Testing Parallel Linear Iterative Solvers for Finite Element Groundwater Flow Problems

Fred T. Tracy and Thomas C. Oppe U.S. Army Engineer Research and Development Center Major Shared Resource Center (ERDC MSRC) Vicksburg, MS {Fred.T.Tracy, Thomas.C.Oppe}@erdc.usace.army.mil

> Sharad Gavali NASA Ames Research Center, Moffett Field, CA gavali@nas.nasa.gov

> > Distribution Statement A

Abstract

The modeling of groundwater flow using threedimensional finite element discretizations creates a need to solve large systems of sparse linear equations (Ax = b) at each of several nonlinear iterations. These linear systems can be difficult to solve because of the ill-conditioning of the matrix A resulting from the widely varying magnitudes of its coefficients. Because the meshes may contain millions of nodes, iterative solvers are typically used to perform the Ax = b solution. Since 80 percent or more of the computational time is spent in the iterative solver part of the computer program, choosing the most efficient solver for each application can dramatically reduce the total solution time. This paper tests 12 Krylov subspace parallel linear iterative solvers with 5 preconditioners (60 scenarios) on linear systems of equations resulting from a finite element study of remediation of a military site using pump-and-treat technology. Both symmetric, positivedefinite matrices, resulting from a Picard linearization of the nonlinear equations for the steady-state case, and nonsymmetric matrices, arising from a Newton linearization of the nonlinear equations of a transient case, are studied. The Portable, Extensible Toolkit for Scientific Computation (PETSc) library was used in this study on the Engineer Research and Development Center Major Shared Resource Center SGI O3K and Cray XT3 computers. Matrix data corresponding to each subdomain in a parallel groundwater finite element program were first written to a file in a compressed sparse column format. A separate program was then written in FORTRAN to read these data, renumber the nodes, call the PETSc routines to load A and b and then solve for x, and finally compute error norms. Solver time, iteration count, 2-norm and ∞ norm of the residual after convergence, weak speedup, and strong speedup are tabulated in this paper for the different scenarios and then analyzed.

1. Introduction

The modeling of groundwater flow using the finite element method with three-dimensional (3-D) meshes creates a need to solve large systems of linear equations,

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

at each of several nonlinear iterations. Here, A is the coefficient matrix, **b** is the known right-hand-side vector, and \mathbf{x} is the unknown vector to be computed. Widely varying material properties of the media (e.g., hydraulic conductivity of sand and clay) and the presence of unsaturated flow can give rise to ill-conditioned matrices having coefficients that vary in size by several orders of magnitude. Because the meshes may contain millions of nodes, iterative solvers are often used to solve Equation 1. Since 80 percent or more of the computer time is spent in the iterative solver part of the computer program, choosing the most efficient solver for each application can dramatically reduce the total solution time. The purpose of this work is to test several iterative parallel linear solvers to help determine the best one for groundwater flow applications. Because of the nature of the matrices, the findings may be applicable to other application areas as well.

2. Test Problem

The test problem consists of a finite element model of a pump-and-treat system for cleaning up a military site. Figure 2 shows a top view of the entire mesh. Figure 3 shows a magnified portion of the mesh showing wells and trenches. Figure 4 shows a further magnification of the mesh surrounding two wells. Finally, Figure 5 shows a lateral view of the mesh showing the refinement chosen for the various soil layers. The original mesh was discretized using 102,996 nodes and 187,902 elements, while a 2-fold refinement utilized 197,409 nodes and 375,804 elements, and an 8-fold refinement utilized 763,887 nodes and 1,503,216 elements. Two linear systems from this test problem were tested: (1) the steady-state run at the tenth nonlinear iteration using a Picard linearization, producing a symmetric, positive-definite (SPD) linear system and (2) a transient run at the tenth nonlinear iteration of the first time-step using a Newton linearization, producing a nonsymmetric linear system.

