersample
the rain. There is, however, a particular kind of error
that can affect averages of retrieved rain rate when the
retrieval has a bias dependent on the type of rain or
some other rain characteristic that changes slowly in
space or time (the relative amounts of area covered by
convective and stratiform rain, for instance, or a slowly
changing characteristic of a strong diurnal cycle). The
retrieval error will then contain significant biases that
vary from month to month or grid box to grid box, even
though the net bias over long enough times or large
enough areas averages to zero. Such a ‘‘varying bias’’
will correlate with whether or not the rain is missed.
There are surely other ways that such a correlation can
enter. It should be noted, however, that such a correlation
could, at worst, double the estimate given by (2.9b).

Equation (2.9b) assumes that neither the sampling nor
the retrieval has a long-term bias (i.e., ^«retr& 5 ^«samp&
5 0). If a nonzero bias were present, its square would
have to be added to (2.9b). If such a bias were known,
however, it would normally have been added as a cor-
rection to the estimates.

As mentioned above, it has been argued (Wilheit
1988; Bell et al. 1990) that if retrieval errors are un-
correlated with each other from one instrument FOV to
another, then their contribution to the total error should
be relatively small even if individual errors are quite
large, because a large number of observations are av-
eraged together to calculate R̂; that is, K . If2 2s sretr samp

this is correct, only the sampling-error component ssamp

is needed in order to get a good estimate for sE. Just
as before, however, this assumption too might be in-

validated by the type of ‘‘variable bias’’ error mentioned
above. This subject will be revisited at the end of the
paper.

b. Simple model

By making some simple assumptions about the sta-
tistical behavior of rain, an equation for the dependence
of ssamp on the rain statistics in the area can be derived,
which helps make some sense of the error estimates
obtained for various places and seasons. Let us suppose
that over a sufficiently large area A and a long enough
period T rain occurs as separate, uncorrelated events.
These events have certain mean properties such as area
covered, intensity, and duration. If that is the case, the
amount of rain that falls in the area A during the time
T is largely determined by the number of rain events
that occur, if they are sufficiently numerous. Although
each event may produce rain amounts that differ from
the mean, these differences will tend to average out. A
picture such as this underlies the area–time-integral
(ATI) methods of estimating rainfall from the fraction
of the area covered by rain (Chiu 1988; Kedem et al.
1990; Kedem and Pavlopoulos 1991; Short et al. 1993).

In this picture, a rain event will, on average, occupy
an area a and last for a time 2t , where t is the correlation
time of the rain and the factor of 2 appears following
Leith’s (1973) result that the mean of a correlated series
of length T behaves as if it were the sum of T/(2t)
independent samples, at least for the purpose of placing
confidence limits on the mean. Rain rate during an event
will be, on average, r. Divide the space–time volume
AT into cells each of size a(2t), the ‘‘size’’ of one rain
event, as sketched in Fig. 1. There is a total of

N 5 AT/(2at) (2.12)

cells in the space–time volume. Suppose N9 of these
cells have rain in them. Then if the mean rain rate during
an event is r [i.e., the mean rain rate conditional on
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R(x, t) . 0], then the monthly averaged rain rate over
the area A will be

R 5 (N9/N)r. (2.13)

The satellite views the area at certain instants {ti, i
5 1, . . . , n} and sees portions Ai of the area A at time
ti. Because of the space–time correlation of the rain, if
the satellite swath intersects any part of a cell in AT it
‘‘knows’’ whether an event has occurred in that cell.
The number of cells the satellite knows about from its
overflights at times {ti} is

n

N 5 A /a. (2.14)Oobs i
i51

Among the observed cells, have rain in them, andN9obs

so the satellite sample estimate of the mean rain rate is

R̂ 5 ( /Nobs)r.N9obs (2.15)

The sampling error (2.11), then, is

2N9 N9obs2 2s 5 2 r . (2.16)samp 71 2 8N Nobs

Given the assumptions made here, appendix A shows
that (2.16) implies

1 1
2s ø 2 Rr, (2.17)samp 1 2N Nobs

where R/r has been substituted for the probability p 5
N9/N that one of the observed cells has rain in it, using
(2.13). Upon substituting (2.12) and (2.14) into (2.17),
one obtains

2s r a 2at ar 1 2t samp  ø 2 5 2
2   1 2 R R AT AR S TAO i i

or
1/2s r a 1samp ø c(t) , (2.18)1 2R R A S

where S is the ‘‘effective number of visits’’ with full
coverage of A by the satellite,

S [ A /A, (2.19)O i
i

and

1/22t
c(t) 5 1 2 . (2.20)1 2T /S

The ratio T/S in (2.20) may be thought of as the effective
time interval between full visits by the satellite. The
factor c(t) depends on grid-box latitude, since S does.
When T/S is large compared with the independent sam-
ple time 2t (i.e., poor sampling), the coefficient c(t) ø
1 and does not depend much on the correlation time.
For effective sampling intervals comparable to t , how-

ever, c(t) differs significantly from 1, decreasing to 0
for Nobs 5 N, as it should, since all cells are seen by
the satellite in this limit. The cell model is no longer a
good approximation in this regime, however, and one
must return to the basic definition (2.11) using a more
accurate representation of the space–time correlation
and sampling pattern.

c. Laughlin model

Laughlin (1981) takes a step in this direction. He
assumes that the variance

5 var[RA(t)]2s A (2.21)

of area-averaged rain rate RA(t) [defined in (2.2a)] is
known and that its lagged autocorrelation in time de-
creases exponentially as exp(2|t 2 t9|/t A), where t 2
t9 is the time lag and t A is the correlation time. The
correlation time t A corresponds to the correlation time
t introduced in the simple model discussed above. As-
suming also that the area A is seen at equally spaced
intervals Dt, he found

Dt
2 2 2 2s 5 s c (Dt/t ) 1 O (1/T ), (2.22)samp A L AT

where

(x) 5 coth(x/2) 2 2/x2cL (2.23)

(subscript L for Laughlin). Similar derivations are given
in Shin and North (1988) and Bell et al. (1990).

