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The standard theory of ideal single-pressure multiphase fluid dynamics, which is known to be ill-posed, is regularized via 
the hamiltonian formalism by extending the noncanonical Poisson brackets for the standard single-pressure equations to the 
case of multiple pressures. This formalism is used to find Lyapunov stability conditions for the regularized system. 

1. Introduction. Multiphase flow involves interpenetration of various material species. Hydrodynamic models 
describing such systems by using multiple velocity and density fields at a single, common pressure are known to be 
ill-posed and possess various types of  instabilities [ 1 ]. The ultimate cause for these difficulties can be traced to 
the assumption of  equal pressures for all the different species and phases. We propose to regularize this theory by 
dispensing with the constraint of  common pressure, introducing multiple pressures, as well as material quantities 
associated with interface dynamics and inertia. 

The idea of  regularizing multiphase flow by introduction of  additional pressures is not new. However, our ap- 
proach and results obtained by reasoning via the hamiltonian formalism differ from others, which introduce, e.g., 
viscous dissipation [2], numerical f~tltering [3], surface tension [4], bubble inertia [5], or phenomenological inter- 
facial pressure jumps [6]. See also ref. [7] for a recent review. 

2. The single pressure model. The single-pressure model of  ideal multiphase flow in Fi n is described by the equa- 
tions [71 

a tpS+divpS t~s=o ,  a t o S + ~ o i , / = - O s ( p s ) - l P i - ¢ b , i ;  a tr /s+os"  vr/s = 0 ,  (1 ,2 )  

where ~s = psos is the macroscopic density of  the sth species, ps is its microscopic density, 0 s is its volume fraction, 
v s is its velocity, 7/s is its specific entropy, P is the pressure, qb is the potential of  an external field, summation is as- 
sumed over all repeated indices except the species label s. In terms of  the momentum density M s = ~sus, the mo- 
tion equation ( lb )  can be written as 

at Ms + (MSMT/~s)d = -/9 s V P -  ~s Vqb. (3) 

The variables 0 s, s = 1, ..., N, are considered as given functions of{/5 s, r/s) through the relations ~ N  0s = 1, s=l 
p l ( ~ l  [e l ,  ,71) = . . .  = p~V(~N /oN ' r/m) = p where ps = (ps)2 aes /aps ' with e s = eS(p s, r/s) being the specific inter- 
nal energy of  the sth species. 

Eqs. ( 1 ) - ( 3 )  can be written in the hamiltonian form a tF  = {H 1, F )  1 with F E {~s, r/s, M s) and Poisson bracket 
{ , }1 given in terms of  these variables by [8] 
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8tSs 
5J + a__[__l s 6J 61 ( 6J _ rlsi f J  +(a/MS +M]bi) 6~is)], 

8,7 s a M + 8,7  

(4) 

and the hamiltonian being the total energy, H1, 

H x = ~ fdnxIImSl212M + ~SeS + M~(x)l • (5) 
$ 

Although this model is hamiltonian, there are two difficulties associated with it. First, eqs. (1), (2) are well known 
to be ill-posed even in the simplest case n = 1, N = 2, where the equations are not hyperbofic since they possess 
complex-valued characteristics [ 1,4,6]. Second, for arbitrary n and N, the second variation of functions whose 
extremal points are stationary flows of (1), (2) is indefinite due to the presence of the single pressure and, thus, 
the Lyapunov stability of stationary flows is prevented [8]. 

Both these difficulties with the single-pressure model can be overcome at once by allowing multiple pressures 
within the framework of the hamiltonian formalism. 

3. Multipressure model. The following multipressure model provides a regularization of the corresponding single- 
pressure equations and is hyperbolic when specialized to the n = 1, N = 2 case. 

at~s + div ~sus = 0 ,  ate7 s +o s" Vrl s = 0 ; atvs + (~s. V)~s = _ 0 s ( ~ s ) - I  Vp s - V ~ ,  (6,7) 

at Os+w" VOs=O; a t w + ( w . V ) w = _ o _  1 ff_~psvos;, ~ t o + d i v o w = 0 ,  (8,9,10) 
$ 

where ~s, ~s, osos, ps, ¢b, are the same as in the previous section, while w is an effective interface velocity and o is 
an associated interface mass density. For the two-species case, eqs. (8)-(10)  become, using 01 = 0, 02 = 1 - 0, 

atO+w. VO=O ; O t w + ( w . V ) w = o - l ( p 2 _ p 1 ) v O ;  ~ t o + d i v o w = 0 .  (8' ,9 ' ,10') 

For separated flow, eq. (8 ')  describes transport of volume fraction 0 by the interface with velocity w, whose accele- 
ration is given in (9 ')  in the form of Newton's law, with an inertial mass density o, which by (10')  is also transport- 
ed (as a density) by the interface. 

In the case where the first N - 1 species, say, are dispersed in species number N, eq. (9) written as 

N-1  
a t w + ( w . V ) w = o - 1  ~ ( p N _ p s ) v o s  ' (9") 

s=l  

has the form of the newtonian force law for acceleration of the interface. Eqs. (6)--(10) comprise a hamiltonian 
system with Poisson bracket 

( j , l ) 2 = { J , l }  1 _ f d n x  FooaioM 61t4/6J + "~iM ai ~-o-5J Os,,.~60 s6J +(aiMi+M/at)SM/] ~s __O s ,, (11) 

and hamiltonian 

H 2 = H 1 + f d n x  IMI2/2o, (12) 

where M = ow is the effective momentum density of the interface. The Lie algebriac interpretation of both Poisson 
brackets (4) and (11) can be found in ref. [9]. 

