
NAS Technical Report; NAS-07-007
September 2007

Testing Parallel Linear Iterative Solvers for Finite Element Groundwater Flow

Problems

Fred T. Tracy and Thomas C. Oppe
U.S. Army Engineer Research and Development Center Major Shared Resource Center (ERDC MSRC)

Vicksburg, MS
{Fred.T.Tracy, Thomas.C.Oppe}@erdc.usace.army.mil

Sharad Gavali

NASA Ames Research Center, Moffett Field, CA
gavali@nas.nasa.gov

Distribution Statement A

Abstract

The modeling of groundwater flow using three-
dimensional finite element discretizations creates a need to
solve large systems of sparse linear equations (Ax = b) at
each of several nonlinear iterations. These linear systems
can be difficult to solve because of the ill-conditioning of
the matrix A resulting from the widely varying magnitudes
of its coefficients. Because the meshes may contain
millions of nodes, iterative solvers are typically used to
perform the Ax = b solution. Since 80 percent or more of
the computational time is spent in the iterative solver part
of the computer program, choosing the most efficient
solver for each application can dramatically reduce the
total solution time. This paper tests 12 Krylov subspace
parallel linear iterative solvers with 5 preconditioners (60
scenarios) on linear systems of equations resulting from a
finite element study of remediation of a military site using
pump-and-treat technology. Both symmetric, positive-
definite matrices, resulting from a Picard linearization of
the nonlinear equations for the steady-state case, and
nonsymmetric matrices, arising from a Newton
linearization of the nonlinear equations of a transient case,
are studied. The Portable, Extensible Toolkit for Scientific
Computation (PETSc) library was used in this study on the
Engineer Research and Development Center Major Shared
Resource Center SGI O3K and Cray XT3 computers.
Matrix data corresponding to each subdomain in a
parallel groundwater finite element program were first
written to a file in a compressed sparse column format. A
separate program was then written in FORTRAN to read
these data, renumber the nodes, call the PETSc routines to
load A and b and then solve for x, and finally compute
error norms. Solver time, iteration count, 2-norm and ∞-
norm of the residual after convergence, weak speedup, and
strong speedup are tabulated in this paper for the different
scenarios and then analyzed.

1. Introduction

The modeling of groundwater flow using the finite
element method with three-dimensional (3-D) meshes
creates a need to solve large systems of linear equations,

 bAx = (1)

at each of several nonlinear iterations. Here, A is the
coefficient matrix, b is the known right-hand-side vector,
and x is the unknown vector to be computed. Widely
varying material properties of the media (e.g., hydraulic
conductivity of sand and clay) and the presence of
unsaturated flow can give rise to ill-conditioned matrices
having coefficients that vary in size by several orders of
magnitude. Because the meshes may contain millions of
nodes, iterative solvers are often used to solve Equation 1.
Since 80 percent or more of the computer time is spent in
the iterative solver part of the computer program, choosing
the most efficient solver for each application can
dramatically reduce the total solution time. The purpose of
this work is to test several iterative parallel linear solvers
to help determine the best one for groundwater flow
applications. Because of the nature of the matrices, the
findings may be applicable to other application areas as
well.

2. Test Problem

The test problem consists of a finite element model of
a pump-and-treat system for cleaning up a military site.
Figure 2 shows a top view of the entire mesh. Figure 3
shows a magnified portion of the mesh showing wells and
trenches. Figure 4 shows a further magnification of the
mesh surrounding two wells. Finally, Figure 5 shows a
lateral view of the mesh showing the refinement chosen for

 2

the various soil layers. The original mesh was discretized
using 102,996 nodes and 187,902 elements, while a 2-fold
refinement utilized 197,409 nodes and 375,804 elements,
and an 8-fold refinement utilized 763,887 nodes and
1,503,216 elements. Two linear systems from this test
problem were tested: (1) the steady-state run at the tenth
nonlinear iteration using a Picard linearization, producing
a symmetric, positive-definite (SPD) linear system and (2)
a transient run at the tenth nonlinear iteration of the first
time-step using a Newton linearization, producing a
nonsymmetric linear system.

