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The multi-fidelity Treed Meta-Model (TMM) framework developed and applied here
creates a tree-based partitioning of an aerodynamic design space and employs indepen-
dent Kriging surfaces in each partition to globally model computationally inexpensive low-
fidelity analysis data. Using the low-fidelity meta-model to select points for evaluation
with a high-fidelity analysis tool, a multi-fidelity global model is created from collocated
high and low fidelity data points. A steady-state genetic algorithm is used to construct an
optimal partitioning scheme based on the number of points in each partition and the com-
bined predictive capabilities of the Kriging surfaces, as measured through cross-validation.
The TMM framework mitigates the effects of the “curse of dimensionality” associated with
surrogate modeling of large datasets, allows for parallelization of design space searches, and
increases model flexibility by using a number of smaller Kriging surfaces. Uniform incre-
mental sampling is incorporated to build the low-fidelity database progressively while the
GA optimizes the partitioning scheme using available data. High-fidelity data points are
chosen using a Least Angle Regression Scheme (LARS) to approximate the sensitivity of
the meta-model to error in the low-fidelity points. The process is demonstrated from low-
fidelity meta-model construction to multi-fidelity model optimization. The optimization
includes direct searches on the design space using both the low and high-fidelity analysis
tools, as well as searches of the low-fidelity and mulit-fidelity meta-models. The results
will show not only the ability of the TMM framework to create a sufficiently accurate
partitioned low-fidelity surface but also whether the selection of high-fidelity points will
create a multi-fidelity model capable of locating a different optimal than the low-fidelity
meta-model.

I. Introduction

In the area of aerodynamic optimization, the use of surrogate models or meta-models to reduce computa-
tional costs has quickly grown in popularity. Meta-models allow designers to conduct inexpensive searches

of complex design spaces with the bulk of the computational expenses restricted to the initial database
generation. As design problems grow in dimensionality however, the number of design evaluations needed
to make useful meta-models creates a computational bottleneck in generating the model database. For most
aerodynamic applications, designers are given a choice of analysis codes of varying computational expense
to use in an optimization process. In direct search optimization, different analyses are used to reduce com-
putation time, using low fidelity codes in the preliminary stages of optimization and higher fidelity codes
in the final stages to verify optimal designs. The assumption that high-fidelity corrections are only needed
near the low-fidelity extremum often leads a designer to a local high-fidelity extremum. However, this ap-
proach of using both high and low-fidelity data could be used to ease the database generation bottleneck of
global meta-models. Creating a higher dimensional global meta-model to use in optimization requires using
high-fidelity data in regions where the high and low-fidelity analyses differ, and low-fidelity data where they
do not. This decision is not entirely straight forward and often requires user intuition or ad hoc methods.

∗PhD student, Stanford University, anajn@stanford.edu
†Professor, Stanford University, jjalonso@stanford.edu
‡Associate Fellow AIAA, NASA Ames Research Center, tpulliam@mail.arc.nasa.gov

1 of 19

American Institute of Aeronautics and Astronautics



Addressing the primary computational bottleneck of database generation does not make one immune to
the main drawback of meta-models, the so-called “curse of dimensionality,” wherein the high dimensional
design spaces require large populations of designs and cause the meta-model itself to become computationally
intractable. Global meta-models can also fail when faced with design space discontinuities, a problem which
becomes more frequent as aerodynamic design problems become more complex. Many methods attempt to
address one or more of these problems, but few address all of them, and none have done so successfully.

In the past the meta-model curse of dimensionality has been handled successfully in the field of optimiza-
tion, but usually in a way that leads the user away from an accurate global model. Trust-region methods
reduce the size of the design space as an optimization algorithm progresses, creating a local meta-model that
is more accurate.1 These smaller models are less expensive in large design spaces, but the requirement of a
coarse initial global model does not guarantee convergence to a global optimum. Other methods use global
models that begin with a coarse data set and enrich the model by adding points along the search path of an
optimization algorithm.2 These methods also suffer from the inaccuracy of the initial coarse mesh, and the
models can become ill-conditioned if search points are located too closely together.

The Treed Gaussian Process (TGP)3 addresses a number of the problems common to meta-models.
By partitioning the design space and fitting multiple Gaussian processes via Markov-chain Monte Carlo
(MCMC) simulations, the TGP is adept at handling design space discontinuities. In addition it employs
adaptive sampling which attempts to distribute resources more intelligently by balancing global exploration
and local, feature-based exploration. The current implementation however, uses one large MCMC simulation
to solve simultaneously for the models in all partitions, a method which becomes computationally expensive
with large design populations.

The TGP approach presents a solution to many of the problems facing meta-model implementation.
Partitioning presents an inherent ability to handling domain discontinuities as well as increased accuracy
by allowing for different models in different areas of the domain. The curse of dimensionality, however,
could be easilyt mitigated if each model were solved independently rather than as a whole system. When
each model is solved independently, optimization on the partitioned domain becomes easily parallelizable,
further reducing the computational cost of searching the design space. Adding the capability of multiple
levels of solver fidelity would then create a framework that addresses all the major concerns facing efficient
meta-model implementation.