Equation (2.22) has the advantage that it yields a
precise definition of a in (2.18) in terms of the spatial
correlation of the rain rate, but at the price of more
assumptions. This can be seen by defining the spatial
correlation of point rain rate

r(|x 2 y|) 5 ^R9(x, t)R9(y, t)&,22s 0 (2.24)

where the primes indicate deviations from ^R& and 2s 0

5 ^R9(x, t)2& is the variance of rain rate at a point. We
can then write (with A 5 L2) as2s A

L L L L1 1
2s 5 dx dx dy dy ^R9(x, t)R9(y, t)&,A E 1E 2 E 1E 2A A0 0 0 0

(2.25)

which, after some algebra, can be written

5 a/A,2 2s sA 0 (2.26)

where

L L x x1 2a 5 4 dx dx 1 2 1 2 r(|x|). (2.27)E 1 E 21 21 2L L0 0

[Bell and Kundu (1996) give a more detailed discussion
of this.] The area a is the size of a ‘‘statistically inde-
pendent’’ rain event. If the area A 5 L2 is large com-
pared with distances over which spatial correlations are
significant, a depends very little on A. It is a measure
of the area over which rain rates are significantly cor-
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related. (Note that if is not well defined, as occurs2s 0

in some idealized models, the above discussion must be
replaced by one for a slightly smoothed or gridded rain
field. The value of a may then depend on the smooth-
ing.)

Combining Eqs. (2.22) and (2.26), one obtains

a Dt
2 2 2s ø s c (Dt/t ). (2.28)samp 0 L AA T

If p is the average fraction of time it rains over a point,
then

R 5 pr , (2.29)1

2 2s ø ps , (2.30)0 1

where r1 is the (conditional) average rain rate ^R(x, t) |
R(x, t) . 0&, and is the variance of point rain rate2s1

conditional on R(x, t) . 0. Equation (2.30) is approx-
imate because terms of order p2 are neglected, which is
reasonable since p is typically no larger than 0.1. Com-
bining (2.28)–(2.30) one can reexpress (2.22) as

1/2s s r a 1samp 1 1ø c (Dt/t ) . (2.31)L A 1 2R r R A S1

Laughlin’s (1981) result (2.22) is thus equivalent to
(2.18) to the first order in 1/T, using ø (N9/N)r2 [the2s A

analogue to (2.26) for a K A] and using S 5 T/Dt and
t A 5 t , which is consistent with the simple model as-
sumptions in the previous section. Beyond order 1/T the
expressions differ, and the difference depends on the
details of the time correlation.

d. Summary of model predictions

Equation (2.18) has interesting implications for sat-
ellite sampling error. To the extent that rain has the
statistical characteristics assumed in the model, and to
the extent that sampling is, in a sense, not very good,
the sampling error depends very little on the time cor-
relation of rain. To the extent that some geographical
locations have more rain in them than others chiefly
because rain events occur more frequently in those areas
rather than because the intensity or coverage of the in-
dividual events is greater, average relative error is pro-
portional to R21/2. This increase with decreasing average
rain rate is of course plausible, since a satellite is more
likely to miss the rare rain events in a dryer area and
so make larger relative errors in estimating the total
amount of rain when compared with its performance
over a grid box with a lot of rain. It would explain, at
least qualitatively, the error dependence on rain rate
noted by Chang et al. (1993) and Weng et al. (1994).

Equation (2.18) predicts that sampling error decreases
with grid-box size A and satellite visits S as (AS)21/2.
Ultimately, both this dependence and the dependence
on R are manifestations of the central limit theorem,
which, in its simplest form, states that the average of
N identically distributed random variables with finite

mean and variance differs from the true mean with rms
difference proportional to N21/2. Any statistical model
of rainfall postulating that rainfall during a month is the
sum of the rainfall from a collection of independent rain
events, each event having similar statistical properties,
will give similar ‘‘square root’’ predictions.

If areas with more rain tend also to have larger spatial
extent [a 5 a(R)] and/or more intense rain [r1 5 r1(R)],
the R21/2 dependence on R predicted by (2.18) may be
altered. As mentioned before, however, the success of
ATI methods of estimating area-averaged rain rate sug-
gests that such deviations might be small.

To what extent, then, can the relationship (2.18) ex-
plain more quantitatively the variability in sampling er-
ror estimates mentioned in the introduction? Let us turn
now to those studies.

3. Sampling error estimates from data

Error studies have been carried out with data from
different locations and time periods, for different sat-
ellite sampling patterns, and for different grid-box sizes.
This section will attempt to present the sampling-error
estimates from these studies in terms of what they would
be for a common satellite sampling pattern and grid-
box size. Once reduced to the same basis, their agree-
ment with the prediction (2.18) can be examined. Re-
sults from some of these studies have unfortunately had
to be discarded.

a. Methods used

Three approaches have been used to estimate satellite
sampling errors.

a) Direct method. The ensemble average in (2.11)
would suggest that the mean-squared difference between
the sample average (2.5) and the true average (2.1) be
calculated using a sequence of ‘‘statistically similar’’
months from a dataset. Since the area A is large, radar
data with its wide coverage would be the first choice
for such a study, although a dense rain gauge array might
be used as well. For a given satellite sampling pattern,
one month of data provides one value of the error (2.8).
If enough months of data are available, ^ & can be2«samp

estimated. A straightforward application of this ap-
proach requires large amounts of data.

b) Resampling by shifts. An alternative method fol-
lowed in some studies uses only a few months of data.
A difference (2.8) is calculated using a sampling time
sequence {ti, i 5 1, . . . , n} typical of the satellite visit
times and falling within the period for which there are
data. Then another difference (2.8) is obtained with a
sequence of visit times {ti 1 d, i 5 1, . . . , n} shifted
by d from the previous sequence, then another with the
sequence {ti 1 2d}, and so on, stopping when a shifted
sequence requires data outside the period covered by
the dataset. The value of d is usually chosen to be the
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TABLE 1. Satellite sampling-error studies. Geographical areas from which data were analyzed in the studies are indicated by crosses. The
method(s) of estimating sampling error are indicated in the final column: method a, average over large dataset; method b, resampling by
shifts; method c, model-based.