3. Testing Iterative Solvers Using PETSc

This paper tests 12 Krylov subspace parallel linear
iterative solvers[1,2,4,6] with 5 preconditioners (60 scenarios)
on the two linear systems described above. The Portable,
Extensible Toolkit for Scientific Computation (PETSc)
library[5] was used in this study on the Engineer Research
and Development Center Major Shared Resource Center
SGI O3K and Cray XT3 computers. The solvers are

1. Conjugate Gradient (CG)
2. Generalized Minimum Residual (GMRES)
3. Biconjugate Gradient (BiCG)
4. Biconjugate Gradient Stabilized (BiCGSTAB)
5. Conjugate Gradient Squared (CGS)
6. Transpose-Free Quasi-Minimal Residual, version

1 (TFQMR1)
7. Transpose-Free Quasi-Minimal Residual, version

2 (TFQMR2)
8. Conjugate Residual (CR)
9. Flexible GMRES (FGMRES)
10. Minimum Residual (MINRES)
11. Symmetric LQ (SYMMLQ)
12. Biconjugate Gradient Stabilized, degree k

(BiCGSTAB(k))

The preconditioners are

1. None
2. Jacobi
3. Block Jacobi (Bjacobi)
4. Additive Swartz method (ASM)
5. successive overrelaxation (SOR)

Figure 1 shows a generic parallel version of the Conjugate
Gradient solver algorithm for a finite element program
with each processing element (PE) assigned to a portion of
the mesh. The preconditioning matrix K is chosen so that it
approximates A in some sense and because the auxiliary
linear system

rKz = (2)

is much easier to solve than the original linear system and
can be solved efficiently on parallel architectures. Ghost
nodes for the vector p are updated prior to calculating the
vector q = Ap, and parallel reduction operations are
required to calculate the inner products bTb, zTr, pTq, and
zTr. x0 is an initial guess to the solution x.

Figure 1: Parallel Conjugate Gradient algorithm

3.1. Saved Data

For each subdomain, the following data were written
to a file from a parallel groundwater finite element
program:

1. Number of global nodes, number of "owned"
nodes (i.e., subdomain nodes), number of "local"
nodes, which is the union of owned nodes and
"ghost" nodes (i.e., nodes in other subdomains
that are connected to an owned node), number of
compressed columns, and number of PEs.

2. A one-dimensional (1-D) array containing the
global node numbers for the local nodes.

3. A two-dimensional (2-D) array in compressed
column format containing the local node numbers
corresponding to the coefficients of A for the
owned rows of A. Zeroes are used to pad the
array to simplify the reading and writing of these
data.

� = 0; p = 0
r = b – A * x0; nmax = 20000
� = 10-15; eps = � * sqrt(bTb)
! || reduction needed for bTb
n = 0
do
 n = n + 1
! Apply preconditioner
 Solve K * z = r for z
 � = zTr
! || reduction needed for zTr
 if (n > 1) � = � / � sav
 p = z + � * p
! Ghost node update needed for p
! || reduction needed for pTq
 q = A * p; � = � / pTq
 x = x + � * p; r = r – � * q
 � sav = �
! || reduction needed for rTr
 if (n > nmax .or.
 sqrt(rTr) < eps) exit
end do

 3

Figure 2: Top view of mesh

Figure 3: Magnified view of a portion of the mesh

Wells

Figure 4: Further magnification showing fine resolution of

the mesh for modeling wells

Figure 5: Side view showing strata layers

1

3

2

4
5

7

8

6

22

21

20

19

11

18

17

16

15

14

13

12 10

9

Figure 6: Small finite element mesh

 4

4. A 2-D array in compressed column format
containing the coefficients of A for the owned
rows of A. Zeroes are used to pad the array.

5. A 1-D array containing the owned portion of b.
6. A 1-D array containing the owned portion of the

solution vector x obtained independently.