The following is an implementation of the multi-fidelity Treed Meta-Model (TMM) framework, a modeling
capability using multiple Kriging surfaces either for aerodynamic database creation or optimization. The
TMM approach creates an optimal partitioning scheme of the design space, minimizing the global modeling
error and computational cost of the separate Kriging surfaces. Though breaking up the data inherently leads
to a loss of information in a global sense, in many cases partitioning the domain can create a more accurate
model than a global Kriging with the ability to vary the local Kriging model variables applied in each
area. By choosing the most appropriate local regression function and covariance function, the independent
Kriging surfaces can model complex design spaces which often include regions of both well and ill-behaved
data. Partitioning also allows handling of possible discontinuities in the data, and keeps the computational
costs of a global model low by using smaller Kriging surfaces. During the optimization process within which
the partitioning scheme is created, the TMM framework simultaneously builds the database of points on
which the model is based. The parallel nature of the database construction and domain partitioning creates
the ability to have an accurate low-fidelity global model by the time the database is sufficiently populated. In
this manner, all available information is used to drive the evolution of the model while the usefulness of data
points being generated is monitored. The process can then halt data point evaluations once augmentations
to the database produce no significant improvement to the low-fidelity model. The multi-fidelity meta-model
is created using a subset of the low-fidelity points and their corresponding high-fidelity responses. The high-
fidelity subset is chosen using the Least Angle Regression Scheme (LARS)4 to determine which low-fidelity
design points cause the largest change in the low-fidelity global model if an error in the low-fidelity analysis is
present. LARS obtains a lower order regression model of the meta-model sensitivity, which indicates a subset
of the design points that are responsible for a majority of the response. Once the collocated multi-fidelity
data have been evaluated with the high-fidelity analysis tool, the multi-fidelity global model is creating
using the low-fidelity data as an input to the collocated high fidelity response. In this fashion, what was
an N-dimensional design space in low-fidelity, using data locations as inputs and low-fidelity solutions as
responses, turns into an N+1 dimensional space when the low-fidelity solutions are added as an input and
the high-fidelity solution is the response. Though the multi-fidelity model is created using only the collocated
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high and low-fidelity points, the entire low-fidelity dataset is used to evaluate the low-fidelity model which
is needed as an input at any point the multi-fidelity response is desired.

The goal of this paper is to demonstrate the process from low-fidelity meta-model construction to multi-
fidelity model optimization. The optimization example will include direct searches of a design space using
the low and high-fidelity analysis tools TRAN2D and ARC2D, as well as searches using the meta-models
constructed with the TMM framework. The comparison between the low-fidelity meta-model search and the
direct search with TRAN2D will illustrate the ability of the low-fidelity meta-model to locate the TRAN2D
optimal, an indication that the meta-model is a good approximation of the low-fidelity design space. The
differences between the TRAN2D and ARC2D direct search results will demonstrate how comparable the
high and low-fidelity optimal configurations are. The approximate high-fidelity optimal found by searching
the multi-fidelity meta-model will then be compared to the optimal found by directly searching the space
using ARC2D. The results will show not only the ability of the TMM framework to create a sufficiently
accurate partitioned low-fidelity surface but also whether the selection of high-fidelity points will create a
multi-fidelity model capable of locating a different optimal than the low-fidelity meta-model.

II. GA Partitioning Using Kriging Models

The design spaces of interest here are characterized as hypercubes of dimension N, where N is the
number of design variables. The design variables function as inputs to the meta-model whose output is an
approximation of an objective function. As we are studying aerodynamic databases, the objective function is
related to the output of an aerodynamic analysis code. The partitioning of the hypercube domain is based on
a binary tree structure that splits the design space perpendicular to the axes. Each partition is modeled with
an independent Kriging surface based on the data within the partition boundaries. The predictive capability
of each independent Kriging surface is determined via a validation of the surface, which is averaged over all
the partitions to get a global figure of merit for each partitioning scheme. This figure of merit, along with a
penalty function to restrict the number of points in each partition, is the objective function for a steady-state
Genetic Algorithm,5 which optimizes the partitioning tree structure to obtain an accurate, low-cost global
model.

II.A. GA Design Variables

The design variables of the GA are encoded to completely describe any binary tree partitioning scheme. The
number of design variables, or genes, is determined by the user based on the prescribed maximum depth of
the tree structure. For each tree structure the genes that describe it are encoded as follows.

• Genes 1 through K determine upon which axis each split will occur, or whether no split will occur,
with K equal to the total possible number of parent nodes based on the user-determined maximum
tree depth.

• Genes K + 1 through 2K + 1 determine where along the chosen axis each split will occur.

Figure 1(a) shows a tree of depth 2 with 4 possible partitions and 3 parent nodes.
The genes that determine along which axis to make each break are integers that vary from 0 to the

number of axes in the design space, where a 0 value indicates no break at all. The genes that determine
where along the chosen axis to make a break are integers that vary from 1 to the number of possible break
locations. Due to the quick computational times of low-fidelity solvers, it is prudent to restrict the search
space of the GA to aid in convergence to a good partitioning scheme. Limiting the break locations to lie on
10% intervals along an axis would give 9 possible break locations. The genes needed to create the tree in
Fig. 1(a) would then be as follows:

[g1 = 1, g2 = 2, g3 = 2, g4 = 5, g5 = 2, g6 = 4] (1)

The first gene indicates the first break will be along axis number 1, or the x1 axis. Accordingly, the second
and third genes indicate the corresponding breaks will be along axis number 2, or the x2 axis. Genes 4
through 6 correspond to break locations at 50%, 20%, and 40%, respectively. The locations of the breaks are
normalized, so with the fourth gene indicating a break location of 50%, the first break will be determined
by

xbreak = 0.5[x1max − x1min] + x1min (2)
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(a) tree of depth 2 with 4 partitions (b) tree of depth 2 with 3 partitions

Figure 1.

