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• Remind you how much you already know -- lenses, crystals
• Show why crystals give diffraction spots.
• Develop the idea of “The Reciprocal Lattice”
• Give some idea how we might actually measure diffraction 

data
• Show how, given a crystal, we can calculate the diffraction 

pattern
• Conversely, show how to calculate the structure from the 

diffraction
• Describe the importance of symmetry to diffraction
• Outline the structure-solving methods -- heavy atoms and 

MADness
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Creation of a molecule’s image from a crystal has 
similarities to creating an image with a lens
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You already understand a little about how lenses work

Two rays leaving from the same 
point end up at the same place
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Maybe you didn’t know …

…end up together in this plane
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All rays leaving in 
the same direction…



We use a crystal to give us diffraction, and 
computation to do the rest of the work of the lens.
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We’ll see that the diffraction pattern 
gives information about the 

dimensions and periodicity of this 
one view of the object.



Why do we use x-rays?
 

• The features we’re trying to see are on the 
order of the distance between atoms: 10-10 
meters.  
• To “see” the atoms, we need to use light 
with a wavelength that is near to this distance. 
 
• X-Rays (x-ray light) have a suitable 
wavelength.



What is a crystal? 
• A crystal is a periodic arrangement of objects 
(molecules) repeating in two or three dimensions.  

• The repeating unit is a parallelepiped (in 3-D) or a 
parallelogram (in 2-D).

• A crystal of a typical protein will be half a mm on 
a side and contain 1015 molecules.



Here’s one choice of repeating unit 
in this crystal made of apple trees

Parallelograms 
defining crystal 
repeat.



We could make a different 
choice of repeating unit

Other 
parallelograms 
defining crystal 
repeat.



Why do we use crystals when we’d 
like to see one molecule? 

• We can’t focus enough x-rays into a small enough 
volume to “see” a molecule.  We use lots of 
molecules in a crystal to get a bigger target.
• Even if we could focus them, the x-rays would 
burn up the molecule.
• Even if that would work, we don’t have a lens 
for the x-rays.
• The crystal amplifies the signal, and gives us a 
way to get the phase information back.



Let’s return to our crystal made of 
apple trees, and define “planes” in 

that crystal.



We can slice the crystal at lattice points: 
all planes pass through the same apple 



And at other angles.  Notice: 
• planes all pass by the same apple; 
• the “stuff” between pairs of planes is always the same.



And one more time...
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In phase
In phase

Diffraction
Let’s do a thought experiment.  Send a beam of x-rays at a 
pair of single atoms, suspended in space.  If the angle is just 
right for the wavelength and distance between the atoms, 
the scattered x-rays will be in phase, and they will interfere 
constructively.  



In phase
Not in phase

On the other hand, if things are not right, 
they won’t be in phase, and there will be no 
constructive interference, no diffraction.



Now, let’s think of the stuff between the lattice planes 
as being like those two atoms, and try to write a law 

that will show conditions to get diffraction.



Now get rid of 
the orchard...



Wavelength

The wave travels exactly one wavelength to 
take the little detour

Braggs’ Law describes diffraction as reflection from planes

Waves come in 
“in phase.”

And waves 
exit in phase



See: www.journeysunysbedu/ProjectJava/Bragg/home.html

Watch what happens as we go from maximum 
to minimum diffracting position and back.



















Now let’s use a similar diagram to learn 
something new about diffraction from a crystal

Notice that some of the path length 
differences are an integral number of 
wavelengths:If we make this substitution, to define 

a reflecting plane:

We discover that the reflecting plane must pass 
through lattice points; it is a general lattice plane! 
Sometimes we call them Bragg planes.

sin  + sin ' = 2 sin[ ( + ')/2 ] cos[ ( - ')/2 ]

cos  - cos ' = 2 sin[ ( + ')/2 ] sin[ ( - ')/2 ]



(2, 1, 2)

We have a way to “index” planes in a paralellepiped to 
give a unique description of them.