A separate program was then written in FORTRAN to
read these data, renumber the nodes, call the PETSc
routines to load A and b and then solve for x, and finally
compute error norms. Solver time, iteration count, 2-norm
and ∞-norm of the residual after convergence, weak
speedup, and strong speedup were tabulated for the
different scenarios and then analyzed.

3.2. Renumbering the Nodes

ParMETIS[3] was used to compute the original
partitioning of the mesh. Unfortunately, the resulting
global numbering of the nodes was very inefficient when
input directly into PETSc, which used a block partitioning
of the matrix A by rows. To illustrate the difficulty, Figure
6 shows a sample finite element mesh containing 22 nodes
and partitioned into three PEs. The node assignment is

PE 0 4 22 21 17 1 20 8 18 19
PE 1 9 2 11 5 15 14 6
PE 2 16 3 13 7 12 10

If the same number of nodes per PE is maintained, the
PETSc partitioning is

PE 0 1 2 3 4 5 6 7 8 9
PE 1 10 11 12 13 14 15 16
PE 2 17 18 19 20 21 22

With the ParMETIS partitioning, node 1 has no ghost
nodes; node 2 has ghost nodes 19 and 20; node 3 has ghost
nodes 18; etc. However, with the PETSc partitioning, node
1 has ghost nodes 17, 18, 19, 20, 21, and 22; node 2 has
ghost nodes 9, 11, 14, 15, 19, and 20; node 3 has ghost
nodes 12, 13, 16, and 18; etc. To eliminate the
communication cost of the additional ghost nodes, the
global nodes were renumbered consecutively within each
ParMETIS partition. npetsc is a mapping vector from
the original global node numbering to the new numbering.

3.3. PETSc FORTRAN Code

 To see an example of how the input data are used with
PETSc, consider the code to load the array a with values
from the matrix A (Figure 7). Definitions of the major
variables are as follows:

nown number of owned nodes
ncol number of compressed columns

ai original A matrix
a PETSc version of the A matrix
jloc local node number from the local row i and local

compressed column j
ii new global row number in zero-based numbering

system
jj new global column number in zero-based

numbering system

Figure 7: Loading A into PETSc

The b vector is loaded in a similar fashion. After
options are set, a call to KSPSolve completes the
solution. Table 1 shows times for the O3K and XT3 for
loading the data into PETSc after allocating sufficient
memory for the arrays.

PEs Nodes Elements Time (sec)
8 102996 187902 0.29
16 102996 187902 0.15
32 197409 375804 0.29
8 102996 187902 0.08
16 102996 187902 0.04
32 197409 375804 0.06
64 763887 1503216 0.17

Table 1: Load times of the PETSc data for the O3K (white)

and XT3 (shaded) for the SPD matrix

4. Test Results

 Table 2 shows results for the 60 scenarios for the SPD
matrix for the original mesh of 102,996 nodes and 187,902
elements using 8 PEs on the O3K and XT3. In all the runs,
the convergence criterion of

do i = 1, nown
 ii = npetsc(i) - 1
 do j = 1, ncol
 jloc = id(i, j)
 if (jloc .ne. 0) then
 jj = npetsc(jloc) - 1
 v = ai(i, j)
 call MatSetValues (a, 1, ii, 1, &
 jj, INSERT_VALUES, ierr)
 end if
 end do
end do

call MatAssemblyBegin (a, &
 MAT_FINAL_ASSEMBLY, ierr)
call MatAssemblyEnd (a, &
 MAT_FINAL_ASSEMBLY, ierr)

 5

CG
PC 2-Norm

× 10-9
∞-Norm
× 10-10

Iterations Time
(sec)