3. Testing Iterative Solvers Using PETSc

This paper tests 12 Krylov subspace parallel linear iterative solvers^[1,2,4,6] with 5 preconditioners (60 scenarios) on the two linear systems described above. The <u>Portable</u>, <u>Extensible Toolkit for Scientific Computation (PETSc)</u> library^[5] was used in this study on the Engineer Research and Development Center Major Shared Resource Center SGI O3K and Cray XT3 computers. The solvers are

- 1. Conjugate Gradient (CG)
- 2. Generalized Minimum Residual (GMRES)
- 3. Biconjugate Gradient (BiCG)
- 4. Biconjugate Gradient Stabilized (BiCGSTAB)
- 5. Conjugate Gradient Squared (CGS)
- 6. Transpose-Free Quasi-Minimal Residual, version 1 (TFQMR1)
- Transpose-Free Quasi-Minimal Residual, version 2 (TFQMR2)
- 8. Conjugate Residual (CR)
- 9. Flexible GMRES (FGMRES)
- 10. Minimum Residual (MINRES)
- 11. Symmetric LQ (SYMMLQ)
- 12. Biconjugate Gradient Stabilized, degree k (BiCGSTAB(k))

The preconditioners are

- 1. None
- 2. Jacobi
- 3. Block Jacobi (Bjacobi)
- 4. Additive Swartz method (ASM)
- 5. successive overrelaxation (SOR)

Figure 1 shows a generic parallel version of the Conjugate Gradient solver algorithm for a finite element program with each processing element (PE) assigned to a portion of the mesh. The preconditioning matrix \mathbf{K} is chosen so that it approximates \mathbf{A} in some sense and because the auxiliary linear system

$$\mathbf{K}\mathbf{z} = \mathbf{r} \tag{2}$$

is much easier to solve than the original linear system and can be solved efficiently on parallel architectures. Ghost nodes for the vector \mathbf{p} are updated prior to calculating the vector $\mathbf{q} = \mathbf{A}\mathbf{p}$, and parallel reduction operations are required to calculate the inner products $\mathbf{b}^{T}\mathbf{b}$, $\mathbf{z}^{T}\mathbf{r}$, $\mathbf{p}^{T}\mathbf{q}$, and $\mathbf{z}^{T}\mathbf{r}$. \mathbf{x}_{0} is an initial guess to the solution \mathbf{x} .

```
= 0; p = 0
r = b - A * x_0; nmax = 20000
   = 10^{-15}; eps = * sqrt (b<sup>T</sup>b)
! || reduction needed for \mathbf{b}^{\mathrm{T}}\mathbf{b}
n = 0
do
   n = n + 1
! Apply preconditioner
   Solve K * z = r for z
         = \mathbf{z}^{\mathrm{T}}\mathbf{r}
  || reduction needed for \mathbf{z}^{\mathsf{T}}\mathbf{r}
1
   if (n > 1)
                         =
                                /
                                      sav
                     * p
   \mathbf{p} = \mathbf{z} +
! Ghost node update needed for p
! || reduction needed for \mathbf{p}^{\mathrm{T}}\mathbf{q}
   \mathbf{q} = \mathbf{A} * \mathbf{p}; = / \mathbf{p}^{\mathrm{T}} \mathbf{q}
   \mathbf{x} = \mathbf{x} +
                     * p; r = r
                                                  q
     sav
! || reduction needed for \mathbf{r}^{\mathrm{T}}\mathbf{r}
   if (n > nmax .or.
          sqrt(\mathbf{r}^{T}\mathbf{r}) < eps) exit
end do
```


3.1. Saved Data

For each subdomain, the following data were written to a file from a parallel groundwater finite element program:

- 1. Number of global nodes, number of "owned" nodes (i.e., subdomain nodes), number of "local" nodes, which is the union of owned nodes and "ghost" nodes (i.e., nodes in other subdomains that are connected to an owned node), number of compressed columns, and number of PEs.
- 2. A one-dimensional (1-D) array containing the global node numbers for the local nodes.
- 3. A two-dimensional (2-D) array in compressed column format containing the local node numbers corresponding to the coefficients of **A** for the owned rows of **A**. Zeroes are used to pad the array to simplify the reading and writing of these data.

