Estimating Well Costs for Enhanced Geothermal System Applications

K. K. Bloomfield
P. T. Laney

August 2005

INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Estimating Well Costs for Enhanced Geothermal System Applications

K. K. Bloomfield
P. T. Laney

August 2005

Idaho National Laboratory Renewable Energy and Power Technologies Idaho Falls, Idaho 83415

Prepared for the
U.S. Department of Energy

Assistant Secretary for Energy Efficiency and Renewable Energy Idaho Operations Office
Contract DE-AC07-05ID14517

Abstract

The objective of this work reported is to investigate the costs of drilling and completing wells and to relate those costs to the economic viability of enhanced geothermal systems (EGS). This is part of a larger parametric study of major cost components in an EGS. The possibility of improving the economics of EGS can be determined by analyzing the major cost components of the system, which include well drilling and completion. Determining the sensitivity of EGS cost components will help to identify areas of research to reduce those costs. The results of this well cost analysis will help quantify well development cost for EGS.

ACKNOWLEDGEMENT

This work was supported by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517. Such support does not constitute any endorsement by the U.S. Department of Energy of the views expressed in this publication.

CONTENTS

ABSTRACT iii
ACKNOWLEDGEMENT iv
CONTENTS

1. INTRODUCTION 1
1.1 Regional Drilling Costs 1
2. DISCUSSION 8
3. PLOTS 9
3.1 Polynomial Curve Fitting 9
3.2 Exponential Curve Fitting 9
3.3 Power Series Curve Fitting 9
4. CONCLUSIONS 10
5. REFERENCES 11
Appendix A—Authority for Expenditures 13
Appendix B—Drilling Costs versus Depth Curves 41
FIGURES
6. Estimated temperatures at 4 km 2
7. Estimated temperatures at 6 km 3
8. Average depth versus median cost of Table 1, geothermal wells in Central America and the Azores from 1997 through 2000 4
9. Cyclical example of cost of drilling a 10,000 well 6
TABLES
10. Drilling costs from 1997 to 2000 for Central America and the Azores 4
11. 1970 geothermal drilling costs. 5
12. Mid 1980s through mid 1990 drilling costs 5

Estimating Well Costs for Enhanced Geothermal System Applications

1. INTRODUCTION

Enhanced geothermal system (EGS) reservoir performance is controlled by the interplay of a complex set of parameters: reservoir, geologic, drilling, well completion, plant design, and operation. In order to identify, analyze, and mitigate the economic risks of any EGS prospect, one must first understand the relative importance of each of these parameters, how its relative importance changes under different constraints, and how they interactively affect EGS production. To date, no comprehensive parametric study on EGS is known to have been conducted within the industry. U.S. industry has not conducted a comprehensive study because it considers EGS an emerging technology. The parametric studies reported in the literature have only considered a limited set and range of parameters, thus potentially skewing their results.

To better understand EGS economics, the U.S. Department of Energy (DOE) has commissioned the Idaho National Laboratory to conduct a parametric study of EGS's major cost components and establish a baseline of information relating to EGS development costs. The drilling study reported in this document is part of that overall parametric study, undertaken to determine the relationship between available energy at depth (temperature gradient, flow rate and energy conversion efficiency), and energy costs with depth (drilling and pumping costs).

The amount of work that can be extracted from a geothermal fluid and the rate at which this work is converted to power increase as the fluid's temperature increases. The relationships between temperature and work (ideal or actual) illustrate the preference for higher fluid temperatures. Since drilling costs per foot generally increase with depth, and temperature gradients are at best linear with depth (if not slightly decreasing), it is apparent that at some depth the increase in temperature does not warrant increased drilling costs. Drilling cost results published to date are based on assumed relationships between drilling costs and depth that have no statistical basis and only illustrate the impact that drilling costs will have on the ability to access higher-temperature EGS resources. This indicates the need to know the precise relationship between drilling costs and depth. Once that relationship is established, a more realistic evaluation can be made one that incorporates these costs. Because pumping costs from increased lift and greater frictional loss with length of wellbore increase with depth, and parasitic load impacts power generation potential as well, all must be included in a study of comprehensive cost of EGS power versus depth.