The indices  are 
the number of 
times each 
plane cuts the 
axis of the 
“unit cell” of 
the crystal -- 
the smallest 
repeating unit 
that makes up 
the crystal.
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To relate the planes in the crystal lattice to the points in 
the diffraction pattern, we make Ewald’s construction.

We have that sin θ = (OA/2)/(1/λ) = λ×OA/2, or λ = 2 sin θ/OA. Compare 
this to Bragg’s Law: λ = 2d sin θ.  We take 1/OA as being equivalent to d. 
Notice the reflection plane, and that OA is perpendicular to it.  The Ewald 
construction exists in a space with dimensions of reciprocal distance!  

This defines
Reciprocal
Space!  The vector 
of length 1/d is 
perpendicular to 
the reflecting plane 
that lies θ from the 
“rays.”

The Ewald Sphere



First, let’s understand what’s happening in the real 
experiment, then we’ll try to understand the 
reciprocal business.

A

Reflecting
Plane

Bragg’s Law is obeyed: 
diffraction occurs  when 
a vector of length 1/dhkl, 
that is perpendicular to 
the lattice planes (hkl), 
touches the Ewald 
sphere of radius 1/.

x-rays

A

F



A little trigonometry:

A

A / F = tan(2θ)
λ = 2d sin(θ)

We can get the 
d-spacing for 
the reflection.

x-rays

A

F

We’ll call 
this vector 

s



And Bragg’s Law is obeyed – diffraction will occur – when 
that vector of length 1/dhkl, that is perpendicular to the lattice 
plane (hkl), touches the Ewald sphere of radius 1/.

Because we 
have this tool, 
the Ewald 
sphere and 
reciprocal space, 
we never need 
to think about 
lattice planes 
and Bragg’s law 
again.



How can we define this vector that is perpendicular to 
the Bragg plane, and has a length that is the reciprocal 
of the distance between the planes?

We’ll define the edges of a unit cell with three vectors.  
Start with a and b.  We know that the cross product of two 
vectors lies perpendicular to the plane of the two vectors.

This is the direction we want.  The amplitude of a×b is the 
area of the parallelogram defined by the vectors:

α
a

b

a×b = ab sinα

Area = |a×b|



We’ve described the base of the unit cell of the crystal by 
two vectors a and b, and the area of the base is the amplitude 
of the cross product of a and b. 

Now we’ll include the third vector c.  We want to know the 
spacing d(001), between the ab planes [the (001) lattice planes]. It 
must be the projection of c on the vector a×b.  We know that 
we get the product of the projection of one vector on another 
with the vector dot product: (a×b)∙c.  

α
a

b

a×b

c
(a×b)∙c = d(001) (001) plane

Area = |a×b|



So a×b∙c, known as a vector triple product, is the area of ab 
times d(001), the spacing between the planes.  That, of course is 
the Volume of the unit cell.  If we divide this quantity into the 
area, we get the reciprocal of the spacing, which is what we 
want!!

α
a

b

a×b

c
d(001)

1/d (001) = Area/Volume = |s001| = |a×b / a×b∙c| = c*

Area = |a×b|



So the reciprocal lattice vector that represents the (001) 
planes is 

s001 =  a×b / a×b∙c  and   s001  = 1/d(001) 
We define each axial reciprocal lattice vector as a 
reciprocal unit cell axis: 

s100  = a*    s010  = b*   s001  = c* 

a

b

a×b

c
d(110)



shkl = ha* + kb* + lc* 



Let’s be sure this is perfectly clear:
We define each principal reciprocal lattice vector 

as a reciprocal unit cell axis: 
 a* = s100 =  b×c / a×b∙c  and   |s100 | = 1/d(100) 
b* = s010 =  c×a / a×b∙c  and   |s010 | = 1/d(010) 
c* = s001 =  a×b / a×b∙c  and   |s001| = 1/d(001) 



The implication of this is 
that we need not think 
about Bragg planes again, 
we think only of 
reciprocal-lattice vectors:

shkl = ha* + kb* + lc* 

x-rays

A

F

shkl



Plate 2 from Taylor and Lipson -- Optical Transforms

Now we use the Taylor and Lipson figures to see how the 
contents of the crystal relate to the diffraction pattern. 

crystal diffractionCoordinates of points 
are “indices.”