Figure 2: Top view of mesh

Figure 3: Magnified view of a portion of the mesh

Figure 4: Further magnification showing fine resolution of the mesh for modeling wells

Figure 5: Side view showing strata layers

Figure 6: Small finite element mesh

- 4. A 2-D array in compressed column format containing the coefficients of **A** for the owned rows of **A**. Zeroes are used to pad the array.
- 5. A 1-D array containing the owned portion of **b**.
- 6. A 1-D array containing the owned portion of the solution vector **x** obtained independently.

A separate program was then written in FORTRAN to read these data, renumber the nodes, call the PETSc routines to load **A** and **b** and then solve for **x**, and finally compute error norms. Solver time, iteration count, 2-norm and ∞ -norm of the residual after convergence, weak speedup, and strong speedup were tabulated for the different scenarios and then analyzed.

3.2. Renumbering the Nodes

ParMETIS^[3] was used to compute the original partitioning of the mesh. Unfortunately, the resulting global numbering of the nodes was very inefficient when input directly into PETSc, which used a block partitioning of the matrix **A** by rows. To illustrate the difficulty, Figure 6 shows a sample finite element mesh containing 22 nodes and partitioned into three PEs. The node assignment is

ΡE	0	4	22	21	17	1	20	8	18	19
ΡE	1	9	2	11	5	15	14	6		
ΡE	2	16	3	13	7	12	10			

If the same number of nodes per PE is maintained, the PETSc partitioning is

 PE
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 PE
 1
 10
 11
 12
 13
 14
 15
 16

 PE
 2
 17
 18
 19
 20
 21
 22

With the ParMETIS partitioning, node 1 has no ghost nodes; node 2 has ghost nodes 19 and 20; node 3 has ghost nodes 18; etc. However, with the PETSc partitioning, node 1 has ghost nodes 17, 18, 19, 20, 21, and 22; node 2 has ghost nodes 9, 11, 14, 15, 19, and 20; node 3 has ghost nodes 12, 13, 16, and 18; etc. To eliminate the communication cost of the additional ghost nodes, the global nodes were renumbered consecutively within each ParMETIS partition. npetsc is a mapping vector from the original global node numbering to the new numbering.

3.3. PETSc FORTRAN Code

To see an example of how the input data are used with PETSc, consider the code to load the array a with values from the matrix A (Figure 7). Definitions of the major variables are as follows:

nown number of owned nodes

ncol number of compressed columns

- ai original A matrix
- a PETSc version of the A matrix
- jloc local node number from the local row i and local compressed column j
- ii new global row number in zero-based numbering system
- jj new global column number in zero-based numbering system

```
do i = 1, nown
 ii = npetsc(i) - 1
 do j = 1, ncol
  jloc = id(i, j)
  if (jloc .ne. 0) then
   jj = npetsc(jloc) - 1
   v = ai(i, j)
   call MatSetValues (a, 1, ii, 1, &
        jj, INSERT VALUES, ierr)
  end if
 end do
end do
call MatAssemblyBegin (a, &
     MAT FINAL ASSEMBLY, ierr)
call MatAssemblyEnd (a, &
     MAT FINAL ASSEMBLY, ierr)
```

Figure 7: Loading A into PETSc

The **b** vector is loaded in a similar fashion. After options are set, a call to KSPSolve completes the solution. Table 1 shows times for the O3K and XT3 for loading the data into PETSc after allocating sufficient memory for the arrays.

PEs	Nodes	Elements	Time (sec)
8	102996	187902	0.29
16	102996	187902	0.15
32	197409	375804	0.29
8	102996	187902	0.08
16	102996	187902	0.04
32	197409	375804	0.06
64	763887	1503216	0.17

Table 1: Load times of the PETSc data for the O3K (white) and XT3 (shaded) for the SPD matrix

4. Test Results

Table 2 shows results for the 60 scenarios for the SPD matrix for the original mesh of 102,996 nodes and 187,902 elements using 8 PEs on the O3K and XT3. In all the runs, the convergence criterion of

