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Abstract. – Phenomenological nucleation theories are considered from the viewpoint of Gibbs’
surface thermodynamics. We point out, in defining the critical nucleus, that it is important to
make a distinction between the number of molecules enclosed by the surface of tension and the
excess number of molecules over the uniform vapor phase. We show that the Kelvin equation
should be employed in determining the size of the critical nucleus even if the nucleus free energy
contains a size-dependent surface energy term. Furthermore, we make use of the fact that the
classical form of Kelvin equation (containing the surface tension of a flat interface) predicts the
equimolar radius of the critical nucleus well down to nuclei of about 40 molecules, and derive
a new equation for the size-dependent surface tension that differs from the Tolman relation.
Density functional calculations support the new formula.

Phenomenological nucleation theories have become increasingly popular in the recent years.
Models incorporating size-dependent surface tensions and/or parameters that are determined
using critical properties of the fluids in question [1]-[3] sometimes succeed in predicting the
nucleation behavior more accurately than the classical nucleation theory (CNT) does. How-
ever, in spite of the original enthusiasm inspired by the Dillmann-Meier (DM) theory [1], it has
become evident that overall the phenomenological theories do not perform much better than
the CNT [2], and when they do, the success is more or less accidental [4]. Our aim is to take
a critical look at the phenomenological theories starting from fundamental thermodynamical
principles. We will show that certain assumptions that are often made in these theories are
thermodynamically inconsistent.

A recent development in nucleation studies is the proof of the so-called nucleation theo-
rem [5]-[7] that allows for the measurement of the molecular content of critical nuclei. Making
use of the nucleation theorem, it has been shown experimentally [6], [8] that the classical
Kelvin equation predicts the number of molecules in critical nuclei, g∗, surprisingly accurately
for clusters that are larger than about 40 molecules. The Kelvin equation works well also when
compared with results produced using the density functional (DF) theory of nucleation [4].
Below, we will show that, together with a thermodynamically consistent formulation of nucle-
ation phenomenology, this discovery leads to a new form for size-dependent surface tension.
We will also show that the new form describes surface tensions calculated using the DF theory
better than the expression derived originally by Tolman [9].
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Fig. 1. – A schematic figure of the density profile at the gas-liquid interface illustrating the calculation
of the various molecular numbers mentioned in the text. The area between the density profile and the
uniform vapor density corresponds to g. Note that the actual density of the nucleus does not have to
reach bulk liquid density even at the center.

We consider a spherical cluster with a volume V and excess number of molecules g over the
uniform vapor phase. At this point we do not fix the volume in any way, i.e. V and g are
independent variables. We can then write g = nl − nv + ns, where nl = V ρl and nv = V ρv,
with ρl and ρv densities of the uniform liquid and vapor phases, respectively, and ns is the
surface excess number of molecules that corrects for the difference between the step profile
and the actual interfacial density profile (see fig. 1).

The free-energy change to create the cluster can now be expressed as [7]

∆G = (Pv − Pl)V + (µl − µv)nl + (µs − µv)ns + Φ(g, V ). (1)

Here the P ’s are the pressures and the µ’s the chemical potentials of the uniform liquid and
vapor phases, and Φ is an excess energy term dependent on both V and g that includes
the surface free energy and all other possible energetical contributions. The critical nucleus,
denoted by an asterisk, is in unstable equilibrium with the environment. Thus we can set
the partial derivatives of ∆G with respect to V , nl, and ns zero and obtain the following
conditions: µ∗l = µ∗s = µv; and ∆P ∗ = P ∗l − Pv = ∂Φ∗/∂V ∗. The work of nucleus formation
is then W ∗ = ∆G∗ = −∆P ∗V ∗ + Φ∗.