Our first goal is to assemble reasonable drilling-costs-with-depth formulae for various regions of the United States and couple them with energy-recovery-with-depth as they relate to regional temperature gradients. Additional controls on the economic depth relationship will be the selling price of energy produced and the flow rate of each well. Obviously, higher gradient areas and areas with relatively low drilling costs have greater interest.

1.1 Regional Drilling Costs

To determine the areas from which to collect historical drilling costs, we used the nation-wide 4- and 6-km temperature gradient data developed by the Southern Methodist University Geothermal Laboratory and maps prepared by Idaho National Laboratory (Figures 1 and 2).

Figure 1. Estimated temperatures at 4 km [based on data from Blackwell and Richards (2004), Southern Methodist

Figure 2. Estimated temperatures at 6 km [based on data from Blackwell and Richards (2004), Southern Methodist

Based on the information from these maps and temperature data, this study was limited to areas in the Western, Mid-continent, and Southern United States. These areas have the greatest potential for early success with EGS technology. Alaska and Hawaii were not included in this drilling study. And because several geothermal operators with proprietary concerns limited the availability of geothermal drilling data in many of these areas, we chose to concentrate on the vast drilling dataset from the oil and gas industry.

We have also incorporated, however, some specific geothermal drilling data from studies by Lovekin and Mansure. Table 1 summarizes depth and cost data representative of geothermal wells completed between 1997 and 2000 in Central America and the Azores (Lovekin et al. 2004). To escalate these prices to account for inflation, the costs of all wells have been escalated to equivalent U.S. dollars as of 1 July 2003, using the Producer Price Index. Figure 3 is a curve fit to the data in Table 1.

Table 1. Drilling costs from 1997 to 2000 for Central America and the Azores.

Depth Interval (ft)	Number of Wells	Total Footage	Total Cost $(\$ \mathrm{~K})$	Average Depth $\mathrm{ft})$	Average Cost/Well (\$K)	Median Cost/Well (\$K)
$0-1,249$	1	679	280	679	280	280
$1,250-2,499$	8	15,692	10,415	1,961	1,302	1,258
$2,500-3,749$	0	0	0	0	0	0
$3,750-4,999$	5	21,535	10,857	4,307	2,171	2,148
$5,000-7,499$	24	139,757	65,081	5,823	2,712	2,482
$7,500-9,999$	20	167,065	68,834	8,353	3,442	3,453
$10,000-12,499$	3	32,968	11,495	10,989	3,832	3,913
$12,500-14,999$	0	0	0	0	0	0
$15,000-17,499$	0	0	0	0	0	0
$17,500-19,999$	0	0	0	0	0	0
$20,000+$	0	0	0	0	0	0
Total	61	377,696	166,962	6,192	2,737	2,577

Figure 3. Average depth versus median cost from Table 1 for geothermal wells in Central America and the Azores from 1997-2000 (from Table 1 data).

Other data available from Sandia National Laboratory (Mansure et al. 2005) show geothermal drilling costs from the 1970s and activity from the mid 1980s through mid 1990s and inflated those cost to 2000. Table 2 presents the 1970 geothermal drilling costs. Table 3 presents the most recent mid 80 s to mid 90s Sandia drilling data. Both sets of data combined represent less than 100 wells drilled.

Table 2. Geothermal drilling costs from the 1970s.(in year 2000 dollars)

Depth Interval (ft)	Number of Wells	Total Footage	Total Cost $(\$ \mathrm{~K})$	Average Depth (ft)	Average Cost/Well (\$K)	Median Cost/Well (\$K)
$0-1,249$	0	0	0	0	0	0
$1,250-2,499$	4	7,460	1,908	1,865	477	369
$2,500-3,749$	6	18,086	7.615	3,014	1,269	1,254
$3,750-4,999$	9	42,732	10,677	4,748	1,186	792
$5,000-7,499$	25	151,033	48,985	6,041	1,959	1,800
$7,500-9,999$	11	94,996	27,385	8,636	2,490	2,415
$10,000-12,499$	4	40,994	15,676	10,249	3,669	3,538
$12,500-14,999$	0	0	0	0	0	0
$15,000-17,499$	0	0	0	0	0	0
$17,500-19,999$	0	0	0	0	0	0
$20,000+$	0	0	0	0	0	0
Total	59	355,301	111,246	6,022	1,886	1,792