		CG] [× 10 ⁻⁹	× 10
РС	2-Norm	∞-Norm	Iterations	Time	None	-	-
	× 10 ⁻⁹	× 10 ⁻¹⁰		(sec)		-	-
None	56.4	23.1	7096	24.47	Jacobi	2699.	2470
				13.14			
Jacobi	18.3	8.44	768	2.78	Biacobi	-	-
				1.50		-	-
Bjacobi	9.91	5.16	224	1.94	ASM	-	-
				1.03		-	-
ASM	-	-	-	-	SOR	1620.	264
	-	-	-	-			
SOR	11.4	5.89	306	2.06			TF
				1.59	PC	2-Norm	∞-No
		GMRES	5	•		× 10 ⁻⁹	× 10
PC	2-Norm	∞-Norm	Iterations	Time	None	38500.	1590
	× 10 ⁻⁹	× 10 ⁻¹⁰		(sec)		47700.	1980
None	2.00	1.18	215247	1478.09	Jacobi	3020.	343
	1.99	1.75	236216	645.88		2990	317
Jacobi	1.72	1.16	2639	18.81	Biacobi	464000	32600
		0.673	2419	6.64		308000	1610
Bjacobi	1.72	1.08	586	7.97	ASM	22600	9580
	1.71	1.16	587	3.22		21200	9020
ASM	1.69	1.64	514	9.22	SOR	1800	230
	1.09	0 764	515	3 30		1790	235
SOR	1.70	0.946	808	8.66		1790.	
	1.62		809	5.02	PC	2-Norm	∞ -No
	1.05	BiCG	007	0.02		$\times 10^{-9}$	× 1(
РС	2-Norm	∞-Norm	Iterations	Time	None	-	-
10	× 10 ⁻⁹	$\times 10^{-10}$	1001 0010115	(sec)		_	-
None	58.7	29.8	7426	56.06	Jacobi	-	-
	58.3	25.0	7466	25.81		-	-
Jacobi	18.2	8.66	769	6.06	Biacobi	39700.	415
		9.90		2.72		49900	292
Biacobi	9.82	4.61	224	4.22	ASM	8080	427
	9.97	6.23	• •	2.00		8180	357
ASM	9.86	4.56	220	5.22	SOR	1670.	120
	9.82	6.69	• •	2.35		1790.	164
SOR	-	-	-	-	1		
	-	-	-	-	PC	2-Norm	∞-No
		BiCGSTA	AB		1 1 -	× 10 ⁻⁹	× 10
PC	2-Norm	∞-Norm	Iterations	Time	None	55.5	37.
	× 10 ⁻⁹	× 10 ⁻¹⁰		(sec)			
None	83.3	33.7	8140	55.84	Jacobi	17.7	8.8
				29.63			
Jacobi	52.9	32.6	509	3.69	Biacobi	9.93	5.2
••				1.87			
Bjacobi	35.2	16.2	154	2.96	ASM	-	-
				1.39		-	-
ASM	23.6	9.80	141	3.53	SOR	11.5	57
				1.53			
SOR	23.9	11.8	214	2.91	1		FG
				2.19	PC	2-Norm	
		CGS				× 10 ⁻⁹	× 10
PC	2-Norm	∞-Norm	Iterations	Time	None	2 00	11
					1.01.0	=	

(sec)

-

3.75

-

-

-

2.94 2.21

Time (sec)

<u>39.34</u> 19.72

3.94 1.97

3.84

3.84 1.59

3.03 2.23

Time

(sec)

-

-

-

12.00

7.94

15.81

6.24

16.88

9.14

Time (sec)

23.66

2.81

1.48

2.34 1.06

-

-

2.09

1.61

Time (sec)

1527.46

-

-516

-

-

-

- 214

..

Iterations

5225

.. 512

.. 180

.. 144

...

..

Iterations

-

-

-

-413

445

377

376

748

576

Iterations

6682

744

..

222

..

-

-303

..