The above development is completely general. We now proceed to a somewhat more
specialized direction by assuming that the excess free energy can be divided into two parts:
Φ∗(g∗, V ∗) = A∗σ∗(g∗, V ∗) + F (g∗), where A∗ is the surface area, σ∗(g∗, V ∗) is the surface
tension, and F is an arbitrary function that is assumed to depend on g∗ only and not on the
location of the dividing surface (as an example, we refer to the τ ln(g∗)-term of the Fisher
droplet model [10] present in several phenomenological nucleation theories [1]-[3]). We fix
the dividing surface to be the surface of tension (∂σ∗(g∗, V ∗)/∂V ∗ = 0), and denote the
corresponding volume, surface area, and radius with a subscript s. The surface tension is now
a function of g∗ only, and we have for ∆P ∗ and W ∗

∆P ∗ = 2σ∗(g∗)/R∗s , (2)
W ∗ = −∆P ∗V ∗ + F (g∗) +A∗sσ

∗(g∗) . (3)

Equation (2) is the Laplace relation and R∗s denotes the nucleus radius at the surface of tension.
Assuming incompressibility of the liquid phase (∆P ∗V ∗ = n∗l ∆µ∗ = n∗l (µv(Pv) − µl(Pv)) '
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n∗l (µv(Pv)− µcoex)), these become

∆µ∗ = 2σ∗(g∗)v/R∗s , (4)
W ∗ = −∆µ∗n∗l + F (g∗) +A∗sσ

∗(g∗) . (5)

Here the first equality is the Kelvin relation and v denotes the liquid-phase molecular volume.
The classical nucleation theory is obtained by assuming that F = 0, and that the surface of
tension is located at the equimolar surface, whence g∗ becomes equal to n∗l , and the surface
tension becomes equal to the bulk surface tension (σ = γ∞) [11].

Two points are worth noting. First, the number of molecules n∗l appearing in eqs. (4) and (5)
is not the same (unless the surface of tension happens to coincide with the equimolar surface)
as the number given by the nucleation theorem, g∗, which is accessible to measurement. Thus,
experimental determinations of g∗ should not without reservation be compared with estimates
of the molecular content of the critical nucleus derived from phenomenological nucleation
theories that assume size-dependent surface tension. Secondly, the correct theoretical equation
to determine the radius of the critical nucleus is the Kelvin relation even if the theory contains a
nonzero F (g∗) and a size-dependent σ. The cubic equation for determining the critical nucleus
size that appears in some phenomenological theories [1], [3] results from confused treatment
of V ∗, g∗, and n∗l , and it is not thermodynamically correct.

Next, we note that eqs. (4) and (5) can be combined to give

W ∗ = ∆µ∗n∗l /2 + F ∗ . (6)

On the other hand, following Rowlinson and Widom [11], we have

W ∗ = 2π
∫ ∞

0

R2 [PN(R)− Pv] dR = 2π
∫ Rs

0

R2 [Pl − Pv] dR = n∗l ∆µ∗/2 , (7)

where PN(R) is the normal component of the pressure tensor. Note that while “path”
ambiguities associated with certain molecular definitions of the pressure tensor have been
reported [12], these do not alter the Gibbs’ thermodynamics. DF expressions for the pressure
tensor components [13], on the other hand, appear to be sufficiently well averaged that path
ambiguities associated with the molecular definitions do not arise. Comparison of eqs. (6) and
(7) suggest that F (g∗) = 0 in general. Thus we obtain the important result that no corrections
in the form of F (g∗) are required if the surface free energy is evaluated at the surface of tension.

The phenomenological nucleation theory developed above (eqs. (4) and (7)) is not complete
without a form for the size dependence of the surface tension. The usual procedure is to apply
an expansion based on Tolman’s famous formula [9]

σ(Rs) = γ∞Rs/(Rs + 2δ). (8)

Equation (8) derives from an integration over R assuming a constant value for the Tolman
length δ = Re − Rs. However, it has been shown in DF calculations [4], [14] that in the size
range of critical nuclei δ is a strong function of radius, which makes the use of the Tolman
equation in nucleation studies questionable (even though it is accurate at the planar limit). On
the other hand, it has been shown both experimentally [6], [8] and in DF calculations [4] that
the classical Kelvin equation ∆µ = 2γ∞v/Re(CNT) can be used to accurately estimate the
equimolar radius Re = (3g∗/4π)1/3 even for very small nuclei. The classical Kelvin equation
together with eq. (4) then yields a simple result which should hold as long as the former
equation produces a correct Re and the liquid phase can be considered incompressible:

σ(g∗) = γ∞Rs/Re = γ∞Rs/(Rs + δ) . (9)
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Fig. 2. – Comparison of equimolar radii produced by the classical nucleation theory and the density
functional theory. The reduced temperatures are in units of the Lennard-Jones energy parameter
ε/k = 119.8 K.