Study

Geographical location

GATE
Darwin,
Australia Florida Southern Japan

TOGA
COARE Method

Oki and Sumi (1994)
Steiner (1996)
McConnell and North (1987)
Seed and Austin (1990)
Soman et al. (1995)
Cosgrove and Garstang (1995)
Li et al. (1996)
Laughlin (1981)
North et al. (1993)
Bell and Kundu (1996)
Soman et al. (1996)
Bell and Kundu (this paper)

X

X
X
X

X

X

X

X

X

X

X

X

X

a
a, b*
b
b
b
b
b
c
c
c
c**
c

* Statistics from rain gauge dataset for 1 yr, corrected for unknown effects due to poor spatial sampling by rain gauges using results from
a 2-month radar dataset.

** Confidence intervals for estimates based on the spectral method were difficult to determine. In addition, a diurnal cycle contributed
significantly to the estimates and so made comparison with the results of the other studies difficult.

smallest time interval the dataset allows. The method
will be referred to as resampling by shifts.

A large number of differences (2.8) can be manufac-
tured this way. The mean-squared error ^ & is then2«samp

estimated from the average of the squares of these dif-
ferences. These differences can be highly correlated,
though, when d is small (i.e., d K t), and the procedure
may generate few effectively independent differences.
The sampling error in the estimate of ssamp may itself
therefore be quite large. This problem is examined in
more detail in appendix B. It is shown there that if only
a single month or less of data are used, as has frequently
been the case, resampling by shifts could easily give
answers off by a factor of 2 or more from what they
should be, simply due to the time correlations and the
small size of the dataset.

This, at least, may be an explanation for why the
results of studies that employed resampling by shifts
with only a few months of data seemed to exhibit no
coherent pattern when we plotted them together with
the results of other studies in the manner described in
the next section. Because our analysis indicates that
random error could overwhelm the results obtained us-
ing resampling by shifts, we have chosen to exclude
these results from the analysis that follows. (This is by
no means meant as a criticism of the studies as a whole,
since they have all contributed much valuable insight
to this difficult area of research.)

It should be noted that, despite the problems inherent
in resampling by shifts, studies using only a few months
of data are possible. The solution to this dilemma when
only a small amount of data are available would be to
chop the data into small sections, each of which is suf-
ficiently long to preserve a good bit of the rain’s time
correlation (these sections would be about 16 h long in
GATE), and then use randomized resampling techniques

(Zwiers 1990; Wilks 1997; see also Solow 1985) to
create an ensemble of simulated months from which to
estimate ssamp.

c) Model estimates. Still another method for esti-
mating ssamp is to devise a statistical model of rain whose
parameters are obtained from rain data, as Laughlin
(1981) did with the GATE data. Satellite sampling error
can then be calculated assuming that rain conforms to
the model. The accuracy of the calculation depends on
the model. The model must capture certain aspects of
the true rain statistics well, and its parameters must be
accurately estimated from the dataset.

b. Sampling-error studies

Table 1 lists many of the sampling studies mentioned
in the introduction. The method(s) used in each are in-
dicated in the last column.

The study by Oki and Sumi (1994) over southern,
coastal Japan used approximately 4 yr of rain gauge–
adjusted radar data. Sampling-error estimates were
made for five different 58 3 58 grid boxes at approximate
latitude 33.58 and for four different TRMM-like obser-
vation sequences. Confidence intervals for the average
sampling error they report for each month of the year
were estimated by us, based on the number of indepen-
dent cases for each month (estimated to be 48–64) and
using chi-squared statistics.

The study by Steiner (1996) used a long dataset from
a rain gauge network near Darwin as well as a shorter
radar dataset collected over the same region and data
from Melbourne, Florida. These results will be dis-
cussed more later.

Results from the studies using resampling by shifts
with datasets of order 1 month long (labeled ‘‘b’’ in
Table 1) had to be discarded because of the large error
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FIG. 2. Plot of relative sampling error ssamp/R found in various
studies whose quantitative accuracy could be estimated (three loca-
tions altogether). The sampling errors are all for monthly averaged
rain rate over a 2.58 3 2.58 grid box at the equator seen by the TRMM
microwave instrument (equivalent to about 30 visits per month). Sim-
ilar values would be predicted for SSM/I-based estimates (for a single
satellite), aside from diurnal biases introduced by SSM/I’s sampling
at the same times of day. Separate fits to R21/2 are shown for the
southern Japan and TOGA COARE estimates. Error bars are 95%
confidence intervals. The dashed line shows a curve fitted by Steiner
(1996) to sampling errors he obtained using data from Darwin, Aus-
tralia, and Melbourne, Florida.

bars for their results, as explained in appendix B. The
results for Soman et al. (1996) for Darwin were not
used because it was unclear how to evaluate the accu-
racy of the spectral method used, and because the results
were reported for sampling at exact 24-h intervals, so
that the diurnal cycle played a large role. TRMM sam-
pling tends to yield statistics averaged over different
hours of the day.