Iterations

215247

	1.99	1.75 236216		651.07						
Jacobi	2.06	0.873	2147	15.85						
	2.05	0.946	2130	5.97						
Bjacobi	2.07	1.18	600	8.82						
	2.06	1.20		3.30						
ASM	2.00	1.16	501	8.99						
	2.07	0.815	500	3.17						
SOR	2.06	1.24	768	8.41						
	2.05	1.05	769	4.80						
MINRES										
PC	2-Norm	∞-Norm	Iterations	Time						
	× 10 ⁻⁹	× 10 ⁻¹⁰		(sec)						
None	290.	107.	6814	32.31						
				15.98						
Jacobi	102.	39.6	737	3.59						
				1.75						
Bjacobi	23.1	19.4	221	2.72						
				1.14						
ASM	-	-	-	-						
	-	-	-	-						
SOR	26.3	10.7	300	2.50						
				1.72						
		SYMML	0	I.						
PC	2-Norm	∞-Norm	Iterations	Time						
	× 10 ⁻⁹	× 10 ⁻¹⁰		(sec)						
None	63.9	105	7261	33 71						
	05.7	100.		55.71						
				16.49						
 Jacobi		-	···	16.49						
 Jacobi 	-	-	-	16.49 -						
 Jacobi Bjacobi	- - -		- - -	16.49 - -						
 Jacobi Bjacobi 		- - -	- - - -							
 Jacobi Bjacobi ASM	-	- - - -	- - - - -							
Jacobi Bjacobi ASM 	- - - - -	- - - - - -	- - - - - -							
Jacobi Bjacobi ASM SOR	- - - - - - -	- - - - - - -	- - - - - - - -							
Jacobi Bjacobi ASM SOR 	- - - - - - - - -	- - - - - - - - - - -	- - - - - - - - - - - -							
Jacobi Bjacobi ASM SOR 	- - - - - - - - -		- - - - - - - - - - - 3(k)							
 Jacobi Bjacobi ASM SOR PC			- - - - - - - - - - - 3(k) Iterations							
 Jacobi Bjacobi ASM SOR PC			- - - - - - - - - - - - - - - - - - -							
 Jacobi Bjacobi ASM SOR PC None			- - - - - - - - - - - 3(k) Iterations							
 Jacobi Bjacobi ASM SOR PC None 			- - - - - - - - - - - - B(k) Iterations - - - - - - - - - - - - - - - - - - -							
 Jacobi Bjacobi ASM SOR SOR PC None Jacobi		 	- - - - - - - - - 3(k) Iterations 6760 492							
 Jacobi Bjacobi ASM SOR SOR PC None Jacobi 			- - - - - - - - - - 3(k) Iterations 6760 492							
 Jacobi Bjacobi ASM SOR SOR PC None Jacobi Bjacobi		$ \frac{1000}{100} - 1$	- - - - - - - - - - - 3(k) Iterations 6760 492 154	J3:71 16.49 -						
 Jacobi Bjacobi ASM SOR SOR PC None Jacobi Bjacobi			- - - - - - - - - - - - - - - - - - -	J3.71 16.49 -						
 Jacobi Bjacobi ASM SOR PC None Jacobi Bjacobi ASM		 BiCGSTAI ∞-Norm × 10 ⁻¹⁰ 41.5 22.2 13.6 29.9		35.71 16.49 -						
 Jacobi Bjacobi ASM SOR SOR PC None Jacobi Bjacobi Bjacobi		 BiCGSTAI ∞-Norm × 10 ⁻¹⁰ 41.5 22.2 13.6 29.9 		J33,11 16.49 - -						
 Jacobi Bjacobi ASM PC None Jacobi Bjacobi Bjacobi SOR		 BiCGSTAI ∞-Norm × 10 ⁻¹⁰ 41.5 22.2 13.6 29.9 8.00	- - - - - - - - - - - - - - - - - - -	J33.71 16.49 - -						

Table 2: Test results for iterative solvers and preconditioners (PC) using 8 PEs on the O3K (white) and XT3 (shaded) for the SPD matrix