Subsequent breaks use the maximum and minimum values of the current partition in the above equation.
For the tree in Fig. 1(a) the minimum and maximum values for both x1 and x2 are 0 and 1 respectively, so
the actual breaks occur at x1=0.5, x2=0.2, and x2=0.4. If the design variables were modified to include a 0
for the third design variable instead of a 2, the tree in Fig. 1(b) would result. This tree shows that regardless
of the values given for the break location, the axis along which to break the domain was given by the integer
0, which indicates no break is to occur.

II.B. Kriging Surface Construction

A Kriging surface, first developed in the geostatistics community,6,7, 8 models data based on the assumption
that the responses of a set of data points are the outcome of a stochastic process, thus we can write the
response vector Y as

Y = Fβ + e. (3)

where F is a matrix of the underlying regression function on the specified design sites, and e is the white
noise of a stochastic process. It is assumed that

E[e] = 0, E[eeT ] = σ2R

Where E[.] denotes the expected value, and R is the covariance matrix given by a correlation function
between design sites. The Kriging model is created by solving for β and e with a generalized least squares
fit given F and R.

The underlying regression function is chosen to be a polynomial of either zero, first or second order. The
matrix F is then defined as follows9

Constant, p = 1:

f1(x) = 1, (4)

Linear, p = n+ 1:

f1(x) = 1, f2(x) = x1, ..., fn+1(x) = xn, (5)

Quadratic, p = 1
2 (n+ 1)(n+ 2):

f1(x) = 1
f2(x) = x1, ..., fn+1(x) = xn

fn+2(x) = x2
1, ..., f2n+1(x) = x1xn

f2n+2(x) = x2
2, ..., f3n(x) = x2xn

... ..., fp(x) = x2
n.
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The correlation functions chosen for this work are in the form of products of 1-D correlations,9 such that
the matrix R is given as

R(θ, d) =
n∏

j=1

Rj(θ, dj), (6)

where θ is a range parameter and d is the distance between data points. The 1-D correlations used here are
as follows:

Name Rj(θj , dj)
Exponential exp(−θj | dj |)
Gaussian exp(−θj | dj |θn+1) 0 < θ ≤ 2
Linear max(0, 1− θj | dj |)

The θ values in each dimension are chosen by the Kriging model algorithm, using an upper and lower
bound and a pattern search optimization algorithm10 that solves

minθ{ψ(θ) =| R | 1
m σ2}. (7)

The choice of regression and covariance function is performed based on a reduction of | R | 1
m σ2. Different

regression functions and covariance functions are used in each partition of the design space, something that
is not possible with traditional global Krigings.

The mean squared error of the Kriging predictor is given by the following,

s2(x∗) = σ2[1− r′R−1r +
(1− 1′R−1r)2

1′R−11
]. (8)

where 1 is a vector of ones. The root mean squared error, or s is often referred to as the Kriging predicted
standard error.

II.C. GA Objective Function

The objective function minimized by the GA is a combination of the Kriging predicted standard error and the
’standardized cross validated residual’ (SCVR).11 The SCVR is calculated by 1-off cross validation, meaning
that data points in each partition are removed one at a time and a new data model is created with the
remaining data. The new data model is used to predict the point that was removed from the dataset, and
the comparison of the predicted and actual values is used to create a figure of merit for the model. With
each prediction, the Kriging predictor returns as estimate of the standard error. The Kriging model relates
to the standard error as a confidence interval, indicating there is a 99.7% certainty that the true value lies
within a bound of +/-3 times the standard error. For each data point removed in a 1-off cross validation,
the number of standard errors that the actual value is above or below the predicted value is the SCVR at
that point. This figure of merit is calculated using the following equation:

SCV Ri =
y(x(i))− ŷ−i(x(i))

s−i(x(i))
(9)

In the above equation y is the actual value, ŷ is the predicted value, and s is the predicted standard error.
The -i subscript indicates a value resulting from a Kriging model that was not constructed using y(x(i)).
According to Jones et.al.,11 the absolute value of the SCVR should be below 3 in order for the model to be
considered accurate. However, if the Kriging predicted standard error is high, we may have a large confidence
interval and a bad model with an acceptable SCVR. In order to ensure the GA drives the partitioning to
create a model with both good predictive properties and a tight confidence interval, the following equation
is used as the objective function.

obj =
1
M

M∑

k=1

1
Nk

Nk∑

i=1

(F (x(i)))

F (x(i)) =
s−i(x(i)) + |SCV Ri|
s−i(x(i))

{
if |SCV Ri| > 3
if |SCV Ri| ≤ 3
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Where M is the number of partitions and Nk is the number of points in partition k.
With a traditional 1-off cross validation, every point in the dataset is removed one at a time and the

figure of merit is averaged over the number of data points. However, this implies that for each partitioning
scheme the Kriging surface must be generated N times, where N is the number of data points. This can
be computationally expensive with large datasets, leading us to use a modified 1-off cross validation. The
modified cross validation takes only a sample of the dataset, say 20 points in each partition, and uses these
20 points as the 1-off test points for cross validation. A drawback to using only a small sample of the data
points for a 1-off cross validation is a less accurate representation of the true figure of merit. If the best
member of the GA is reevaluated and a different set of data points are chosen to evaluate the Kriging figure of
merit, the GA objective function may change which presents a hurdle for the convergence of the GA. In order
to ensure convergence, the best GA population member is periodically reevaluated with a new sampling of
data for the 1-off cross validation and the new objective function is averaged with the old objective function.
In this manner, the best GA population member will asymptotically approach the value of a complete 1-off
cross validated objective function as the GA evolves.