Table 3. Geothermal drilling costs from the mid 1980s through mid 1990. (in year 2000 dollars)
\(\left.$$
\begin{array}{ccrrrrc}\hline \text { Depth Interval (ft) }\end{array}
$$ $$
\begin{array}{c}\text { Number } \\
\text { of Wells }\end{array}
$$ ~ $$
\begin{array}{c}\text { Total } \\
\text { Footage }\end{array}
$$ $$
\begin{array}{c}\text { Total Cost } \\
(\$ \mathrm{~K})\end{array}
$$ \begin{array}{c}Average

Depth (ft)\end{array}\right)\)| Average |
| :---: |
| Cost/Well (\$K) | | Median |
| :---: |
| Cost/Well (\$K) |

The Oil and Gas drilling data presented in this paper represent more than 150,000 wells drilled in the Western, Midcontinent, and Southern United States. It includes parts of West and Central Texas (Texas Railroad Commmission Districts 2, 3, 4, 8, and 8A) to represent the higher-temperature anomalies in West Texas as well as the geopressured fairway in South Texas. Drilling data from parts of Arkansas and Northern Lousiana were also examined. More importantly, the areas surveyed and the cost data analyzed would be more representative of an EGS project in the future, since a goal of the Geothermal Technology

Program (GTP) is to increase the number of states with geothermal power by moving to areas not traditionally considered as prospective geothermal areas. The western states surveyed are California, Colorado, Montana, New Mexico, Texas District 8 and 8a, Utah, and Wyoming. Nevada drilling data were not available but drilling costs are assumed to be comparable with Utah's. Other states included in this report are Kansas, Oklahoma, and North Dakota, which allowed the study to increase the samples in the data sets for the median and deeper depths of 10,000 to 20,000 feet for comparison with states most likely to construct an EGS project. The majority of the data reported here are historical oil and gas drilling costs from Oil \& Gas Journal and the most recent 2003 Joint Association Survey on Drilling Costs, issued in March 2005. In addition, Appendix A presents some Authority for Expenditures (AFEs), which provide a more detailed picture of drilling costs for some wells in Texas, Oklahoma, and Montana drilled in the last six months or scheduled for drilling shortly. Because of the proprietary nature of the JAS survey data, we do not provided the detailed tables of data but rather data that has been analyzed and graphed. The data presented in the graphs includes the depth in feet and costs in thousands of dollars.

From the historical data, it is apparent that drilling activity (rig demand) drives drilling costs. The level of activity accounts for a large percentage of drilling cost changes. Hence, costs can be expected to rise as activity levels increase, particularly during short-term, cyclical activity spikes (OGJANN). Figure 4 illustrates the median costs of a 10,000-ft well from 1970 through 2001 and the cyclical pattern of those costs.

Figure 4. Cyclical example of the cost of drilling a 10,000-ft well. (these costs are not normalized to 2003 dollars)

Increases in oil/gas prices translate directly into higher drilling costs. Rising prices spur drilling of additional marginal wells. These drive up costs because they are more challenging projects. Higher prices also increase drilling costs because energy costs are a major component of total drilling costs, which include such material costs as casing, cement, and transportation to deliver materials to the drilling site.
U.S. onshore rig counts have been declining since 1981. Declining rig population creates a tighter rig market. Until day rates increase sufficiently to justify investment in construction, the market will continue to become tighter. Ultimately, this will lead to higher rates and drilling costs. A tight market is needed
over a sustained period to achieve day rates that justify new equipment. In a tight market, day rates are likely to increase until they reach levels that trigger new equipment investments.

Advances in drilling technologies have increased (and will continue to increase) efficiencies, resulting in lower overall costs. These gains mean rates will reflect the benefits/costs of advanced technology in most cases. However, new technologies could produce higher day rates for certain rigs, which provide offsetting benefits by requiring fewer drilling days.