Figure 8: O3K solver times for the SPD matrix

Figure 9. XT3 solver times for the SPD matrix

Figure 10: XT3 iteration counts for the SPD matrix

Figure 11: XT3 $||r||_{\infty}$ for the SPD matrix

CG – Jacobi										
PEs	Nodes	Elems	Iters	Time	Strong	Weak				
				(sec)	SP	SP				
8	102996	187902	768	2.78						
16	102996	187902	768	1.56	1.78					
32	197409	375804	1095	2.38		0.66				
8	102996	187902	768	1.50						
16	102996	187902	768	0.85	1.76					
32	197409	375804	1095	1.25		0.68				
64	763887	1503216	3652	7.88		0.19				
CG – Bjacobi										
PEs	Nodes	Elems	Iters	Time (sec)	Strong SP	Weak SP				
8	102996	187902	224	1.94						
16	102996	187902	257	0.98	1.98					
32	197409	375804	594	2.17		0.45				
8	102996	187902	224	1.03						
16	102996	187902	257	0.59	1.75					
32	197409	375804	594	1.36		0.43				
64	763887	1503216	1378	6.43		0.16				
		GMRE	ES – Bja	acobi						
PEs	Nodes	Elems	Iters	Time	Strong	Weak				
				(sec)	SP	SP				
8	102996	187902	586	7.97						
16	102996	187902	584	2.67	2.99					
32	197409	375804	1043	4.99		0.54				
8	102996	187902	587	3.22						
16	102996	187902	584	1.56	2.06					
32	197409	375804	1043	2.78		0.56				
64	763887	1503216	3892	22.81		0.14				
		GMR	ES – A	SM						
PEs	Nodes	Elems	Iters	Time	Strong	Weak				
				(sec)	SP	SP				
8	102996	187902	514	9.22						
16	102996	187902	563	4.72	1.95					
32	197409	375804	943	7.93		0.60				
8	102996	187902	515	3.30						
16	102996	187902	563	1.96	1.68					
32	197409	375804	944	3.42		0.57				
64	763887	1503216	3892	22.81		0.14				
	·	BiCGST	<u>AB – B</u>	jacobi	1 -					
PEs	Nodes	Elems	Iters	Time	Strong	Weak				
		10=		(sec)	SP	SP				
8	102996	187902	224	4.22	a +-					
16	102996	187902	170	1.21	3.49					
32	197409	375804	386	2.94		0.42				
8	102996	187902	224	2.00	0.67					
16	102996	187902	170	0.75	2.67	0.11				
32	197409	375804	386	1.72		0.44				
64	763887	1503216	848	7.74		0.29				
P.F.	NT 1	BICGS	<u>ГАВ –</u>	ASM	<i>a</i> .	XX7 1				
PEs	Nodes	Elems	Iters	Time	Strong	Weak				
0	102007	107000	1.4.1	(sec)	SP	SP				
8	102996	18/902	141	5.53						

16	102996	187902	144	1.55	2.28			
32	197409	375804	310	3.59		0.43		
8	102996	187902	141	1.53				
16	102996	187902	144	0.88	1.74			
32	197409	375804	310	1.97		0.45		
64	763887	1503216	881	10.76		0.14		
		CR	– Bjaco	bi				
PEs	Nodes	Elems	Iters	Time	Strong	Weak		
				(sec)	SP	SP		
8	102996	187902	222	2.34				
16	102996	187902	253	0.97	2.41			
32	197409	375804	572	2.21		0.41		
8	102996	187902	222	1.06				
16	102996	187902	253	0.60	1.77			
32	197409	375804	572	1.35		0.44		
64	763887	1503216	1312	6.29		0.17		
		CI	R – SOF	κ –				
PEs	Nodes	Elems	Iters	Time	Strong	Weak		
				(sec)	SP	SP		
8	102996	187902	303	2.09				
16	102996	187902	328	1.17	1.79			
32	197409	375804	711	2.65		0.44		
8	102996	187902	303	1.61				
16	102996	187902	328	0.87	1.85			
32	197409	375804	711	1.85		0.47		
64	763887	1503216	-	-	-	-		
		MINR	ES – Bj	acobi				
PEs	Nodes	Elems	Iters	Time	Strong	Weak		
				(sec)	SP	SP		
8	102996	187902	221	2.72				
16	102996	187902	252	1.08	2.52			
32	197409	375804	568	2.36		0.46		
8	102996	187902	221	1.14				
16	102996	187902	252	0.63	1.81			
32	197409	375804	568	1.41		0.45		
64	763887	1503216	2440	12.49		0.09		
MINRES – SOR								
PEs	Nodes	Elems	Iters	Time	Strong	Weak		
				(sec)	SP	SP		
8	102996	187902	300	2.50				
16	102996	187902	325	1.30	1.92			
32	197409	375804	9489	38.78		0.03		
8	102996	187902	300	1.72				
16	102996	187902	325	0.91	1.89			
32	197409	375804	9489	25.90		0.04		
64	763887	1503216	-	-	-	-		