To keep the GA from choosing unfit partitioning schemes, a penalty function is applied to the number of
points in each partition. If there are too few points, the Kriging surface will be ill-conditioned. If there are too
many points the Kriging surface will be computationally expensive. The penalty function is a multiplicative
penalty using a probability density function given by the following

P (M) = pdf(M,µ, σ2)/pdf(µ, µ, σ2) (10)

where M is the number of points in the current partition, µ is the desired number of points, which is 200 for
the examples below, and σ2 is the standard deviation, which is chosen to be 50 points. When the number
of points in the parition is µ, P = 1, and P > 1 otherwise.

II.D. Partitioning Results

Major concerns related to partitioning the domain include lack of information in forming the local Krig-
ing surfaces and discontinuities at the partition boundaries. To explore the modeling capabilities of the
Treed Meta-Model, 2D and 4D databases were generated as example design spaces using the analysis codes
TRAN2D and ARC2D described in section V, respectively. A fine-grid database was generated to represent
the “true” surface, and a coarse-grid database was used to create the meta-model. The 2D coarse-grid
database used to create the model was 500 points and while the 4D database was 2000 points. The 2D
design space was modeled with both a TMM and a single Kriging, to illustrate the differences with the two
approaches. The 4D database was only modeled with the TMM, as the coarse-grid database was beyond
the capabilities of a single Kriging. The 2D meta-model surfaces are shown in Figs. 2 and 3. The “true”
2D surface, created with 1470 points is shown in Fig. 4. Both the treed Kriging and single Kriging surfaces
model the true surface very closely, and there are no significant discontinuities at the partition boundaries of
the TMM model. Slices of the 4D design space are shown in Figs. 5 thru 10. Again the treed Kriging surface
slices compare well with the true surface, and do not show discontinuities at the partition boundaries. The
mean squared errors of the 2D surfaces and 4D slices are given in Table 1. The mean squared errors of the
2D TMM and single Kriging surfaces are low and compare well with each other, further illustrating that
both surfaces do a good job of modeling the true surface. The errors of the 4D slices are slightly higher than
the 2D errors, but still indicate the 4D model compares well with the true 4D surface. In all of the plots
showing the treed meta-models there are no significant discontinuities at the partition boundaries, most of
the surface regions spanning the boundaries are quite smooth.

III. Database Creation

Creating the appropriate partitioning scheme is only half the battle of creating a good low-fidelity global
model. If the database being used to create the model is too sparse or does not contain the interesting
features of the design space, the resulting model will fail to resolve desirable global features. In order to
concurrently build the database during the partitioning process it is necessary to incrementally add points
in an intelligent way such that the generated surface converges toward the true surface.

Typical methods for incrementally harvesting data used to create surrogate models for optimization
purposes include two types, those that employ available information about the surface, and those that do
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Figure 2. TMM using 500 Point Database
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Figure 3. Single Kriging Model using 500 Point Database
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Figure 4. True 2D surface (obtained with 1470 Points)

Surface MSE
2D Single Kriging 0.00072093
2D TMM 0.00083275
4D Slice #1, TMM 0.0016
4D Slice #2, TMM 0.00063803
4D Slice #3, TMM 0.0024

Table 1. MSE of 2D and 4D Slice surfaces
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Figure 5. Slice #1 of 4D Surface (106,800 Points)
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Figure 6. Slice #1 using TMM (2000 Points)
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Figure 7. Slice #2 of 4D Surface (106,800 Points)
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Figure 8. Slice #2 using TMM (2000 Points)
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Figure 9. Slice #3 of 4D Surface (106,800 Points)
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Figure 10. Slice #3 using TMM (2000 Points)

not. Methods of choosing data points that do not require information about the surface focus on sampling in
a uniform manner (Latin hypercube, Monte-Carlo, etc), while those that do use available information tend
to focus on locations of possible extrema (Expected Improvement Function11). In order to build an accurate
database from the ground up, the primary stages of data harvesting should focus on uniform sampling.
Once the addition of uniform data sets no longer improves the surface, the sampling method should switch
to locating extrema, or what is considered ”adaptive sampling”.

III.A. Uniform Sampling

When dealing with large, complex design spaces, it is often unclear how many points may be necessary
to resolve key features with a response surface. Incrementally adding data can create an opportunity to
monitor resolution convergence, if the design sites are appropriately chosen. Ideally the addition of any
points would improve the predictive capabilities of a response surface. New points that are chosen very
near existing points, however, can produce little or no improvement. In some cases clustered points that are
too close together can cause the Kriging matrix to become ill-conditioned. To get the maximum amount of
information out of a minimum number of points with no a priori knowledge of the design space, requres a
uniform sampling.