The 2003 Joint Association Survey of Drilling costs report the total cost of each well completed by the operator or contractor. This includes tangibles and intangibles. More specifically, the cost elements include labor, materials, supplies, water, fuel, and power. Direct overhead charges are also included for operations, such as site preparation, road building, mobilization, and demobilization and hauling costs. This report does not include wells that involved sidetracking operation. The drilling cost data also includes the cost of horizontal wells. The JAS survey does differentiate from the higher concentration of horizontal wells in Texas, Louisiana, and the Gulf of Mexico. These areas accounted for one fourth of the horizontal wells drilled. The average cost of per foot for a horizontal well was 17% higher than a well not drilled horizontally. Horizontal drilling averaged $\$ 254 / \mathrm{ft}$ verses $\$ 217 / \mathrm{ft}$ for a standard hole.

2. DISCUSSION

The objective of drilling is to reach the target depth or pay zone at the lowest cost, highest degree of safety, and minimal degree of damage to formation. To achieve this, two requirements must be satisfied. The first is proper design of the well program, which includes evaluating the formation, coring, and testing. The second is proper choice of a drilling rig, which includes the ability to reach the target depth rapidly and cheaply with the highest degree of safety. The well program is 40% of the well costs (Chilingarian and Vorabutr 1983). The remainder of the cost is proportional to the time for drilling, which includes rig day rate, rental tools, etc. A distribution of the well program cost follows:

1. Fixed costs, which includes location or site preparation and roads: $8-12 \%$
2. Fixed costs, which includes moving, casing, cementing, service companies, evaluation of formation, coring, etc.: 23-27\%
3. Completion, which includes perforating and site cleanup: 4-6\%.

Proper planning of the well is key to optimizing operations and minimizing expenditures. In order to minimize the costs of drilling, it is imperative to gather as much information as possible about the area being drilled. This includes the gathering the costs from surrounding wells. Although gathering specific costs of drilling is beyond the scope of this project, a short summary is included to detail what information should be gathered before a drilling venture is undertaken.

The first step in planning a well is to gather all available data on past wells. It is important to be completely familiar with all sources of information, the availability of the sources, and the information normally associated with the sources.

Consider the geology expected to be encountered to reach the target depth. Knowing the geology will help determine casing depths, such as the depth of fresh water. Competent geology will determine surface casing requirements. Understand the production objective of the well, such as hole size, production casing requirements, and completion requirements. Know the geologic markers, along with the anticipated formation tops, to determine other well planning activities such as logging, formation testing, and cores.

The information to successfully complete the well program can be obtained from an adjacent well or "control wells." Obtain such information as mud logs, electric logs, bit records as well as drilling rig inventory where available to determine the most cost-effective procedures in drilling a well.

3. PLOTS

The plots and curve fits for the different regions and states are presented as average depth verses median cost. The median cost was chosen because the average cost per well was not always a good representation of the central tendency of the depth interval. For example, a few very expensive wells can skew the average toward higher cost and away from the middle range of data. The result would be an average cost higher than the cost of a typical well. The median cost per well is unaffected by very high or low cost. By definition, the median of a set of data is the data point that divides the set in half so that an equal number of the data points are both larger and smaller than the median. Since these well costs were drilled in 2003, results are expressed in 2003 dollars.

The basic idea of curve fitting and statistics is simple: you want to utilize the data you collected to make general conclusions about the larger population from which the drilling cost were derived. That is, analyze this drilling depth and cost data and use the results to infer the cost with depth.

Appendix B presents a series of plots for each region and state studied. Data are presented with curve fits for the total range of depths for each state and then curve fitted in increments from 0 to 8,000 ft average depth and 8,000 to $20,0000 \mathrm{ft}$ average depth. Three sets of curve fits for cost verses depth are presented in the appendix. The curve fits are polynomial, exponential, and power type.

3.1 Polynomial Curve Fitting

Polynomial regression fits data to the following equation: $y=A+B x+C x^{2}+D x^{3}+E x^{4} \ldots \ldots .$. where y is cost and x is depth. Any number of terms can be included. If you stop at the second (B) term, it is called a first-order polynomial equation, which is identical to the equation for a straight line. If you stop after the third (C) term, it is called a second-order, or quadratic, equation. If you stop after the fourth term, it is called a third-order, or cubic, equation.