Table 3: Iteration count and speedup (SP) values for preconditioner/solver combinations for the O3K (white) and XT3 (shaded)

$$\|\mathbf{r}\|_2 < \varepsilon \|\mathbf{b}\|_2, \quad \varepsilon = 10^{-15}$$
 (3)

was used. This is a stringent criterion that could tax some solver/preconditioner combinations. But since $||\mathbf{b}||_2 = 1.36$ (10^6) for the original mesh, the absolute convergence criterion of 1.36 (10⁻⁹) is within acceptable limits of machine accuracy. In fact, SYMMLO with the Jacobi, block Jacobi, or SOR preconditioners was the only additional method to converge when the convergence criterion was increased to 10⁻¹³. For the SPD matrix A, Figures 8 and 9 show the elapsed times for the 12 solvers on the O3K and XT3, respectively. Figure 10 shows the solver iteration counts for the XT3, and Figure 11 shows the infinity norm of the final computed residual vector. For the SPD matrix, Table 3 shows the elapsed times and speedups for certain solvers when solving the linear systems corresponding to larger meshes. Finally, Figures 12 and 13 show the elapsed times when solving the nonsymmetric linear system corresponding to the original mesh.

Figure 12. O3K solver times for the nonsymmetric matrix

Figure 13. XT3 solver times for the nonsymmetric matrix

5. Conclusions

Conclusions observed from this study are as follows:

 The times for loading the matrices and vectors into PETSc are small compared with the solver time if enough memory for the arrays is allocated in the initialization process,

- 2) the load times can be hundreds of times larger than the solver times if space for the A matrix is allocated dynamically,
- the XT3 was approximately twice as fast as the O3K,
- the GMRES solver was the slowest to achieve a given convergence criterion but produced the most accurate solution,
- 5) the successive over-relaxation preconditioner performed much better on the O3K than on the XT3,
- 6) the overall best solvers for these linear systems were Conjugate Gradient and Conjugate Residual using the block Jacobi preconditioner,
- some solvers gave identical results on the O3K and XT3, while others did not with even the number of iterations being different, and
- 8) a superlinear speedup was observed for some solvers for small processor counts on the O3K. For example, GMRES using the block Jacobi preconditioner gave a speedup of 2.99 on the O3K when doubling the number of PEs from 8 to 16. Here, the iteration count was 586 on 8 PEs and 584 on 16 PEs.

Acknowledgment

This work was supported in part by a grant of computer time from the DoD High Performance Computing Modernization Program at the ERDC MSRC, Information Technology Laboratory, Vicksburg, MS.

References

1. Dongarra, J.J, I.S. Duff, D.C. Sorensen, and H.A. van der Vorst, *Numerical Linear Algebra for High-Performance Computers*, SIAM, Philadelphia, 1998.

2. Greenbaum, Anne, *Iterative Methods for Solving Linear Systems*, SIAM, Philadelphia, 1997.

3. Karypis Lab, <u>http://glaros.dtc.umn.edu/gkhome/views/metis/metis/m</u> ain.html, 2007.

4. Kelley, C.T., *Iterative Methods for Linear and Nonlinear Equations*, SIAM, Philadelphia, 1995.

5. PETSc, <u>http://www-unix.mcs.anl.gov/petsc/petsc-as/index.html</u>, 2007.

6. Rheinboldt, W.C., *Methods for Solving Systems of Nonlinear Equations, Second Edition*, SIAM, Philadelphia, 1998.