Notice (1) 
The sym-
metry, and 
(2) how the 
continuous 
diffraction 
pattern of 
one molec-
ule (b) is 
“sampled” 
by the lat-
tice of dif-
fraction 
points.  



Confirm that the 
vectors 
perpendicular to 
the Crystal-
Lattice planes are 
parallel to the 
Reciprocal 
Lattice vectors, 
and that the 
reciprocal 
distances make 
sense.

Crystal – 
Real Lattice

Diffraction – 
Reciprocal 
Lattice  

Do we understand the real/reciprocal lattice idea?
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Remember the geometry -- if the Bragg 
planes lie angle  from the incident x-ray 
beam, the total diffraction angle will be 2.  
We can make an instrument to exploit that 
geometry.



And Remember the objective – We must 
view the molecule from every direction to 
recreate a three-dimensional image:

• We must obtain diffraction from all of the 
Bragg planes;

• We must sample all of the reciprocal lattice.



My first data were collected with a Weissenberg 
Camera

A complicated 
machine to simplify 
our view of 
reciprocal space.



The Weissenberg photograph gives a wonderfully 
distorted, but organized, view of reciprocal space.

(h0l) data



Martin Buerger devised a camera geometry 
that preserved the shape of reciprocal space.

An even more 
complicated 
machine to 
simplify our 
view of 
reciprocal 
space even 
more.



An antique precession photo of Chymotripsin, courtesy of David M Blow

The precession 
photograph 
allows us to 
view the 
diffraction 
pattern of the 
crystal lattice as 
an undistorted 
pattern of spots.



Notice the 
counterweights, the 
beam stop, and the 
screen to select only 
one reciprocal lattice 
layer.

Cameras very similar 
to this were used 40 
yrs ago to solve the 
first protein crystal 
structures.

Bram Schierbeek, Bruker-AXS



Data for the first protein structures were measured 
on precession cameras with x-ray film. (t-40)

Bram Schierbeek, Bruker-AXS



The automated Eulerian cradle decreased the labor, but 
still one measured reflections one at a time. (30yrs ago)



An antique rotation photograph of B-Phyoerythrin -- real x-ray film.

Simple rotation 
geometry 
produces a 
complicated pattern 
that requires good 
software to 
interpret.  Modern 
CCD-based 
detectors with four-
circle 
diffractometers 
record such 
patterns and 
measure every spot 
intensity.



Bram Schierbeek, Bruker-AXS

Uli Arndt and Alan Wonacott invented the automated 
rotation camera.  Still x-ray film, but very much more 
efficient. 
(~23yrs ago)



Another Uli Arndt invention was a video-based detector
The screen was small, but it was very sensitive and could read out 
continuously – the x-tal just kept rotating as images came out. 
(20yrs ago)

Bram Schierbeek
Bruker-AXS



An important advance was photoluminescent imaging plates.  
MAR research, followed by Rigaku, made a successful camera 
that worked like electronic x-ray film, but much better. (19 yrs)



12keV X-ray 

PHOSPHOR  

10 e- 35 lph 650 lph 

SCREEN  FIBEROPTIC TAPER 

CCD 

25 mm 

The advance that made possible our modern detectors 
was made by Ed Westbrook, Sol Gruner, and others: 

bonding of a charge-coupled device to a fiber-optic taper 
with an x-ray sensitive phosphor in front. (13yrs ago)



Several of these can be bonded together to make a large 
detector…  (9yrs ago)



Like this one, made 
for us by Walter 
Phillips



And the modern commercial versions are large, 
fast, and very accurate.  (4yrs ago)

Detectors like these are the basis for 
modern, high-throughput 

crystallography!