Correlation quantifies how consistently the two variables vary together. When the two variables vary together, statisticians say that there is a lot of correlation. The direction and magnitude of correlation is quantified by the correlation coefficient, R. The polynomial curve fits displayed the best correlation for or regression for most of the oil and gas cost data. For specific details see curve fits in appendix B.

3.2 Exponential Curve Fitting

The exponential growth curve fit is also used to fit the cost versus depth data. The exponential growth fits data to the equation $y=A e^{B x}$. It is difficult to fit data to this equation with nonlinear regression because a tiny change in the initial values will drastically alter the sum of squares.

3.3 Power Series Curve Fitting

The power series curve fit defined by the equation $y=A x^{B}$ is very versatile and has many uses. Fitting data to a power series is difficult for the same reason as exponential growth. The initial values of A and B are important, because small changes in those values can make a huge change in y or well cost.

4. CONCLUSIONS

A review of drilling costs with depth has been generated for regions and states of potential EGS sites. Publicly available geothermal drilling cost data are very limited. Geothermal drilling cost information for depths greater than 10,000 feet is so limited as to make it statistically unreliable for cost estimating purposes. Since EGS development might occur at depths greater than 10,000 feet, references to oil and gas drilling costs should be considered when determining an EGS project cost and the economics of power production from these depths and reservoir types.

5. REFERENCES

2003 Joint Association Survey on Drilling Costs, 2005, American Petroleum Institute.
Chilingarian G., and R. Vorabutr 1983, Drilling and Drilling Fluids, Appendix G, New York, Amsterdam: Elsevier, p.765-778.

Blackwell D., and M. C. Richards 2004, "The 2004 Geothermal Map of North America, Explanation of Resources and Applications," Geothermal Resource Council Transactions, Vol. 28, pp. 317-320.

Lovekin J., C. W. Klein, and S. K. Sanyal 2004, New Geothermal Site Identification and Qualification, California Energy Commission, P500-04-051, p. 29.

Mansure A., S. J. Bauer, B. J. Livesay, 2005, "Geothermal Well Cost Analyses 2005," Geothermal Resource Council Transactions, Vol. 29, in press.

Moore P. L., Drilling Practices Manual, Tulsa, Oklahoma: PennWell Books, 1974, pp. 3-72.
Oil and Gas Journal Annual, Haver Analytics, April 19, 2004, http://www.Haver.com.

Appendix A

Authority for Expenditures

Appendix A

Drilling Authority for Expenditure: Examples

In order to put the 2003 Joint Association Survey on Drilling Costs information in perspective, we compare it to some current drilling cost information. This appendix presents eight Authority for Expenditures (AFEs) prepared by a drilling engineer for wells that have been or will be drilled in 2005. Because of the proprietary nature of these cost data, some of the descriptive information (i.e., lease/well name, operator, location, etc.) has been removed, but none of the information used to calculate the cost has been changed or removed.

The AFEs include both oil and gas wells, a directionally drilled well, and a multilateral completion. The wells are in Texas, Oklahoma, and Montana and range in depth from 900 to 13,200 feet (274 to 4,023 meters). Data in the AFEs include cost for items such as surveying, rig mobilization, drilling day work, bits, logging, casing, perforating, etc. Each AFE has three pages: a cover sheet, a drilling well cost estimate, and a completion cost estimate.

Location: Hill Co., MT; Well Type: Gas; Total Depth: 900 ft (274 m)

JOINT INTEREST OWNERS

Working Interest

PARTNER APPROVAL

Company Name \qquad

Authorized By: \qquad Date \qquad

Title:

DRILLING WELL COST ESTIMATE

TAIIGIBLE DRILLIIIG COST

Location: Crane Co., TX (Dist 8); Well Type: Gas; Total Depth: 3,400 ft (1,036 m)

dRILLING WELL COST ESTIMATE

Location: Andrews Co., TX (Dist. 8); Well Type: Oil; Total Depth: 4,750 ft (1,448 m)

dRILLING WELL COST ESTIMATE

Location: McClain Co., OK; Well Type: Oil \& Gas; Total Depth: 8,850 ft (2,697 m)