Model-based sampling-error estimates are labeled
‘‘c’’ in Table 1. Many of the model-based estimates used
data from GATE. These rain data were taken at a site
about 1000 km west of the African coast in the Atlantic
Ocean (88309N, 238309W) during the summer of 1974.
Gridded maps over a 400-km-diameter circular area de-
rived from the data from two 18-day periods, phase I
(28 June–16 July 1974) and phase II (28 July–15 August
1974), supplied the required statistics.

A model estimate by us is also listed in Table 1 that
is based on data taken in the Tropical Ocean Global
Atmosphere (TOGA) Coupled Ocean–Atmosphere Re-
sponse Experiment (COARE). The statistics needed for
the model estimates were obtained from the radar-de-
rived rain-rate maps produced as part of the experiment.
The preparation of the dataset is described by Short et
al. (1997). The rain data were collected during three
cruises of two ships in the western Pacific (near 28S,
1568E) during the 4-month period November 1992–Feb-
ruary 1993. Since the correlation time of the rain rate
averaged over a 288-km-diameter circular area was gen-
erally 5 h or longer, comparable to the 6–8-h correlation
time seen in the GATE data, the sampling-error cal-
culations previously done using GATE statistics were
simply scaled by us to give the corresponding TOGA
COARE estimates.

For the model-based estimates using GATE data and
TOGA COARE data, error bars were obtained by re-
peatedly resampling the datasets using randomly se-
lected segments of the data 16 h in length reassembled
to equal the total length of the dataset, a procedure
similar to one suggested by Wilks (1997). (The segments
were given lengths about twice the 8-h ‘‘correlation
time’’ of the area-averaged rain rate.)

c. Translation of study results to same grid-box area
and satellite sampling pattern

After eliminating the studies in Table 1 whose quan-
titative results are problematical, sampling-error esti-
mates over three, or perhaps four geographical areas
remain. Since most of these studies use data covering
areas 2.58 3 2.58 or smaller and focus on TRMM sam-
pling error, the results of these studies have been ex-
trapolated to what they would be for a 2.58 3 2.58 box
located on the equator observed approximately once per
day (Dt ø 1 day). Such a satellite visits the box ap-
proximately 30 times per month, so that S 5 30 in
(2.18). (The SSM/I satellites, incidentally, have similar

coverage, but the times of day of the observations fall
in two clusters 12 h apart.)

In most cases, the extrapolation required is small. The
extrapolation of the Oki and Sumi (1994) results relied
most on the dependence on A and S predicted by (2.18)
because of the size and latitude of the area studied by
them. Oki and Sumi (1994) presented some results that
seem to confirm the A21/2 dependence. The sampling in
time of the TRMM satellite at 33.58N that they used,
however, is quite different from once-per-day sampling.
Results obtained by Bell and Kundu (1996) for scaling
of sampling error with S suggest that the extrapolation
using (2.18) should be accurate enough, but it would
be preferable to sample the southern Japan dataset with
visit patterns more similar to what the other studies used.

The extrapolated error estimates from all of the stud-
ies are plotted together in Fig. 2 with 95% confidence
intervals (error bars) shown, except for Steiner’s (1996),
which will be discussed next. The curve fitted to the
TOGA COARE error estimates is added in order to
make visual comparison of the various results easier.
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FIG. 3. Results in Fig. 2 multiplied by R1/2 to extract coefficient k
in (3.1). The value of k is predicted by Eq. (4.2).

The range of values of the TOGA COARE results by
themselves is too small to provide a significant test of
R21/2 behavior. While it might be argued that the error
estimates of each study fall on curves

ssamp 21/25 kR , (3.1)
R

with the value of k depending on the site, it is clear that
the points from GATE and TOGA COARE do not fall
on the same curve as the ones from southern Japan and
seem unlikely to fall on a single curve themselves. This
can be seen more clearly in the plot of k 5 R1/2(ssamp/R)
in Fig. 3 (Steiner’s fit not shown).

Steiner’s (1996) sampling-error estimates are repre-
sented in Fig. 2 by the dashed curve. From his study
of a large rain gauge dataset over Darwin, Australia,
and Melbourne, Florida, he found a rain-rate depen-
dence of sampling error which, if extrapolated to the
conditions assumed in Fig. 2, would give a curve

ssamp/R 5 0.141 3 R20.6, (3.2)

if R is measured in mm h21. This falls quite close to
the results for southern Japan. Because of the spatial
sampling characteristics of rain gauges and time aver-
aging of the gauge data, however, it was difficult for
Steiner (1996) to establish the effective area A observed
by the rain gauges. He found an overall correction factor
for his rain gauge–derived relationship based on a re-
sampling-by-shifts study using two months of radar
data. Because of the issues discussed in appendix B,
this correction is subject to some uncertainty. The agree-
ment with the southern Japan values is nevertheless in-
triguing. The data from Japan, Florida, and Australia
are all from coastal regions, whereas the data from
GATE and TOGA COARE were taken over open ocean.

4. Discussion

If rain events, when they occur, had similar distri-
butions everywhere with average strength r1 and areal
coverage a [see Eq. (2.18) or (2.31)], sampling-error
estimates obtained at one site could be extrapolated us-
ing (2.18) to other sites on the globe. The results of the
sampling-error studies as depicted in Fig. 2, though far
from covering a satisfactory range of environments, sug-
gest that Eq. (2.18) might be valid at a single site but
that the factor multiplying (RAS)21/2 can differ from site
to site.

Before abandoning a single relationship (2.18) with
a unique coefficient covering all situations, the possi-
bility that the variations from site to site seen in Fig. 2
might be due to differences in measuring systems needs
to be considered. Radar data are usually converted to
rain rates using a power-law relation between radar re-
flectivity Z and rain rate. The coefficient of the Z–R
relation is not always well known, but the ratio ssamp/R
is in any case independent of the choice of this coef-
ficient. The value of R for the points plotted in Fig. 2
(the abscissa) might be shifted up or down by changes
in this coefficient or by calibration changes, but the
factor-of-2 shift required to bring the curves more nearly
into alignment would be uncomfortably large. Other un-
certainties in the Z–R relation could explain some of the
variability but are unlikely to explain all of it.