Z. Da ut e r

The planes of 
spots in reciprocal 
space appear as 
circles of spots on 
an area-sensitive x-
ray detector (film, 
IP, CCD-based, 
etc.)



Z. Da ut e r

As the 
crystal is 
rotated, the 
circles are 
extended into 
“lunes”



Rotation sweeps out a strangely-
shaped volume.  However...

• Many r.l. points will be 
recorded during a single short 
rotation. 
• Contiguous rotations will cover 
much of the reciprocal lattice.
• The “camera” is simple: an 
axis, a film, and a shutter.
• It’s easy to substitute a range of 
detectors.



Let’s look at a series of images from a CCD-
based detector, each representing one degree 
of crystal rotation
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Plate 2 from Taylor and Lipson -- Optical Transforms

Now we use the Taylor and Lipson figures to see how the 
contents of the crystal relate to the diffraction pattern. 

crystal diffractionCoordinates of points 
are “indices.”

Notice (1) 
The sym-
metry, and 
(2) how the 
continuous 
diffraction 
pattern of 
one molec-
ule (b) is 
“sampled” 
by the lat-
tice of dif-
fraction 
points.  



Plate 26 from Taylor and Lipson -- Optical Transforms

Here’s another (2D) example with an asymmetric motif

Each spot 
represents the 
intensity of 
reflection 
from one set 
of planes 
cutting 
through the 
crystal

Note the 
inversion 
symmetry



Remember that we can use an x/y graph to 
represent the phase and amplitude of a wave:

 And then we describe the “wave” as a complex number:
f = Ao{cos + i sin}  and

f = Ao ei

Ao

0  2





Ao

Ar

Ai

Phase 
angle 

i

r



Scattering from
lattice planes

Atomic structure factors  
add as complex numbers, 
or vectors.

• The amplitude of scattering depends on the 
number of electrons on each atom.
• The phase depends on the fractional distance it 
lies from the lattice plane. 

Randy Read



We can write an expression to describe this 
diffraction from atoms in a crystal

And the structure factor for a crystal of atoms will be:

The scattering amplitude (the structure factor) 
for an individual atom is going to be: The hkl describe 

the Bragg Planes

The 2 and the fractional 
coordinates xi take care of 
the phase angle

The strength of scattering from each atom

The scattering power of the 
atom, ~ the number of electrons



Does this expression for the 
Structure Factor make sense?
Try it with an example: a crystal with 
three atoms.  What are the phases of 
scattering from each atom?   Use this

For these planes, (h, k) = (3, 2)

For atom 1.  x, y = 2/3, 0:  So 2π(hx + ky) = 2π(3 x 2/3 + 2 x 0) = 4π = 0
       The atom is on the plane, so this makes sense.

For atom 2.  x, y = 0, 1/2:  So 2π(hx + ky) = 2π(3 x 0 + 2 x 1/2) = 2π = 0
       Again, the atom is on the plane, so this makes sense.

For atom 3.  x, y = 1/3, 1/4:  So 2π(hx + ky) = 2π(3 x 1/3 + 2 x 1/4) = 3π = π
       The atom lies half-way between two planes, so this makes sense.



We can see how the structure factors 
from individual atoms add up.

Wave                                Complex Vector           Complex number

f1 = 1 + 0i 

f2 = 0 + 0.5i

f3 = -0.2 + 0.2i 

fsum = 0.8 + 0.7i



See also:

http://www.ysbl.york.ac.uk/~cowtan/
sfapplet/sfintro.html Structure Factor Tutorial
fourier/fourier.html Book of Fourier

http://www.ysbl.york.ac.uk/~cowtan/
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Q: How do we perform the second 
interference step in the functioning of the lens 
-- to reconstruct the image of the original 
object?
A: We will have to calculate it.