We have tested eqs. (8) and (9) with density functional calculations of the nucleation
properties of an argon-like Lennard-Jones fluid [15]. The DF code computes density profiles
of critical nuclei at given supersaturations and temperatures, as well as coexistence densities,
chemical potentials, and surface tensions. The vapor densities of the model LJ fluid are elevated
compared to real molecular fluids, especially at high supersaturations and temperatures. The
radiusRe in the classical Kelvin equation is the equimolar radius which in the density functional
theory is calculated taking account of the background vapor density (see ref. [4]). To be
consistent with the DF calculations, we account for the nonzero vapor density also in the
classical Kelvin equation [16]:

∆µ = v (2γ∞/Re(CNT) + ∆Pv) , (10)

where ∆Pv is the difference between the pressures of the supersaturated and coexistence vapors.
We emphasize that the chemical-potential difference here is that between the supersaturated
and the coexistence vapors, and that the molecular volume refers to the coexistence value.

Figure 2 compares classical and DF equimolar radii at two different temperatures. The
classical predictions are very good at both temperatures even though the LJ liquid is quite
compressible, which is in conflict with the assumptions made in deriving the Kelvin equation.
We believe that the compressibility of the liquid is causing the Re(CNT)/Re(DF) ratios to
rise above unity at small nucleus sizes. It is possible that the compressibility is affecting both
the surface tension and the liquid density in such a way that the effects are canceling in the
Kelvin equation above about g∗ = 100. At larger nucleus sizes the ratios remain slightly below
1, which may be caused by numerical error in the DF calculations.

To test eqs. (8) and (9), we have to extract Rs and σ(g∗) from the DF data. To do
this, we follow Talanquer and Oxtoby [4] and use eqs. (2) and (3) (with F (g∗) = 0). Now,
however, the calculated value of σ(g∗) implicitly includes the compressibility effect, and we
have to rederive eq. (9) to include compressibility corrections to other variables appearing in
eq. (4). The chemical-potential difference between the supersaturated vapor and liquid at the
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Fig. 3. – Comparison of surface tension size dependences calculated from density functional results
using eqs. (2) and (3) with F = 0 (diamonds), from eq. (14) (crosses), and from eq. (15) (squares).

corresponding pressure Pv is given by

µv(Pv)− µl(Pv) = ∆µ+ ∆µl =
∫ Pl

Pv

ρ−1
l dP , (11)

where ∆µl = µcoex − µl(Pv). Taking the liquid density ρl to be a linear function of pressure,
we have

∆µ+ ∆µl = ∆P
ln [ρl(Pl)/ρl(Pv)]
ρl(Pl)− ρl(Pv)

≡ ∆P v̄ , (12)
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and we obtain using eq. (2)

∆µ+ ∆µl = 2σ(g∗)v̄/Rs . (13)

Assuming that Re(CNT) = Re, eqs. (10) and (13) then yield the compressible counterpart of
eq. (9):

σ(g∗)
γ∞

=
Rs

Re

v(∆µ+ ∆µl)
v̄(∆µ− v∆Pv)

≡ Rs

Re
C. (14)

Similarly we can correct for the Tolman relation, eq. (8) to have

σ(g∗)
γ∞

=
(

2
Re

Rs
C−1 − 1

)−1

. (15)

All the quantities in eqs. (14) and (15) can be obtained from DF calculations. Figures 3a)
and b) compare the two equalities at two different temperatures. In both cases the surface
tension size dependence is clearly better represented with the compressibility-corrected fraction
C(Rs/Re) than with the corresponding Tolman form. Below about 300 molecules the difference
between the two forms is notable. The slight inaccuracy of C(Rs/Re) in predicting σ(g∗)/γ∞,
on the other hand, reflects exactly the difference between the classical and DF radii seen in
fig. 2. This leads us to believe that also with incompressible molecules eq. (9) holds just as
accurately as the classical Kelvin relation does.
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