Relations (2.22) and (3.1) can be used to rewrite k,
defined as

k 5 R21/2ssamp, (4.1)

as

k 5 [S21/2cL(Dt/t A)](R21/2sA). (4.2)

The quantity in square brackets depends entirely on the
sampling pattern of the satellite and the time correlation
of the area-averaged rain rate. Figure 3 is a plot of 100
3 k as defined in (4.1), adjusted so that S 5 30 for all
of the points. From (4.2), variations in k seen there are
due either to changes in R21/2sA or to the time corre-
lations of RA(t) as reflected in t A.

Correlation times in GATE for areas A 5 2.58 3 2.58
were found to be of the order of 7–8 h (Laughlin 1981;
Bell et al. 1990). Correlation times (as measured by the
lag at which correlation falls to 1/e) were found in
TOGA COARE to range from 4 to 7 h during the course
of the experiment. Oki and Sumi (1996) reported cor-
relation times for 58 3 58 grid boxes over southern Japan
ranging from 8 h in winter to 14 h in the summer (when
the highest rain rates occur). They argued that these
longer correlation times for the 58 3 58 box averages
are probably consistent with the shorter times found for
the smaller 2.58 3 2.58 boxes. For the satellite sampling
assumed in Figs. 2 and 3 (with Dt ø 1 day or S 5 30),

cL(Dt /4 h) 5 0.82, cL(Dt /8 h) 5 0.66,

and so variations in correlation time seen in the data



458 VOLUME 13J O U R N A L O F C L I M A T E

could result in changes in the sampling-dependent con-
stant cL(Dt/t A) in (4.2) by about 25%. The remainder
of the changes in k seen in Fig. 3 would have to be
explained by changes in R21/2sA from site to site.

For southern Japan, a value of k ø 0.18 seems to fit
the data. If we accept Steiner’s (1996) fit for the Darwin
area as quantitatively accurate, his fit (3.2) would predict
k 5 0.14R20.1 or k ø 0.16 over the range of rain rates
studied by him. In the case of rain with the statistics of
TOGA COARE and GATE, k ø 0.10 seems to describe
most of the data, except for the highest rain rates, where
it seems to be larger.

5. Summary

When faced with determining sampling error for any
given grid box, then, the sampling error for monthly
averaged satellite estimates can be obtained from (3.1).
Based on the somewhat limited evidence so far, it ap-
pears that the factor k in (3.1) can be treated as ap-
proximately constant in a given area, and estimates of
k are available in a number of instances. If we fix the
time correlation–dependent factor cL to be about 0.75
6 0.10, our present knowledge might be summarized
as

ssamp 21/2 21/2 21/2ø kR , k ø 0.75S (R s ). (5.1)AR

For S 5 30 (one visit per day by the satellite),

k ø 0.18, [southern Japan, Darwin (?)] (5.2a)

k ø 0.10, [GATE, TOGA COARE]. (5.2b)

These conclusions are, of course, based on taking radar
and rain gauge data at face value, as ‘‘truth.’’

Most of the variability of k is likely to be due to
changes in R21/2sA rather than changes in the correlation
time of the area-averaged rain. The value of R21/2sA is
governed by r1 and , the conditional mean and var-2s1

iance of point rain rate, and by a, the typical areal extent
of a rain event in that locale. Short et al. (1993) have
noted that the ratio s1/r1 seems to be relatively constant
over a range of averaging areas, types of data (rain gauge
or radar), and climates. As a result, it may be the areal
coverage of a typical rain event in an area that has the
greatest influence on k.

It is important to note that if retrieval error does not
contribute significantly to the total error sE, the quantity
R21/2sA can be estimated directly from the data, since

is just the variance of grid-box averaged, instanta-2s A

neous rain rate. Statistically stable estimates of R and
sA using long enough time averages and/or spatial av-
erages over data from each location are all that are re-
quired. This plus the number of samples per month S
is all that is needed to obtain k [see Eq. (5.1)].

It is usually argued that the contribution of retrieval
errors to averages of rain estimates over large areas will
be small because the number of satellite-instrument

footprints is large and estimates for each footprint have
independent retrieval errors. As mentioned in section 2,
however, there is an insidious kind of error that can
creep into averages of retrieved rain rate when the re-
trieval error depends on some rain characteristic that
changes slowly in space or time. An example might be
the relative amounts of area covered by convective and
stratiform rain, for instance. The average retrieval error
for each month may not be small in such a situation,
even though the retrieval error averaged over long
enough times or large enough areas is zero. Such a
situation could invalidate the argument for K2s retr

as well as cause sampling errors and retrieval er-2s samp

rors to be correlated. Estimates of R21/2sA from satellite
data would then also include such bias effects.

Since ground-based radar, rain gauge measurements,
and remote sensing by satellite differ in nature so pro-
foundly, it would not be surprising to find such slowly
changing biases in all of these methods. Discovering
these effects and trying to estimate them and eventually
correct for them will be an important challenge in the
coming years.
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APPENDIX A

Sampling Error of Simple Model

Some details concerning the evaluation of the average
on the right-hand side of Eq. (2.16),

2N9 N9obs 2 , (A1)71 2 8N Nobs

are discussed here. Assign a binary random variable yj

(yj 5 0 or 1) to each of the N cells in the volume AT
sketched in Fig. 1, with j 5 1, . . . , N. The occurrence
of a rain event in cell j is indicated by yj 5 1. By
definition,

N

N9 5 y . (A2)O j
j51

The rain events occur randomly in the volume, and so
the value of each yj is unpredictable. The satellite views
Nobs cells. Since the index j can be assigned arbitrarily
to a cell, arrange the labeling so that the observed cells
are labeled by j 5 1, . . . , Nobs and the unobserved cells
are labeled by j 5 Nobs 1 1, . . . , N. With this choice,

Nobs

N9 5 y . (A3)Oobs j
j51

The average (A1) may be defined in two ways, with
slightly different results: (a) The number of rainy cells
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FIG. B1. Illustration of the method of resampling by shifts. The
area-averaged rain-rate data are shown as the continuous curve plotted
vs time. The data-span T is typically about one month. The satellite
observes the rain at intervals Dt, making n 5 T/Dt observations during
the month. The satellite estimate is obtained from the average of the
satellite observations. ‘‘New’’ satellite estimates are generated by
shifting all the satellite observation times by d, then 2d, and so on.