Q: How will we represent that object? 
A: The x-rays are scattered from electrons in 
the atoms of the crystal.

Therefore: for us, the “image” is going to be 
a representation of the electron density.



The structure factor and the electron density 
function are Fourier inverses of one another

• Note that the electron density is real but the structure factor 
is complex.
• The phase information must be included in the Fourier 
synthesis that produces the electron density!  
• This has to be recovered, because the diffraction 
experiment measures the intensity of diffraction, which is 
the square of the structure factor:

I = F2



How does Fourier synthesis work?

 Can we produce a trial structure and see how 
waves can be summed to give this structure 

back?



In the Fourier Synthesis, just a few waves suffice to give a 
reasonable approximation to the original pattern



What is the concept of 
“resolution?”

Here is the Fourier 
synthesis function:

When the limits of the 
summation are not so 
great, information is 
lost in the synthesized 
structure.

We say that the 
“resolution” equals the 
d-spacing of the 
smallest Bragg planes.



Resolution: The d-spacing of the highest 
order Bragg planes included in the Fourier 
synthesis.       Small d-spacing is good.

1.0 Ång (10,000 refl’s) 1.8 Ång (1700 refl’s)

3.0 Ång (370 refl’s) 4.0 Ång (160 refl’s) Graphics by 
Phil Evans



Another 
example.
The famous Taylor 
and Lipson rubber 
ducky.
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Symmetry of crystals
We’ll take some of our examples 
from David Blow’s book.

Symmetry: An operation of 
rotation, translation, inversion,  
mirroring, or some combination 
of these that takes an object back 
into itself.

• The simplest symmetry in a crystal 
is repetition.

• The repeated motif may have its 
own symmetry.



Symmetry Groups
Biological 
molecules are all 
chiral, or “handed,” 
so only rotation 
and translation 
symmetry are 
permissible.

Here are the 
combinations 
(groups) of 
symmetries one 
finds in 
macromolecular 
crystals.



What is a Group?
Elements in a group must obey certain properties:
• There must be the identity element.
• The combination of any two elements must generate 

an element of the group.  This is called closure.
• Number of elements = number of objects repeated = 

order of the group.
• Every element in the group must have an inverse.

3 × 32 = I
32 = 3-1

3 × 2 = 2’
Point Group is 32



The simplest crystal 
would contain a single 
asymmetric object 
repeated by translational 
repetition only, like our 
apple orchard.

Simple crystal symmetry



More complicated crystal symmetry
A crystal could contain a symmetric object, also 
repeated by translational repetition.

Notice: 
exactly two 
ducks in the 
unit cell

Three new 
symmetry 
operators are 
generated



Now let’s try it in three dimensions

Space Group P2: P = “primitive,”  2 = two-fold rotation axis.

We call this type of crystal monoclinic.  Order = 2.



The Screw Axis
This symmetry 
operation is a rotation 
followed by a 
translation: mn.  

The translation is a n/m 
translation along one of 
the major crystallo-
graphic directions, 
where m is the order of 
the major rotation axis.

Here, it’s written 21 to 
represent the two-fold 
screw axis, and the 
translation is ½.



Centered Lattice
To make a new 
monoclinic lattice, shift 
the motif at the origin 
along a diagonal to a new 
spot by a major fraction of 
the unit cell edges.

The lattice is “centered” 
because a new motif 
appears in the center of a 
face or of the body of the 
unit cell.

Subtle and beautiful rules 
govern what centering 
operations are allowed.



And higher symmetry
If one has two-fold axes in more than one direction, it must be 
three directions, and the axes must be perpendicular.  We call 
this orthorhombic.



And finally …
A three-fold axis will produce a trigonal crystal.  
Notice how the first three-fold axis creates two others 
with different environments.