None 56.4 23.1 7096 24.47
 ּ ּ ּ ּ ּ ּ ּ ּ 13.14

Jacobi 18.3 8.44 768 2.78
 ּ ּ ּ ּ ּ ּ ּ ּ 1.50

Bjacobi 9.91 5.16 224 1.94
 ּ ּ ּ ּ ּ ּ ּ ּ 1.03

ASM - - - -
 ּ ּ - - - -

SOR 11.4 5.89 306 2.06
 ּ ּ ּ ּ ּ ּ ּ ּ 1.59

GMRES
PC 2-Norm

× 10-9
∞-Norm
× 10-10

Iterations Time
(sec)

None 2.00 1.18 215247 1478.09
 ּ ּ 1.99 1.75 236216 645.88

Jacobi 1.72 1.16 2639 18.81
 ּ ּ ּ ּ 0.673 2419 6.64

Bjacobi 1.72 1.08 586 7.97
 ּ ּ 1.71 1.16 587 3.22

ASM 1.69 1.64 514 9.22
 ּ ּ 1.70 0.764 515 3.30

SOR 1.62 0.946 808 8.66
 ּ ּ 1.63 ּ ּ 809 5.02

BiCG
PC 2-Norm

× 10-9
∞-Norm
× 10-10

Iterations Time
(sec)

None 58.7 29.8 7426 56.06
 ּ ּ 58.3 25.0 7466 25.81

Jacobi 18.2 8.66 769 6.06
 ּ ּ ּ ּ 9.90 ּ ּ 2.72

Bjacobi 9.82 4.61 224 4.22
 ּ ּ 9.97 6.23 ۰ ۰ 2.00

ASM 9.86 4.56 220 5.22
 ּ ּ 9.82 6.69 ۰ ۰ 2.35

SOR - - - -
 ּ ּ - - - -

BiCGSTAB
PC 2-Norm

× 10-9
∞-Norm
× 10-10

Iterations Time
(sec)

None 83.3 33.7 8140 55.84
 ּ ּ ּ ּ ּ ּ ּ ּ 29.63

Jacobi 52.9 32.6 509 3.69
 ּ ּ ּ ּ ּ ּ ּ ּ 1.87

Bjacobi 35.2 16.2 154 2.96
 ּ ּ ּ ּ ּ ּ ּ ּ 1.39

ASM 23.6 9.80 141 3.53
 ּ ּ ּ ּ ּ ּ ּ ּ 1.53

SOR 23.9 11.8 214 2.91
 ּ ּ ּ ּ ּ ּ ּ ּ 2.19

CGS
PC 2-Norm ∞-Norm Iterations Time

× 10-9 × 10-10 (sec)
None - - - -

 ּ ּ - - - -
Jacobi 2699. 24700. 516 3.75

 ּ ּ ּ ּ ּ ּ ּ ּ 1.90
Bjacobi - - - -

 ּ ּ - - - -
ASM - - - -

 ּ ּ - - - -
SOR 1620. 2640. 214 2.94

 ּ ּ ּ ּ ּ ּ ּ ּ 2.21
TFQMR1

PC 2-Norm
× 10-9

∞-Norm
× 10-10

Iterations Time
(sec)

None 38500. 159000. 5225 39.34
 ּ ּ 47700. 198000. ּ ּ 19.72

Jacobi 3020. 3430. 512 3.94
 ּ ּ 2990. 3170. ּ ּ 1.97

Bjacobi 464000. 3260000. 180 3.84
 ּ ּ 308000. 1610000. ּ ּ 1.66

ASM 22600. 95800. 144 3.84
 ּ ּ 21200. 90200. ּ ּ 1.59

SOR 1800. 2300. 214 3.03
 ּ ּ 1790. 2350. ּ ּ 2.23

TFQMR2
PC 2-Norm

× 10-9
∞-Norm
× 10-10

Iterations Time
(sec)

None - - - -
 ּ ּ - - - -

Jacobi - - - -
 ּ ּ - - - -

Bjacobi 39700. 41500. 413 12.00
 ּ ּ 49900. 29200. 445 7.94

ASM 8080. 4270. 377 15.81
 ּ ּ 8180. 3570. 376 6.24

SOR 1670. 1200. 748 16.88
 ּ ּ 1790. 1640. 576 9.14

CR
PC 2-Norm

× 10-9
∞-Norm
× 10-10

Iterations Time
(sec)