N9 can be fixed, so that (A2) acts as a constraint on the
random variables yj; or (b) the average number of rainy
cells, ^N9&, can be fixed instead, so that the probability
of any cell having rain in it is some chosen fraction of
N. If the first choice is made, then (A2) requires that

^yj& 5 N9/N [ p, (A4)

and since 5 yj (because yj 5 0, 1),2yj

^ & 5 ^yj& 5 p.2yj (A5)

Since the location of the rain events is unpredictable in
this model, ^yjyk& 5 ^yj&^yk& 5 p2 if j ± k, so that

^yjyk& 5 p2 1 djk(p 2 p2), (A6)

where djk is the Kronecker delta. Using Eqs. (A2)–(A6)
in (A1), it is easy to show that

2N9 N9 1 1obs 2 5 p(1 2 p) 2 . (A7)71 2 8 1 2N N N Nobs obs

If the second choice for the ensemble average in (A1)
had been made instead, the factor (1 2 p) would not
be present in (A7). Since rainy events typically occur
less than 10% of the time, p is small, and the two en-
semble averages have nearly the same outcome. This is
interesting, since it suggests that at least one of the
ambiguities in defining the ensemble average in (2.4),
whether to fix the total rainfall or only the ensemble
average rainfall, may not make much quantitative dif-
ference.

Equation (2.17) follows immediately from (A4),
(A7), and (2.13), neglecting the factor (1 2 p).

APPENDIX B

Rms Error in Sampling Error Estimated with
Resampling by Shifts

So, naturalists observe, a flea
Hath smaller fleas that on him prey;
And these have smaller fleas to bite ’em,
And so proceed ad infinitum.

Jonathan Swift (1667–1745)

Numerous estimates of the size of TRMM’s sampling
error have appeared in the literature, but some have had
to be discarded here because the method and dataset
size used in obtaining them may have given inaccurate
results. This appendix discusses these issues in more
detail.

The datasets used in these studies are usually of the
order of a month long and consist of a series of radar-
or rain gauge–derived rain field maps. Spacing in time
is once per hour or perhaps more frequent than that.
The method involves comparing the ‘‘true’’ average rain
rate, taken to be the average over all the rain data during
the month, with the average of a sample of the dataset
taken with a sampling pattern typical of the satellite.

The satellite sampling pattern is usually idealized,

with observations assumed to occur at equally spaced
intervals Dt and covering the entire grid-box area; that
is, if the first satellite observation occurs at t 5 t0,
successive observations occur at tk 5 t0 1 kDt, k 5 1,
. . . , n 2 1, with nDt ; 1 month. Figure B1 illustrates
such a pattern. The interval Dt is typically of order 1
day for the TRMM studies.

The difference between the true monthly average
R(t0) and the sample average

n211
R̂(t ) 5 R(t 1 kDt) (B1)O0 0n k50

is the sampling error

«(t0) 5 R̂(t0) 2 R(t0). (B2)

For studies using only a single month of data, the
true average R(t0) is usually taken to be the average
over all of the data and so does not, in fact, depend on
t0. To generate an ensemble of sampling errors to ap-
proximate the bracket average in (2.4), new error values
are generated by shifting the satellite observation times.
The first new set is obtained by shifting the original set
by d to 5 1 d, with 5 t0 1 kDt. The next(1) (0) (0)t t tk k k

set of observation times is 5 1 2d, and so on,(2) (0)t tk k

until an observation time is required that lies beyond
the limits of the dataset. This method resamples the
dataset, attempting to simulate the results that would be
obtained from a straightforward study using a bigger
dataset. With one month of data, the number of values
of «samp generated by this approach is Dt/d.

Papers that make use of the method are identified in
Table 1 by the label ‘‘b.’’ Details of the implementation
of the method vary among the papers. In one of the
papers, for example, the dataset used is longer than one
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month, and in that study the period over which the true
monthly average is taken can shift along with the sample
starting point t0. None of these variations affect the
conclusions reached here in a substantial way, however.

The estimate of ssamp obtained using the method de-
scribed above is subject to variability about its true value
because of the limited size of the dataset used. We will
attempt to estimate this variability using Laughlin’s
(1981) model of the rain statistics. The time series R(t)
of the area-averaged rain rate provided by the dataset
is assumed to be available for a period of length T ;
1 month. The autocorrelation of R(t) at times separated
by t is assumed to be exp(2|t |/t A). To simplify the
algebra in the calculations below, time will be measured
in units of t A, and rain-rate variance in units of .2s A

In the papers mentioned above, the value of d is usu-
ally set to the smallest time interval between successive
values of R(t) available in the dataset. In the calculation
here, however, we let d → 0 so that can be treated(i)t0

as a continuous variable, which we shall denote by t0,
0 # t0 , Dt. This change from discrete to continuous
variables makes very little difference because d K t A,
and the problem raised here is, if anything, underesti-
mated due to this change. For a given starting point t0,
the true average is defined to be

T1
R(t ) 5 dtR(t). (B3)0 ET 0

It does not depend on t0 because the dataset is assumed
to be one month long. If the dataset spans a period longer
than T, an alternative definition would be

t 1T01
R(t ) 5 dtR(t). (B4)0 ET t0

This alternative would have the advantage that the po-
sition of the samples in the sample average relative to
the period averaged over would always be the same, no
matter what t0 is. It changes the calculation slightly but
does not change the conclusions significantly, unless the
dataset is many multiples of T in length. This is not the
case for any of the studies discussed here.