Crystal 
System

Bravais 
Types

External Minimum 
Symmetry

Unit Cell 
Properties 

Triclinic P None a, b, c, al, be, ga,

Monoclinic P, C One 2-fold axis, parallel b (b 
unique) a, b, c, 90, be, 90

Orthorhombic P, I, F Three perpendicular 2-folds a, b, c, 90, 90, 90
Tetragonal P, I One 4-fold axis, parallel c a, a, c, 90, 90, 90
Trigonal P, R One 3-fold axis a, a, c, 90, 90, 120
Hexagonal P One 6-fold axis a, a, c, 90, 90, 120

Cubic P, F, I Four 3-folds along space 
diagonal a, a, ,a, 90, 90, 90

The Seven Crystal Systems
The combination of symmetry elements yields only these forms



The Bravais 
Lattices

Here are the 14 ways 
crystal lattices can be 
formed in the seven 
crystal systems.
The international convention in 
displaying these is to give a 
down, b across, and c up or 
towards the viewer.



How many space groups?
• There are 230 space groups possible

• Only 65 of these employ only rotational symmetry 
(suitable for chiral molecules)

• Here are the most abundant observed in macromolecular 
structures, 65% of the total:

� � � � � � � � 	 
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� �  � 	 �
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� � � � � � �

� � � � �
� � � � � � � � �



And finally the icosahedral symmetry of 
spherical viruses



How does symmetry affect a 
diffraction pattern?

Symmetry affects a diffraction pattern in at least 
three ways:

Friedel’s Law – There’s an inversion centre in 
reciprocal space.

Laue Point Group – Diffraction has symmetry like 
that of the crystal.

Systematic absences – some of the symmetry 
operations erase some reflections.



Friedel’s Law: Bragg reflection from the 
front of the planes is the same as from the 
back.

(h, k, l)

(-h, -k, -l)





r

i F+

F-



Laue Point Group: The diffraction will adopt 
some of the symmetry of the crystal.

a

c (h, k, l)

(-h, k, -l)

Let’s say the 
(1, 5, 2) and 
the (-1, 5 –2)



The Laue Point Group for a crystal is 
the rotational or mirror symmetry of the 
space group, plus Friedel’s Law.  For 
example:

P2 or P21 → 2/m

Produces a two-fold, a mirror 
perpendicular to it, and an inversion 
centre in the diffraction pattern / 
reciprocal space.  





Implication of this for the experiment:
One will need only to record 1/12 of reciprocal space 

to get complete data.  Sometimes one can record 
anomalously-related reflections on the same 
image.

Bijvoet
pair







Also notice that for 
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How we solve structures?  We must 
somehow estimate phases so we can 
perform the inverse Fourier transform.

• Isomorphous Replacement with heavy atoms
• MAD/SAD, a variant of IR
• Molecular replacement if we have a decent model.



Perutz’s Fundamental Idea: 
Isomorphous Replacement

FP  = Σ Fatoms FPH = FP + FH FH

We find that, for some things, we can 
approximate  |FH| with |FPH - FP|.  This often 
suffices for us to solve for the positions of the 
heavy atom as if it were a small-molecule 
structure.



So for some particular reflection and a particular 
heavy atom, we can begin to find the phase:

Knowing the position of the heavy atom allows us to 
calculate FH.  Then we use FP = FPH + (-)FH to show that the 
phase triangles close with a two-fold ambiguity, at G and 
at H.  There are several ways to resolve the ambiguity. 



One way to resolve the ambiguity is to use a 
second isomorphous heavy-atom derivative.



A second technique involves use of anomalous 
(resonant) scattering from a heavy atom.

In this case the resonance 
between the electrons on the 
heavy atom and the x-rays 
cause a phase and amplitude 
shift.  The symmetry of 
diffraction (from the front vs 
back of the Bragg planes) is 
broken.  Friedel’s Law is 
broken!  This can be measured 
and used.