None 55.5 37.2 6682 23.66
 ּ ּ ּ ּ ּ ּ ּ ּ 13.05

Jacobi 17.7 8.80 744 2.81
 ּ ּ ּ ּ ּ ּ ּ ּ 1.48

Bjacobi 9.93 5.24 222 2.34
 ּ ּ ּ ּ ּ ּ ּ ּ 1.06

ASM - - - -
 ּ ּ - - - -

SOR 11.5 5.75 303 2.09
 ּ ּ ּ ּ ּ ּ ּ ּ 1.61

FGMRES
PC 2-Norm

× 10-9
∞-Norm
× 10-10

Iterations Time
(sec)

None 2.00 1.18 215247 1527.46

 6

 ּ ּ 1.99 1.75 236216 651.07
Jacobi 2.06 0.873 2147 15.85

 ּ ּ 2.05 0.946 2130 5.97
Bjacobi 2.07 1.18 600 8.82

 ּ ּ 2.06 1.20 ּ ּ 3.30
ASM 2.00 1.16 501 8.99

 ּ ּ 2.07 0.815 500 3.17
SOR 2.06 1.24 768 8.41

 ּ ּ 2.05 1.05 769 4.80
MINRES

PC 2-Norm
× 10-9

∞-Norm
× 10-10

Iterations Time
(sec)

None 290. 107. 6814 32.31
 ּ ּ ּ ּ ּ ּ ּ ּ 15.98

Jacobi 102. 39.6 737 3.59
 ּ ּ ּ ּ ּ ּ ּ ּ 1.75

Bjacobi 23.1 19.4 221 2.72
 ּ ּ ּ ּ ּ ּ ּ ּ 1.14

ASM - - - -
 ּ ּ - - - -

SOR 26.3 10.7 300 2.50
 ּ ּ ּ ּ ּ ּ ּ ּ 1.72

SYMMLQ
PC 2-Norm

× 10-9
∞-Norm
× 10-10

Iterations Time
(sec)

None 63.9 105. 7261 33.71
 ּ ּ ּ ּ ּ ּ ּ ּ 16.49

Jacobi - - - -
 ּ ּ - - - -

Bjacobi - - - -
 ּ ּ - - - -

ASM - - - -
 ּ ּ - - - -

SOR - - - -
 ּ ּ - - - -

BiCGSTAB(k)
PC 2-Norm

× 10-9
∞-Norm
× 10-10

Iterations Time
(sec)

None 77.6 41.5 6760 49.03
 ּ ּ ּ ּ ּ ּ ּ ּ 25.89

Jacobi 43.9 22.2 492 3.65
 ּ ּ ּ ּ ּ ּ ּ ּ 1.91

Bjacobi 27.4 13.6 154 3.22
 ּ ּ ּ ּ ּ ּ ּ ּ 1.43

ASM 28.1 29.9 142 3.69
 ּ ּ ּ ּ ּ ּ ּ ּ 1.56

SOR 20.1 8.00 202 2.88
 ּ ּ ּ ּ ּ ּ ּ ּ 2.10

Table 2: Test results for iterative solvers and

preconditioners (PC) using 8 PEs on the O3K (white) and
XT3 (shaded) for the SPD matrix

1 2 3 4 5 6 7 8 9 10 11 12

SOR

ASM

Bjacobi

Jacobi

Figure 8: O3K solver times for the SPD matrix

1 2 3 4 5 6 7 8 9 10 11 12

SOR

ASM

Bjacobi

Jacobi

Figure 9. XT3 solver times for the SPD matrix

1 2 3 4 5 6 7 8 9 10 11 12

SOR

ASM

Bjacobi

Jacobi

Figure 10: XT3 iteration counts for the SPD matrix

1 2 3 4 5 6 7 8 9 10 11 12

SOR

ASM

Bjacobi

Jacobi

Figure 11: XT3 ||r||∞ for the SPD matrix

 7

CG – Jacobi
PEs Nodes Elems Iters Time

(sec)
Strong

SP
Weak

SP
8 102996 187902 768 2.78

16 102996 187902 768 1.56 1.78
32 197409 375804 1095 2.38 0.66
8 102996 187902 768 1.50