We assume unbiased measurements and use the result
(2.22) by Laughlin (1981), so that

^«(t )& 5 0 (B5)0

Dt Dt 2
2 2s 5 ^« (t )& 5 coth 2 (B6)samp 0 1 2T 2T T

( 5 t A 5 1 by assumption). Laughlin’s formula is2s A

used only to order 1/T and does not depend on t0.
The resampling technique shifts t0 progressively from

0 to Dt, getting a set of sampling errors «(t0), 0 # t0 ,
Dt, and then estimates by averaging over the set:2ŝsamp

Dt1
2 2ŝ 5 dt « (t ). (B7)samp E 0 0Dt 0

We want to know the variance of about its expected2ŝ samp

value (B6). [Note that ^ & as defined in (B7) will2ŝ samp

differ from Laughlin’s result for terms of the order 1/T 2

and higher.] The variance of about due to2 2ŝ ssamp samp

having only a finite dataset is
4 2 2 2 2 2s [ var(ŝ ) 5 ^(ŝ ) & 2 ^ŝ &L samp samp samp

Dt Dt1
2 2 2 25 dt dt9[^« (t )« (t9)& 2 ^« (t )&^« (t9)&].E 0E 0 0 0 0 02(Dt) 0 0

(B8)

Equation (B8) after substituting (B2) contains terms
of the form

^R(t1)R(t2)R(t3)R(t4)&.

If the statistics of R(t) are approximated by those of
normally distributed variables, expectations of quartic
terms can be written in terms of products of expectations
of quadratic terms (see Anderson 1958, p. 39, for in-
stance). The same is therefore true of ^«2(t0)«2( )&. Ift90
we do that, and use the double-integral identity

T T T

dt dt f (t 2 t ) 5 2 du(T 2 |u|) f (u), (B9)E 1 E 2 1 2 E
0 0 2T

we obtain

Dt4 t04 2s 5 dt 1 2 ^«(t )«(0)& . (B10)L E 0 01 2Dt Dt0

This assumes that ^«(t 0 ) «( )& is a function only oft90
|t 0 2 |, which is true for the terms of the order 1/Tt90
but not for the higher-order ones. [It is exact if def-
inition (B4) is used instead of (B3).]

To calculate ^«(t0)«(0)&, expand it using definition
(B2):

^«(t0)«(0)& 5 ^R(t0)R(0)& 1 ^R̂(t0)R̂(0)&

2 ^R(t0)R̂(0)& 2 ^R̂(t0)R(0)&. (B11)

Each of these terms must be separately evaluated. We
will assume that T is sufficiently large that we are only
interested in the lowest-order term in 1/T. Mathematica
Version 2.2 (Wolfram Research, Inc. 1988) was very
helpful here.

The first term in (B11) does not actually depend on
t0 because of the way R(t0) is defined in (B3). This term
was calculated by Leith (1973). To order 1/T he obtained

^R(t0)R(0)& 5 2/T. (B12)

The cross terms in (B11) are also easy to obtain:

^R(t0)R̂(0)& 5 ^R̂(t0)R(0)& 5 2/T. (B13)

To order 1/T they are the same and do not depend on
t0.

Finally, the term ^R̂(t0)R̂(0)& can be computed:
2t t 2Dt0 0e 1 eˆ ˆ^R(t )R(0)& 5 . (B14)0 2Dtn(1 2 e )

The fact that n 5 T/Dt has been used.
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FIG. B2. Plot of percent error in , given by Eq. (B18), when2ŝ samp

is estimated using the resampling-by-shifts method from Dt/d2s samp

samples.

Substituting these results into (B11), we obtain, to
order 1/T,

2t t 2Dt0 0e 1 e 2
^«(t )«(0)& 5 2 . (B15)0 2Dtn(1 2 e ) T

Note that for t0 5 0 this agrees with Laughlin’s result,
as it should. Performing the integral in (B10) we obtain

22 [2ux 1 (1 1 u)x 2 4]
4s 5 , (B16)L 2 2T (1 2 u)

with the definitions

x [ Dt/(1 2 u), u [ e2Dt. (B17)

Since (B16) is the variance about Laughlin’s sampling
error due to the finite size of the dataset used to2s samp

evaluate it, the ratio of its square root to is the2s samp

fractional error of the estimate of obtained by the2s samp

resampling method:
2 1/2 2 1/2s 2 [2ux 1 (1 1 u)x 2 4]L 5 . (B18)

2s x(1 1 u) 2 2samp

It is plotted in Fig. B2. For the resampling method to
estimate with a factor-of-2 accuracy, the fractional2ssamp

error (B18) should be less than about ⅓. This requires that
Dt $ 18tA. Since the resampling studies discussed in these
papers generally use T ; 1 month and tA ; 8 h, a factor-
of-2 accuracy for could be achieved only for Dt *2ŝsamp

6 days. It is therefore clear that estimates of sampling error
for Dt ; 1 day cannot be trusted quantitatively.

REFERENCES

Anderson, T. W., 1958: An Introduction to Multivariate Statistical
Analysis. Wiley, 374 pp.

Astin, I., 1997: A survey of studies into errors in large scale space-
time averages of rainfall, cloud cover, sea surface processes and
the earth’s radiation budget as derived from low earth orbit sat-

ellite instruments because of their incomplete temporal and spa-
tial coverage. Surv. Geophys., 18, 385–403.