One way to represent 
this resonance is plots of 
the shifts in the real part 
(f’) and imaginary part 
(f”) of the scattering of 
x-rays as a function of the 
photon energy.
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Excitation Scans
We can observe the f” by measuring 
the absorption of the x-rays by the 
atom.  We measure an “excitation” 
spectrum.  Often we us the 
fluorescence of the absorbing atom as 
a measure of absorptivity. 



One way to represent 
this resonance is plots of 
the shifts in the real part 
(f’) and imaginary part 
(f”) of the scattering of 
x-rays as a function of the 
photon energy.
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How to get f’?
The “real,” dispersive component is 
calculated from f” by the Kramers-
Kronig relationship.  Very roughly, it’s 
the negative first derivative of f”.



One way to represent 
this resonance is plots of 
the shifts in the real part 
(f’) and imaginary part 
(f”) of the scattering of 
x-rays as a function of the 
photon energy.
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The tunability of the synchrotron source 
allows us to choose precisely the energy 

(wavelength) we need.



Spectrum from Phizackerly, Hendrickson, et al. Study of Lamprey Haemoglobin.

One can see how to choose wavelengths to get 
large phase contrast for MAD phasing
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This Multiwavelength Anomalous Diffraction 
method often gives very strong phase 
information and is the source of many new 
structures.



How do we find the heavy-
atom positions that allow us 
to do MIR or MAD phasing?

There are generally two methods:
• Patterson-function methods
• Direct-phasing methods



Lindo Patterson saw that to interpret a diffraction 
pattern, he could correlate the electron density with 

itself:

This is the cosine transform of intensity!





This method is the basis of 
software such as HEAVY 
(Terwilliger)

About the same time (all of this happened only a “short” 
time ago, in the ’50s) David Harker saw a neat way to 

approach “solving” the Patterson function:



Direct Phasing Methods
During the 1950s and ‘60s Sayre, Hauptmann, and the Karles 

learned to determine crystal structures from the diffraction 
intensities directly.  They made use of two principles:  

• The first was that the sum of phases of three Bragg planes that 
form a closed triangle is invariant to the choice of the origin of the 
crystallographic unit cell.  

• Secondly, when the crystal is comprised of discreet atoms and all 
three structure factors from these Bragg planes are large, this sum 
of three phases is near to zero.  



• Notice that the indices of the three sets of planes in the figure 
sum to zero.  This particular set of reflections is called a 
"triplet," for obvious reasons.  

h + k + l = 0 

• Here we have that the sum of phases h + k + l  = const. 
• It's not so hard to show that this is true: multiply three Fs and the 

three phases end up in a sum.  



Finally, it's not so hard to see that if the three Fs are large, the sum 
of phases should be near zero, as follows.  If the only three atoms 
in the unit cell were at the corners of the colored triangle in Figure 
5, firstly, all three structure factors would be large since all atoms 
lie only on the planes, and secondly, since the atoms are on the 
planes, the phases would be zero.  One can see that it makes sense 
that this sum of phases might be constant.  If one moves an atom 
from one vertex of the colored triangle in the figure to the next 
along the green line (the -2,1 plane), one can see that the other two 
phases, for the red and blue sets of planes, would shift smoothly by 
+2  and -2 respectively, keeping the total constant.

h + k + l  0 



General Scheme for Applying Direct 
Methods

• Assign a few phases arbitrarily (this sets the origin).

• Find lots of triplets, where h+k+l = 0.

• Use the sum-of-phases  0 expression to propagate 
phases

The modern schemes are much more sophisticated 
(Weeks) and deal with the probabilities that the sum is 
not precisely zero.



The End
You’ve seen the fundamentals of 

crystallography.  You could figure 
everything else out from here.

It’ll take a few exposures to it for you really 
to wrap your mind around all of this.  

For example, 
• I didn’t really understand the Fourier 

transform until I did EM on 2D x-tals
• I didn’t figure out how to explain direct 

methods until the 21st Century.



But I can tell you this, if you really 
want to learn it…

Teach It!