16 102996 187902 768 0.85 1.76
32 197409 375804 1095 1.25 0.68
64 763887 1503216 3652 7.88 0.19

CG – Bjacobi
PEs Nodes Elems Iters Time

(sec)
Strong

SP
Weak

SP
8 102996 187902 224 1.94

16 102996 187902 257 0.98 1.98
32 197409 375804 594 2.17 0.45
8 102996 187902 224 1.03

16 102996 187902 257 0.59 1.75
32 197409 375804 594 1.36 0.43
64 763887 1503216 1378 6.43 0.16

GMRES – Bjacobi
PEs Nodes Elems Iters Time

(sec)
Strong

SP
Weak

SP
8 102996 187902 586 7.97

16 102996 187902 584 2.67 2.99
32 197409 375804 1043 4.99 0.54
8 102996 187902 587 3.22

16 102996 187902 584 1.56 2.06
32 197409 375804 1043 2.78 0.56
64 763887 1503216 3892 22.81 0.14

GMRES – ASM
PEs Nodes Elems Iters Time

(sec)
Strong

SP
Weak

SP
8 102996 187902 514 9.22

16 102996 187902 563 4.72 1.95
32 197409 375804 943 7.93 0.60
8 102996 187902 515 3.30

16 102996 187902 563 1.96 1.68
32 197409 375804 944 3.42 0.57
64 763887 1503216 3892 22.81 0.14

BiCGSTAB – Bjacobi
PEs Nodes Elems Iters Time

(sec)
Strong

SP
Weak

SP
8 102996 187902 224 4.22

16 102996 187902 170 1.21 3.49
32 197409 375804 386 2.94 0.42
8 102996 187902 224 2.00

16 102996 187902 170 0.75 2.67
32 197409 375804 386 1.72 0.44
64 763887 1503216 848 7.74 0.29

BICGSTAB – ASM
PEs Nodes Elems Iters Time

(sec)
Strong

SP
Weak

SP
8 102996 187902 141 3.53

16 102996 187902 144 1.55 2.28
32 197409 375804 310 3.59 0.43
8 102996 187902 141 1.53

16 102996 187902 144 0.88 1.74
32 197409 375804 310 1.97 0.45
64 763887 1503216 881 10.76 0.14

CR – Bjacobi
PEs Nodes Elems Iters Time

(sec)
Strong

SP
Weak

SP
8 102996 187902 222 2.34

16 102996 187902 253 0.97 2.41
32 197409 375804 572 2.21 0.41
8 102996 187902 222 1.06

16 102996 187902 253 0.60 1.77
32 197409 375804 572 1.35 0.44
64 763887 1503216 1312 6.29 0.17

CR – SOR
PEs Nodes Elems Iters Time

(sec)
Strong

SP
Weak

SP
8 102996 187902 303 2.09

16 102996 187902 328 1.17 1.79
32 197409 375804 711 2.65 0.44
8 102996 187902 303 1.61

16 102996 187902 328 0.87 1.85
32 197409 375804 711 1.85 0.47
64 763887 1503216 - - - -

MINRES – Bjacobi
PEs Nodes Elems Iters Time

(sec)
Strong

SP
Weak

SP
8 102996 187902 221 2.72

16 102996 187902 252 1.08 2.52
32 197409 375804 568 2.36 0.46
8 102996 187902 221 1.14

16 102996 187902 252 0.63 1.81
32 197409 375804 568 1.41 0.45
64 763887 1503216 2440 12.49 0.09