Bell, T. L., and P. K. Kundu, 1996: A study of the sampling error in
satellite rainfall estimates using optimal averaging of data and
a stochastic model. J. Climate, 9, 1251–1268.
, A. Abdullah, R. L. Martin, and G. R. North, 1990: Sampling errors
for satellite-derived tropical rainfall: Monte Carlo study using a
space–time stochastic model. J. Geophys. Res., 95 (D3), 2195–2205.

Berg, W., and S. K. Avery, 1995: Evaluation of monthly rainfall
estimates derived from the special sensor microwave/imager
(SSM/I) over the tropical Pacific. J. Geophys. Res., 100 (D),
1295–1316.

Chang, A. T. C., L. S. Chiu, and T. T. Wilheit, 1993: Random errors
of oceanic monthly rainfall derived from SSM/I using probability
distribution functions. Mon. Wea. Rev., 121, 2351–2354.

Chiu, L. S., 1988: Estimating areal rainfall from rain area. Tropical
Rainfall Measurements, J. S. Theon and N. Fugono, Eds., A.
Deepak, 361–367.

Cosgrove, C. M., and M. Garstang, 1995: Simulation of rain events
from rain gauge measurements. Int. J. Climate, 15, 1021–1029.

Huffman, G. J., 1997: Estimates of root-mean-square random error
for finite samples of estimated precipitation. J. Appl. Meteor.,
36, 1191–1201.
, R. F. Adler, P. Arkin, B. Rudolf, U. Schneider, and P. R. Keehn,
1995: Global precipitation estimates based on a technique for
combining satellite-based estimates, rain gauge analysis, and
NWP model precipitation information. J. Climate, 8, 1284–1295.

Kedem, B., and H. Pavlopoulos, 1991: On the threshold method for
rainfall estimation: Choosing the optimal threshold level. J.
Amer. Stat. Assoc., 86, 626–633.
, L. S. Chiu, and G. R. North, 1990: Estimation of mean rain
rate: Application to satellite observations. J. Geophys. Res., 95,
1965–1972.

Laughlin, C. R., 1981: On the effect of temporal sampling on the
observation of mean rainfall. Precipitation Measurements from
Space, Workshop Report, D. Atlas and O. W. Thiele, Eds., NASA
Publication, D-59–D-66.

Leith, C. E., 1973: The standard error of time-average estimates of
climatic means. J. Appl. Meteor., 12, 1066–1069.

Li, Q., R. L. Bras, and D. Veneziano, 1996: Analysis of Darwin
rainfall data: Implications on sampling strategy. J. Appl. Meteor.,
35, 372–385.

McConnell, A., and G. R. North, 1987: Sampling errors in satellite
estimates of tropical rain. J. Geophys. Res., 92 (D), 9567–9570.

North, G. R., S. S. P. Shen, and R. Upson, 1993: Sampling errors in
rainfall estimates by multiple satellites. J. Appl. Meteor., 32,
399–410.

Oki, R., and A. Sumi, 1994: Sampling simulation of TRMM rainfall
estimation using radar–AMeDAS composites. J. Appl. Meteor.,
33, 1597–1608.

Seed, A., and G. L. Austin, 1990: Variability of summer Florida
rainfall and its significance for the estimation of rainfall by gag-
es, radar, and satellite. J. Geophys. Res., 95 (D), 2207–2215.

Shin, K.-S., and G. R. North, 1988: Sampling error study for rainfall
estimate by satellite using a stochastic model. J. Appl. Meteor.,
27, 1218–1231.

Short, D. A., D. B. Wolff, D. Rosenfeld, and D. Atlas, 1993: A study
of the threshold method utilizing rain gauge data. J. Appl. Me-
teor., 32, 1379–1387.
, P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, and
O. W. Thiele, 1997: Shipboard radar rainfall patterns within the
TOGA COARE IFA. Bull. Amer. Meteor. Soc., 78, 2817–2836.

Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical
Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Me-
teor. Soc., 69, 278–295.
, C. Kummerow, W.-K. Tao, and R. F. Adler, 1996: On the Trop-
ical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys.,
60, 19–36.

Solow, A. R., 1985: Bootstrapping correlated data. Math. Geol., 17,
769–775.



462 VOLUME 13J O U R N A L O F C L I M A T E

Soman, V. V., J. B. Valdés, and G. R. North, 1995: Satellite sampling
and the diurnal cycle statistics of Darwin rainfall data. J. Appl.
Meteor., 34, 2481–2490.
, , and , 1996: Estimation of sampling errors and scale
parameters using two- and three-dimensional rainfall data ana-
lyses. J. Geophys. Res., 101 (D), 26 453–26 460.

Steiner, M., 1996: Uncertainty of estimates of monthly areal rainfall
for temporally sparse remote observations. Water Resour. Res.,
32, 373–388.

Weng, F., R. R. Ferraro, and N. C. Grody, 1994: Global precipitation
estimations using Defense Meteorological Satellite Program F10
and F11 special sensor microwave imager data. J. Geophys. Res.,
99 (D), 14 493–14 502.

Wilheit, T. T., 1988: Error analysis for the Tropical Rainfall Measuring
Mission (TRMM). Tropical Rainfall Measurements, J. S. Theon
and N. Fugono, Eds., A. Deepak, 377–385.

Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated
fields. J. Climate, 10, 65–82.

Wolfram Research, Inc., 1988: Mathematica. Version 2.2. Wolfram
Research, Inc.

Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipi-
tation using gauge observations, satellite estimates, and numer-
ical model predictions. J. Climate, 9, 840–858.

Zwiers, F. W., 1990: The effect of serial correlation on statistical
inferences made with resampling procedures. J. Climate, 3,
1452–1461.