Several sampling methods are capable of producing relatively uniform samples, e.g. Latin Hypercube
sampling, however not many methods allow incremental uniform sampling. Latin Hypercube sampling
requires a priori knowledge of how many points are desired in order to divide the domain into the appropriate
number of hypercubes. This method creates nearly uniform point distributions, but requires a completely
new set of data if additional points are desired. In this fashion, true Latin Hypercube sampling does
not allow for incremental point addition unless the maximum number of samples is known. Romero, et.
al.12,13 examine a number of uniform sampling techniques for progressively building response surfaces and
measuring the convergence properties of those surfaces created with different sampling techniques. They
note two distinct types of these sampling methods, those with fixed increment addition and those with
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Figure 11. Digital Sequence Point Projections

9 of 19

American Institute of Aeronautics and Astronautics



flexible increment addition. Flexibility is desirable when we move to parallelization of the framework, as
the number of available processors will not always match the number of points needed for each incremental
sample. The ideal sampling method would create a uniform sample and maintain that uniformity regardless
of the number of points added in each incremental update. Romero, et. al. describe the Halton sequence
used in quasi-Monte Carlo sampling as having this property, but it can be shown14 that when this sequence
is extended to 10 dimensions, the uniformity in higher dimensions is only maintained if data increments are
very large. Owen14 describes other sampling methods used in quasi-Monte Carlo sampling called digital
sequences that maintain more uniformity in higher dimensions (Sobol’,15 Faure,16 and Niederreiter17).

Ideally we would like to choose a sampling scheme that demonstrates the uniformity of Latin Hypercube
sampling, while allowing incremental sampling. With very large point samplings, all four sequences, Halton,
Sobol, Faure, and Niederreiter, approach uniformity in both low and high dimensions, but this does not
necessarily lend them to incremental sampling. Figure 11 shows the higher dimensional projections of
the only the first 100 points of the Halton, Sobol, Faure and Niederreiter sequences on a unit hypercube
of dimension 10. Visual inspection of these sequences shows that the Sobol sequence achieves the most
uniform projection of the points in higher dimensions. This is an indication that the Sobol digital sequence
will produce the most uniform samples on an incremental basis compared to the other sequences studied.
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Figure 12. Prediction Error, Latin Hypercube Sam-
pling and Sobol Sequence

In order to compare the Sobol sequence with the
known uniformity of a Latin Hypercube sampling, each
method is used to generate a list of 500 points. This
list is then incrementally sampled from and used to cre-
ate a 4D global Kriging surface. The convergence of the
Kriging surface toward the actual surface should depend
largely on the uniformity of the sample data. Due to
the stochastic nature of Latin Hypercube sampling, the
Latin Hypercube list is generated 5 times using a differ-
ent seed, and the results averaged to give a general figure
of convergence. The convergence is predicted using the
mean squared error of 500 randomly selected points as
predicted by the Kriging surface. These points are held
constant for both the Sobol sequence and each of the Latin
Hypercube trials. Results of this convergence study are
shown in Fig. 12. The comparison of the two methods
show that the uniformity of the Sobol sequence and Latin
Hypercube sampling are comparable in 4 dimensions.

IV. Parallel Implementation

The goal of any parallel implementation is proper load balancing such that all available processors are
continuously busy. As described above, there are two main tasks in creating a treed data model: populating
a database and partitioning the domain. Using a low-fidelity analysis tool for database creation, the data
evaluations will be relatively quick, which leads to an equal subdivision of available processors for the two
main tasks. Within each subdivision there is one processor that is designated as the “manager,” responsible
for data collection and convergence checks. The other processors are “workers,” responsible for data analysis.
Before the process begins the database is initialized with the first uniform sample.

Once the initial database has been evaluated, the GA is initialized and the GA worker processors begin
evaluating population members. The processors creating the database are continuously evaluating uniformly
sampled data points until the surface has converged and the GA processors have issued a stop command.
The GA process and the addition of data points is completely independent. That is to say, the GA processor
group does nothing when new points are added to the database by the data evaluation group, except to
continue on with the GA. The current database resides in a file in the GA directory and is only called when
a GA worker evaluates an objective function, which means at any point in the GA process, some population
members could be out-of-date, having been evaluated with a previous dataset. In an effort the keep the
GA converging to the optimal solution for the current database, the best population member is reevaluated
each time new data are added to the dataset. If the best population member is no longer the best after this
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reevaluation, the population is resorted and the new best member is also reevaluated with the new dataset.
This updating procedure keeps the population members with the most influence on the evolution of the
entire population are as current as possible.

V. Aerodynamic Analysis Codes

Using both high and low-fidelity analysis codes to form a multi-fidelity model eases the computational
burden of populating a large database. The low-fidelity analysis code used here, TRAN2D, is based on a
nonlinear full potential solver with similar capabilities to the late 1970’s codes, TAIR18 and FLO36.19 The
nonlinear full potential code is applied to two-dimensional (2D) airfoils on curvilinear meshes. Transonic full
potential codes are very efficient, as compared to say Euler equation codes, but their solutions are limited
in 2D to flows with pre-shock Mach numbers, MC ≤ 1.3. Above that critical limit Full Potential results
produce inaccurate shock locations and therefore incorrect loads. The high-fidelity analysis code used here
is ARC2D,20 which solves the Euler or Navier-Stokes equations. The Euler analysis mode for airfoils in
curvilinear coordinates is chosen here. Euler solutions do not suffer from the inaccuracies at high pre-shock
Mach numbers and can produce very accurate results across the full subsonic to supersonic range. Details
of these two methods and codes are available in numerous publications.18,19,20 The homegrown transonic
code, TRAN2D, was chosen because its numerical implementation is very close to that found in ARC2D.
Therefore the two analysis codes will produce consistent results in the region of full potential applicability.
Both analysis codes are applied to the same ”C” mesh curvilinear grid, at the same flow conditions. The mode
of operation and solution process are made to be consistent in terms of accuracy and solution convergence.
Typically transonic full-potential codes are on the order of 10-20 times faster than an Euler code. Therefore,
we characterized our low-fidelity analysis as being much faster than the high-fidelity analysis.