MINRES – SOR
PEs Nodes Elems Iters Time

(sec)
Strong

SP
Weak

SP
8 102996 187902 300 2.50

16 102996 187902 325 1.30 1.92
32 197409 375804 9489 38.78 0.03
8 102996 187902 300 1.72

16 102996 187902 325 0.91 1.89
32 197409 375804 9489 25.90 0.04
64 763887 1503216 - - - -

Table 3: Iteration count and speedup (SP) values for

preconditioner/solver combinations for the O3K (white)
and XT3 (shaded)

 15

22
10,

!
=""< br (3)

 8

was used. This is a stringent criterion that could tax some
solver/preconditioner combinations. But since ||b||2 = 1.36
(106) for the original mesh, the absolute convergence
criterion of 1.36 (10-9) is within acceptable limits of
machine accuracy. In fact, SYMMLQ with the Jacobi,
block Jacobi, or SOR preconditioners was the only
additional method to converge when the convergence
criterion was increased to 10-13. For the SPD matrix A,
Figures 8 and 9 show the elapsed times for the 12 solvers
on the O3K and XT3, respectively. Figure 10 shows the
solver iteration counts for the XT3, and Figure 11 shows
the infinity norm of the final computed residual vector.
For the SPD matrix, Table 3 shows the elapsed times and
speedups for certain solvers when solving the linear
systems corresponding to larger meshes. Finally, Figures
12 and 13 show the elapsed times when solving the
nonsymmetric linear system corresponding to the original
mesh.

1 2 3 4 5 6 7 8 9 10 11 12

SOR

ASM

Bjacobi

Jacobi

Figure 12. O3K solver times for the nonsymmetric matrix

1 2 3 4 5 6 7 8 9 10 11 12

SOR

ASM

Bjacobi

Jacobi

Figure 13. XT3 solver times for the nonsymmetric matrix

5. Conclusions

Conclusions observed from this study are as follows:

1) The times for loading the matrices and vectors
into PETSc are small compared with the solver
time if enough memory for the arrays is allocated
in the initialization process,

2) the load times can be hundreds of times larger
than the solver times if space for the A matrix is
allocated dynamically,

3) the XT3 was approximately twice as fast as the
O3K,

4) the GMRES solver was the slowest to achieve a
given convergence criterion but produced the
most accurate solution,

5) the successive over-relaxation preconditioner
performed much better on the O3K than on the
XT3,

6) the overall best solvers for these linear systems
were Conjugate Gradient and Conjugate Residual
using the block Jacobi preconditioner,

7) some solvers gave identical results on the O3K
and XT3, while others did not with even the
number of iterations being different, and

8) a superlinear speedup was observed for some
solvers for small processor counts on the O3K.
For example, GMRES using the block Jacobi
preconditioner gave a speedup of 2.99 on the
O3K when doubling the number of PEs from 8 to
16. Here, the iteration count was 586 on 8 PEs
and 584 on 16 PEs.

Acknowledgment

 This work was supported in part by a grant of
computer time from the DoD High Performance
Computing Modernization Program at the ERDC MSRC,
Information Technology Laboratory, Vicksburg, MS.

References

1. Dongarra, J.J, I.S. Duff, D.C. Sorensen, and H.A. van
der Vorst, Numerical Linear Algebra for High-
Performance Computers, SIAM, Philadelphia, 1998.

2. Greenbaum, Anne, Iterative Methods for Solving Linear
Systems, SIAM, Philadelphia, 1997.

3. Karypis Lab,
http://glaros.dtc.umn.edu/gkhome/views/metis/metis/m
ain.html, 2007.

4. Kelley, C.T., Iterative Methods for Linear and
Nonlinear Equations, SIAM, Philadelphia, 1995.

5. PETSc, http://www-unix.mcs.anl.gov/petsc/petsc-
as/index.html, 2007.

6. Rheinboldt, W.C., Methods for Solving Systems of
Nonlinear Equations, Second Edition, SIAM, Philadelphia,
1998.

