High-Throughput Proteomics Platform Based on Ion Mobility Time-of-Flight Mass Spectrometry

Mikhail E. Belov, Brian H. Clowers, David C. Prior, William F. Danielson, Daniel J. Orton, Eric A. Livesay, Brianne O. Petritis, Richard D. Smith

Environmental Molecular Sciences Laboratory and Biological Sciences Division Pacific Northwest National Laboratory

OUTLINE

- Brief introduction
- Overview of developed technologies
- Application

Thermal diffusion-limited maximum resolution

 $R_d =$

IMS-TOFMS EXPERIMENTAL SETUP

ION FUNNEL TRAP FOR IMS

CHALLENGE:

Efficiently accumulate ions at higher pressures (a few Torr) and rapidly introduce ion packets into an IMS drift tube

1. Ibrahim, Y.M.; Belov, M.E.; Tolmachev, A.V.; Prior, D.C.; Smith R.D. Anal. Chem, 2007, 79, 7845 -7852

2. Clowers, B. H.; Ibrahim, Y. M.; Prior, D. C.; Danielson, W. F., III; Belov, M. E.; Smith, R. D. Anal. Chem., 2008, 80, 612 -623

IMS-ONLY SIGNALS WITH IMPROVED ION TRAP

ANALOG-TO-DIGITAL DETECTION

CHALLENGES:

- Better match increased ion packet charge density due to ion accumulation
- 2. Maintain high mass accuracy and mass resolution at large variations in signal intensities
- Eliminate or drastically minimize dead time between TOF spectra acquisitions within an IMS frame and between the frames

PEPTIDE-LEVEL ADC vs TDC COMPARISON

B.H. Clowers; M.E. Belov ; D.C. Prior ; W. F. Danielson ; R. D. Smith "Mass Accuracy and Dynamic Range in Ion Mobility-Mass Spectrometry Measurements: ADC vs. TDC ", WP 040

MULTIPLEXING WITH IMS-TOFMS

CHALLENGE: drastically increase duty cycle of IMS-TOFMS without affecting IMS and TOFMS resolution

SIGNAL AVERAGING VS. MULTIPLEXED IMS-TOF

- Signal averaging: ion accumulation between IMS separations; limited by ion trap capacity
- Multiplexed: multiple ion packets per single IMS

M.E. Belov, M. Buschbach, D.C. Prior, K. Tang, R.D. Smith. Anal Chem., 2007, 79, 2451-2462

SIGNAL ENCODING AND RECONSTRUCTION

- Mitigate detrimental effects due to thermal diffusion and space charge repulsion upon signal reconstruction
- 2. Accumulate ions between adjacent releases in the ion funnel trap
- 3. Provide constant and short ion ejections into the IMS drift tube to maintain high IMS resolution

ION GATES ENCODING AND ION ACCUMULATION

COMPARISON OF MULTIPLEXED AND SIGNAL AVERAGING APPROACHES

SIGNAL/NOISE IMPROVEMENTS DUE TO MULTIPLEXING

• Equivalent S/N obtained >10 times faster

ACCUMULATION EFFICIENCY AT DIFFERENT CONCENTRATIONS BOVINE SERUM ALBUMIN TRYPTIC DIGEST

DYNAMIC MULTIPLEXING

LC-IMS-TOFMS APPLICATIONS

EXPERIMENTS WITH DEPLETED HUMAN BLOOD PLASMA

Sample: Control human plasma from Sigma-Aldrich
Depletion: GenWay Pre-packed Seppro mixed IgY12 LC5 Flow-Through
Concentration: Amicon 15 mL/5K MWCO
Digestion: 8M urea, 10 mM DTT, 40 mM iodoacetamide, trypsin (1:50 trypsin:protein)
Cleanup: Discovery C18 (1 mL/100 mg)

OFF-LINE RPLC:
RP fractionation: Phenomenex reverse-phase column, Jupiter 5 µm C18 300 Å, 250 x 2 mm 5 µM, 25 fractions
Fraction delivery system: Tri-Versa NanoMate[™] (Advion Biosciences)
Number of runs: 10

ON-LINE RPLC: 4-column system, 15 min separation, 10,000 psi, 15 cm, 50 µm i.d., 3 µm C18 **Number of runs**: 12 total, 3 runs per column

DEPLETED HUMAN BLOOD PLASMA

offline RPLC-multiplexed IMS-TOF, run 4, fraction 14

FRACTION	PRS, bits	MATCHES
9 10 11 12 13 14 15 16 17 18 19 20 21 22	444565666655555	13 95 139 140 64 118 58 39 33 13 12 18 8 4

15

min

DEPLETED HUMAN BLOOD PLASMA offline RPLC-multiplexed IMS-TOF, reconstructed signals

INTENSITY CVs FOR PEPTIDES SPIKED IN DEPLETED HUMAN PLASMA

PEPTIDE IDENTIFICATIONS WITH OFF-LINE RPLC-MULTIPLEXED IMS-TOF

0.5 mg/mL DEPLETED HUMAN PLASMA, 25 RP FRACTIONS

AMT tag approach: R.D.Smith, G.A. Anderson, M.S.Lipton, L.PAsa-Tolic, Y.F.Shen, T.P. Conrads, T.D. Veenstra, H.R.Udseth. *Proteomics*, 2002, *2*, 513-523

ONLINE LC-IMS-TOFMS

Fully automated 4- column dual mixer fast capillary LC-MS system

DEPLETED HUMAN BLOOD PLASMA Online-RPLC-IMS-TOF, frame 24

PEPTIDE IDENTIFICATIONS WITH ON-LINE LC-IMS-TOF 0.5 mg/mL DEPLETED HUMAN PLASMA

CONCLUSIONS

•A novel dynamic multiplexing approach with an IMS-TOFMS instrument has been developed and rigorously evaluated in analysis of reverse-phase fractions of depleted human blood plasma.

•High throughput LC-IMS-TOFMS analysis of a depleted human blood plasma sample is accomplished in 15 min and provides a combined LC/IMS peak capacity of > 2500, mass resolution of ~ 8000 and mass accuracy of 5 ppm.

•Per single experiment, the average number of identified unique human plasma peptides was ~ 700 at a false discovery rate (FDR) of 7.5 %. When accounting for ion mobility information, a projected FDR of ~ 4% was estimated.

ACKNOWLEDGEMENTS

Yehia Ibrahim Andrei Liyu **Erin Baker Vladislav Petuyk** Anoop Mayampurath **Navdeep Jaitly** Keqi Tang **Ryan Kelly Jason Page Ioan Marginean**

FUNDING SOURCES

NCI grant R21 CA126191 NIH NCRR RR18522