Figure 13. PARSEC airfoil geometry

The airfoil shapes generated for analysis with
TRAN2D and ARC2D are determined using 10 “PAR-
SEC”21 input parameters as shown in Fig. 13: leading
edge radius, rle, upper and lower crest location (chord-
wise locations, Xup and Xlo, and thickness values, Zup

and Zlo), upper and lower crest curvature, ZXXlo and
ZXXup, trailing edge coordinate, ZTE , direction, αTE ,
and wedge angle, βTE .

V.A. Multi-Fidelity Meta-Model Examples

The examples included here demonstrate the convergence of the single-fidelity meta-models with the pro-
gressive uniform sampling, and the evaluation times required for obtaining a predictive mean squared error.
In addition they extend the single-fidelity meta-models to multi-fidelity and analyze the predictive capability
with the high-fidelity analysis tool.

As the uniform sampling progressively adds points to the low-fidelity database, the meta-model should
converge to the true surface, reducing the predictive mean squared error (MSE). The predictive capability
of each of the meta-models is measured by predicting the response on a coarse mesh and comparing the
predicted values with the corresponding analysis tools to obtain a predictive MSE. In the first example, the
domain is small enough to allow creation of a single Kriging surface with which the treed meta-model can
be compared. The evaluation times of obtaining the predictive MSE are shown to analyze the cost benefit
of partitioning the domain.

V.A.1. Two-Dimensional Meta-Model

This example investigates the 2D design space produced by analyzing a constant shape airfoil at varying M∞
and α with data produced using both TRAN2D and ARC2D. The objective function is the lift coefficient of
the airfoil, CL.

The convergence of the 2D Treed meta-model is shown in Fig. 14 in terms of predictive MSE vs. number
of points added to the database via progressive uniform sampling. The additional curves in Fig. 14 depict
the convergence of a single Kriging surface and a treed meta-model with artificially created partitions that
equally divide the design space. These curves are included to compare the convergence of no partitioning
and an arbitrary partitioning scheme with the TMM partitioning created with the GA. Both partitioning
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schemes converge faster than the single Kriging, indicating paritioning of the domain gives the meta-model
more freedom, using different Kriging regression and correlation functions, to accurately model the surface.
In addition, the partitions created with the GA show a faster convergence than the artificially created
partitioning, illustrating importance of optimizing the partitioning scheme. The wallclock time, in seconds,
required for one processor to construct the model can be seen in Fig. 15. Again the 2D TMM is compared to
a single Kriging surface and the artificially partitioned surface. Both partitioned surfaces show comparable
computation times, which are nearly an order of magnitude savings in cost over the single Kriging surface.
The MSE plots can also be used to determine at which point the surfaces are converged in order to chose the
database from which the high-fidelity points will be chosen. The 2D TMM surface converges with a uniform
database of 600 points.
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Figure 14. MSE vs. Number of Points
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Figure 15. Computation Time for Constructing Meta-
model

With the converged low-fidelity meta-model available, the Least Angle Regression Scheme was performed
producing a 34-point high-fidelity subset. The low and high-fidelity 2D surfaces are shown in Figs. 16 and 17,
while the multi-fidelity surface created with the 34 collocated high and low-fidelity points is shown in Fig. 18.
The low and high-fidelity surfaces show significant differences at the peak near the transonic region around
M = 1. Though the multi-fidelity surfaces is slightly noisy at the peak, it captures the magnitude of the
high-fidelity surface and the approximate shape. The mean squared errors in Table 2 were calculated by
using the low and multi-fidelity models to predict the high-fidelity surface at 500 test points. The accuracy of
the multi-fidelity meta-model in predicting the high-fidelity response is reflected in the MSE, which is nearly
an order of magnitude lower than the MSE of the low-fidelity meta-model in predicting the high-fidelity
response.

V.A.2. Four-Dimensional Meta-Model

This example extends this 2D design space presented above to 4 dimensions by introducing Zup and Zlo as
additional design variables and keeping the other PARSEC variables constant. For the 4D example design
space, a single Kriging surface was not constructed due to the number of points needed in the database. The
MSE and model construction time of the 4D Treed meta-model are shown in Figs. 19 and 20. The timing
curves of the 2D TMM and single Kriging from the example above are included in Fig. 20 for comparison.
The computation time of the 4D TMM continues along the same trend as the 2D TMM with significantly
lower cost than the 2D single Kriging surface.