Conserved quantities for the system (6)--(10) in three dimensions are 

C s = f d3x  ~SFS(rls, qS), (13) 

where 
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q s = (/5 s ) - I  curl t)s. VrlS (14) 

is the potential vorticity for the sth species and F s is an arbitrary function. 
Additional conserved quantities of  the same form are 

K s = fd3x aGS(Q s, 0 s) , (15) 

where 

QS = o-1 curl w" VO s (16) 

satisfies 

atQS + w .  vQ  s = o ,  (17) 

and G s are arbitrary functions. 
S $ $ $ One can show by the methods of  refs. [ 10-14] ,  that stationary flows {Pe, rt~, M~, 0 e, w e, o e) of  the system ( 6 ) -  

(10) are extremal points of  the sum HC. K = H2 + ~'s ( Cs + KS) , i.e., 6HcK = 0 for stationary flows. An analysis of  
the second variation a2Hc, K evaluated'at the external point shows that ~2HcK can be positive definite, as required 
for Lyapunov stability, provided hamiltonian H 2 is modified by the addition of  a term f dnx e(o) representing ener- 
gy of compressibility in o, i.e., 

H 3 = H  l + f d n x [ IM IZ /2o+  e(o)l • (19) 

Addition of this term modifies the w equation to 

atw + ( w .  v ) w  = _%-1 ~ p s v o s  _ e"(o) v o ,  ( 9 " )  

but does not change the conservation laws (13) and (15) since these are properties of  the Poisson bracket (11). 
For the case of  two species, s = 1,2,  01 = 0, 02 = 1 - 0, the stationary flows of  the new system (6)--(10) with 

(9) replaced by (9")  are extremal points o f H ¢  = H 3 + 2;2_-1 C s + K. 
The second variation o f H  C at equilibrium, a2H 0 is given by the quadratic form 

262Hc = f d3x [% law + Oe x WeaOl 2 + (e"(Oe) - Oe 11wel2)(6o) 2 

+ 2Goao50 + 2GQ curl 5w-  V50 + 2OeGQoaOa Q + oeGoo(50)2 + OeGQQ(aQ)2 ] 

+ ~ fd3x(/5Slat)s -s -1  s - s 1 2  - s  -1  s 2 - s  2 +(Pe)  t)e 5p - ( P e )  It)el (ap ) +~s([3s)2[a(/as/os)+((3s)-2eSonar?l 2 
$ 

+ 2(e~ + F~) a/ssarl s + 2F~ curl at) s .  Vai l  s + 2/5~F~q6rlSaq s +/Se s [e~n - (e~n/Os) 2 + F~,71 (arts) 2 

+ ~S, FSqq(fqS)2}, (20) 

where 6 (/as/os) = (0eS) -1  a/5 s s - 2 - s  s s .  vat/s,  with an analogous ex- - (Oe) OeaO , pSaq =--qSa/aS+curl at) s.  Vr~e + curl t)e 
pression for OeaQ, and where, throughout, G, F s, and their derivatives G o etc., are to be evaluated at equilibrium, 
and (~s)2  s ~ -~ 2 ( ~ 2 = ( O e C ~ / P e )  , with Ce) = aP~/a(Pe/Oe)S -s s being the square of  the sound speed for the sth species. A given 
flow characterized by the functions F s and G will be linearly Lyapunov stable in the class o f  smooth solutions, 
provided F s and G satisfy the conditions required for 62H C to be positive definite. The quadratic form (20) reduces 
formally to that for adiabatic flow of  a single fluid in three dimensions when t)l = t)2 = t), 01 = 02 =~, /51 = ~2 
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= ~p,/50 =/sw =/50. = 0, and w, o, Q, are absent. In that case, the conditions for Lyapunov stability are given in 

ref. [14]. 
A characteristic analysis of  the two-species, one-dimensional case of  the system (6) - (10)  shows that this system 

is hyperbolic provided e"(o) > 0. 

Remark. In the multispecies case with N > 2, the notion of interface velocity w may be generalized to allow for 
motion involving any pair of  adjacent materials, by introducing N(N - 1)/2 interface velocities w a~ = w~,X, a :# 13, 
where a and 15 take values 1, 2 . . . . .  N, corresponding o aB = oa a being the mass densities o f  the interfaces, and 
variables &~  = - $ a a ,  such that 0 s _ I/N = Ea ~'~. The motion equations for the new system 

3t~S+div~Sos=O, 3trls+os.vr~s=o, 3tos+(t~s.v)os=(~s)-l(l+~dosa)vps, (21) 

atoCXB+divoaawafJ=O, at¢c~/3 + wCZ# • V $aa = 0 ,  atwa#+(waa. V)waO=(pa-lm)V$aO-e"~(oota)Vo~3, 
form a hamiltonian system with Poisson bracket 

{j, l}3 = {J, l}l _a~<tj f dnx Iff_~ , /sM? + ~c# ,  /51 ~ ~M--ii °¢/5J 

/51 ( /sJ ¢'~ /sJ 5--~)1 +/sMia~ 0.¢'~3i /5o~-----" ~ - 8-~+(3/M?'~+M~/OOi)  /sS , 

and with hamiltonian 

H a = H 1 + a~<a fdnxtlM~al 2/20af3 + eC~fl(o~B)] , 

where M at~ = waao aa (no sum on a, 15) and e ~# is the internal energy density of  the a15-interface. 
For the N = 2 species case, both systems (21) and (6 ) - (10)  reduce to the same set o f  equations when 0 '12 IS 

identified with 0.12, ¢ with I(01 - 02), and M 12 with ow. 

We are very grateful to J.M. Hyman and B.B. Wendroff for helpful discussions of  multiphase flow. This work is 
partly supported by DOE and NSF. 
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