GROSS WELL DATA

					Total
	Drilling		Completion		
	Dry Hole	Suspended	Intangible	Tangible	
Days:	0				0
This AFE:	\$695,000		\$437,200	\$319,800	\$1,452,000
Prior AFE's:	\$48,000		$\$ 0$	\$0	\$48,000
Total Costs:	\$743,000		\$437,200	\$319,800	\$1,500,000
	JOINT INTEREST OWNERS				
	Working Interest				
		Percent		Dry Hole $\$$	Completed \$
		93.000000\%		$\$ 0$	\$1,350,360
Others		7.000000\%		\$48,650	\$101,640
AFE TOTAL:		100.0000\%		\$48,650	\$1,452,000

INTERNAL RECOMMENDATION \& APPROVAL			
Recommended:		Approvals:	
Reservoir:	Date:	Eng / Prod'n Mgr:	Date:
Operations:	Date:	SVP Operations:	Date:
Geology:	Date:	SVP Asset Mgmt:	Date:
Land:	Date:	President:	Date:
Drilling:	Date:	CEO:	Date:

PARTNER APPROVAL
Company Name \qquad

Authorized By \qquad Date:

Title:

DRILLING WELL COST ESTIMATE

Location: Latimer Co., OK; Well Type: Gas-Directional Drill; Total Depth: 10,500 ft (3,200 m)

GROSS WELL DATA

	Drilling		Completion		Total
	Dry Hole	Suspended	Intangible	Tangible	
Days:	0				0
This AFE:	\$1,596,000		\$547,600	\$325,400	\$2,469,000
Prior AFE's:	\$64,500		\$0	$\$ 0$	\$64,500
Total Costs:	\$1,660,500		\$547,600	\$325,400	\$2,533,500

DRILLING WELL COST ESTIMATE

Location: Smith Co., TX (Dist. 6); Well Type: Gas; Total Depth: 11,950 ft (3,642 m)

dRILLING WELL COST ESTIMATE

Location: Roger Mills Co., OK; Well Type: Gas; Total Depth: 12,705 ft (3,872 m)

DRILLING WELL COST ESTIMATE

Location: Dawson Co., MT; Well Type: Gas-Dual Lateral Completion;

 Depth: TVD -9,150 ft, KOP -8,600 ft, Total Depth -13,200 ft (4,023 m)

JOINT INTEREST OWNERS
Working Interest

DRILLING WELL COST ESTIMATE

TAHGIBLE DRILLIIIG COST

COMPLETION COST ESTIMATE

Appendix B

Drilling Cost versus Depth Curves
Total range of depth (feet)

$$
0-8000 \text { (feet) }
$$

$$
8000-20000 \text { (feet) }
$$

Polynomial Curve Fitting Plots 43
Exponential Curve Fitting Plots 58
Power Series Curve Fitting Plots 77

Polynomial Curve Fitting Plots

Polynomial Curve Fit for All Wells Surveyed

Western United States
 Total Western States Wells Surveyed

Southeastern United States

Texas Districts 2, 3, and 4

California Onshore

Colorado

Montana

New Mexico

Texas District 8

Texas District 8A

Utah

Wyoming

North Louisiana

Arkansas

Total Wells Surveyed Southeast United States

Total Wells Surveyed Western and Southeast United States

Kansas

North Dakota

Oklahoma

Exponential Curve Fitting Plots

Exponential Curve Fit For All Wells Surveyed

Western States
 California onshore

Colorado

Montana

New Mexico

Texas District 8

Texas District 8A

Utah

Wyoming

Western U.S. States total wells surveyed

Southeast United States

Texas Districts 2, 3 and 4

North Louisiana

Arkansas

Total Wells Surveyed Southeast United States

Total Wells Surveyed Western and Southeast United States

Kansas

North Dakota

Oklahoma

Power Series Curve Fitting Plots

Power Series Curve Fit for All Wells Surveyed

Western States

California onshore

Colorado

Montana

New Mexico

Texas District 8

Texas District 8A

Utah

Wyoming

Western U.S States total wells surveyed

Southeast United States

Texas Districts 2, 3 and 4

North Louisiana

Arkansas

Total wells surveyed Southeast U. S.

Total wells surveyed Western and Southeast U.S.

Kansas

North Dakota

Oklahoma