The 4D model appears to be converged at 1600 points but the MSE dips down again at 1800 points,
therefore the 1800-point database will be used for the low-fidelity meta-model. Performing LARS on the
converged low-fidelity database created a 201-point subset. Slices of the 4D multi-fidelity model created
with 201 collocated points are shown in Figs. 23 and 24, along with the true slices shown in Figs. 21 and 22.
The multi-fidelity slices shown in Figs. 23 and 24 capture the general shape of the true surface but do show
some rounding off at the peaks and noise near the domain boundary. The mean squared errors in Table 2,
calculated by using the low and multi-fidelity models to predict the high-fidelity surface at 500 test points,
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Figure 16. True Low Fidelity Surface (1470 Points)
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Figure 17. True High Fidelity Surface (1470 Points)
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Figure 18. TMM Surface,34 High and Low-Fidelity points

TMM Surface High-Fidelity MSE
2D Single-Fidelity, 0.0248
608 Low-Fi points
2D Multi-Fidelity, 0.0035
34 Hi/Low-Fi points
4D Single-Fidelity, 0.0185
1800 Low-Fi points
4D Multi-Fidelity, 0.0041
201 Hi/Low-Fi points

Table 2. MSE of 2D and 4D surfaces
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Figure 19. MSE vs. Number of Points
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Figure 20. Evaluation Time for Constructing Meta-model
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indicate that the multi-fidelity surface is still nearly five times more accurate than the low-fidelity model at
predicting the high-fidelity response.
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Figure 21. 4D TMM Slice #1 (201 collocated Points)
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Figure 22. 4D TMM Slice #2 (201 collocated Points)
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Figure 23. 4D True High Fidelity Slice #1
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Figure 24. 4D True High Fidelity Slice #2

V.B. Meta-Model Optimization Example

This example keeps the flow conditions fixed at M∞ = 0.7 and α = 2. These conditions were chosen such
that for the class of airfoils being investigated, there will be regions of the design space where TRAN2D and
ARC2D are not consistent. The 4 design variables chosen to control the shape are Xlo, Xup, ZXXlo, and
ZXXup . All other PARSEC variables are held constant.

The objective function for this optimization problem is based on both the lift and drag of the airfoil and
a thickness constraint, defined by the following equation

f = (1− CL

C∗L
)2 + CD + tc (11)

Where C∗L is the target CL, set at 0.55, and tc is the thickness constraint. The thickness constraint is a soft
constraint that imposes a penalty on the objective function if the average airfoil thickness is below some
nominal value.

The goal here is to demonstrate the process from low-fidelity meta-model construction to multi-fidelity
model optimization. Beginning with a direct search on the design space using a generational GA and
the low-fidelity analysis tool TRAN2D, results are compared to an optimization performed on the low-
fidelity meta-model combined with a steady-state GA. This comparison will illustrate the ability of the
low-fidelity meta-model to locate the low-fidelity optimal, an indication that the low-fidelity model is a
good approximation of the low-fidelity design space. The design space is then searched directly using a
generational GA and the high-fidelity analysis tool ARC2D. This will demonstrate how comparable the high
and low-fidelity optimal configurations are. The final step is to locate an approximate high-fidelity optimal
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by searching the multi-fidelity meta-model with a steady-state GA and comparing it with the high-fidelity
optimal found by directly searching the space using ARC2D. The results will show not only the ability of
the TMM framework to create a sufficiently accurate partitioned low-fidelity surface but also whether the
selection of high-fidelity points will create a multi-fidelity model capable of locating a different optimal than
the low-fidelity meta-model.

V.B.1. Meta-Model Construction

The convergence of the partition optimizing steady-state GA, shown in Fig. 25, indicates the low-fidelity
database is sufficiently populated once 1800 uniform points have been evaluated. The predictive capability
of the low-fidelity model is then measured by comparing the model to 500 randomly selected test points
evaluated with both the low and high-fidelity analysis tools. The calculated mean squared error of the
low-fidelity model for predicting both the low and high-fidelity responses are shown in Table 3. The data
indicates that the low-fidelity model is more accurate when predicting the high-fidelity response than the
low-fidelity response. It is important to keep in mind that the low-fidelity analysis tool is not valid in all
areas of the design space, leading to a noisy response that is more difficult to model. Adaptive sampling
could be used to obtain a more accurate low-fidelity model, but that step is not currently built into the
TMM framework and was not necessary for this optimization example.

The creation of a multi-fidelity model is aimed at predicting the high-fidelity response using collocated
high and low-fidelity data points obtained with a knowledge of only the low-fidelity surface. If the points
are chosen intelligently, the multi-fidelity model should show improvement on the predictive capabilities of
the low-fidelity model. Using the 1800-point low-fidelity database, LARS produced a 143-point subset which
was subsequently evaluated with the high-fidelity analysis tool. Using the location of the collocated points
and the low-fidelity responses at each point as inputs, a 5-dimensional multi-fidelity model was created. The
predictive capability of the multi-fidelity model was measured using the same 500 test points as was used
with the low-fidelity model. The mean squared errors of the multi-fidelity model for predicting the low and
high-fidelity responses are shown in Table 3. The data indicates that the multi-fidelity model is better at
predicting both responses than the low-fidelity model, but is more accurate at predicting the high-fidelity
response.
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Figure 25. Convergence of Steady-State GA Objective
Function

Model Response MSE
Low-Fidelity Low-Fidelity 0.0596
Meta-Model Response
Low-Fidelity High-Fidelity 0.0297
Meta-Model Response

Multi-Fidelity Low-Fidelity 0.0226
Meta-Model Response

Multi-Fidelity High-Fidelity 0.0054
Meta-Model Response
Table 3. Meta-Model Predictive MSE

V.B.2. Optimization Results

Following the construction of both a low-fidelity treed meta-model and a multi-fidelity meta-model, the
optimzation begins by locating the low-fidelity optimal design by searching the design space directly using
TRAN2D. The resulting design variables and Mach contours as analyzed by both TRAN2D and ARC2D, are
shown in Table 4 and Figs. 26 and 27, respectively. The TRAN2D and ARC2D solutions for the low-fidelity
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optimal are similar, which is expected given the pre-shock Mach number. Accordingly the objective function
found with TRAN2D and ARC2D for this configuration are nearly equal.

Figure 26. TRAN2D Direct Search Optimal Analyzed
with TRAN2D

Figure 27. TRAN2D Direct Search Optimal Analyzed
with ARC2D

Xup ZXXup Xlo ZXXlo

0.606 -0.719 0.700 0.150

Obj MC CL CD

TRAN2D 0.01071 1.29 0.56178 0.005247
ARC2D 0.01099 1.30 0.56044 0.004786

Table 4. TRAN2D Direct Search Optimization Results

The next step is to search the low-fidelity TMM to locate an approximation of the low-fidelity optimal
and compare it with the true optimal found above. Mach contours as analyzed by both TRAN2D and
ARC2D, are shown in Table 5 and Figs. 28 and 29, respectively. Although the MSE of the low-fidelity TMM
was not as low as expected, the optimal configuration found using the meta-model is close to that found with
TRAN2D. In addition the TRAN2D and ARC2D solutions are similar, indicating we are still in a region
where the low and high-fidelity analysis tools agree. This is confirmed by noting the TRAN2D pre-shock
Mach number is less than 1.3, leading to similar objective functions found with TRAN2D and ARC2D.

To determine whether the low-fidelity and high-fidelity optimal configurations are in the same location, a
direct search of the design space using ARC2D is used to produce the optimal design variables in Table 6. The
generational GA was run for 100 generations with 32 chromosomes before reaching convergence, requiring
roughly 3000 ARC2D evaluations. The Mach contours obtained from the TRAN2D and ARC2D analyses of
the resulting airfoil are shown in Figs. 30 and 31, respectively. The airfoil found with ARC2D is significantly
different to the one found with the TRAN2D optimization above, which is explained by comparing the
objective functions computed for this configuration using the two solvers. The objective function calculated
with TRAN2D for this airfoil is significantly higher than the objective function calculated with ARC2D. This
is a result of the pre-shock Mach number, which is outside the range of validity for TRAN2D. Accordingly the
Mach contours shown from the analysis of the airfoil with TRAN2D and ARC2D show significant differences,
as do the resulting values of CL and CD. Thus the high-fidelity optimal is in a different location than the
low-fidelity optimal, and resides in a regions where TRAN2D is not applicable.

The final step is to search the multi-fidelity meta-model. The optimal configuration found with the multi-
fidelity meta-model is shown in Table 7 and Figs. 32 and 33, in the same format as the other optimization
results. Though the design variables of the optimal found with the multi-fidelity meta-model are not identical
to the optimal found with ARC2D, visual inspection of the airfoil shows the two solutions are quite close.
Additionally, the pre-shock Mach number is outside the range of validity of TRAN2D, leading to different
Mach contours and objective functions from the TRAN2D and ARC2D analyses. Thus the multi-fidelity
model has located an optimal near the high-fidelity optimal, in a region where the low-fidelity tool is unable
to find the proper extrema.

In summary, the multi-fidelity meta-model was created with 1800 low-fidelity points and 143 high-fidelity
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Figure 28. Low-Fidelity TMM Optimal Analyzed with
TRAN2D

Figure 29. Low-Fidelity TMM Optimal Analyzed with
ARC2D

Xup ZXXup Xlo ZXXlo

0.468 -0.298 0.699 0.271

Obj MC CL CD

TRAN2D 0.02779 1.14 0.53044 0.002004
ARC2D 0.02657 1.16 0.55365 0.000614
Table 5. Low-Fidelity TMM Optimization Results

Figure 30. ARC2D Direct Search Optimal Analyzed with
TRAN2D

Figure 31. ARC2D Direct Search Optimal Analyzed with
ARC2D

Xup ZXXup Xlo ZXXlo

0.644 -0.750 0.700 0.159

Obj MC CL CD

TRAN2D 0.14424 1.58 0.75438 0.04172
ARC2D 0.005834 1.54 0.547282 0.030711
Table 6. ARC2D Direct Search Optimization Results
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Figure 32. Multi-Fidelity TMM Optimal Analyzed with
TRAN2D

Figure 33. Multi-FIdelity TMM Optimal Analyzed with
ARC2D

Xup ZXXup Xlo ZXXlo

0.638 -0.526 0.697 0.284

Obj MC CL CD

TRAN2D 0.83252 1.72 1.04905 0.068367
ARC2D 0.006898 1.64 0.553058 0.0481978

Table 7. Multi-Fidelity TMM Optimization Results

points. TRAN2D is roughly an order of magnitude faster to evaluate than ARC2D, thus the equivalent
number of high-fidelity evaluations required for the multi-fidelity meta-model is on the order of 300. With
the ARC2D direct search taking 3000 ARC2D evaluations, the multi-fidelity meta-model is 10 times less
expensive than the direct search, and was able to locate a good approximation to the high-fidelity optimal
where the low-fidelity data could not.

VI. Conclusions and Future Work

The multi-fidelity TMM framework makes it possible to extend global meta-modeling to higher dimen-
sional design spaces and complex design problems. In this paper, a highly parallelizable domain partitioning
algorithm and progressive sampling technique was presented that creates a global model with comparable
predictive capabilities to a single Kriging surface and an order of magnitude speed-up in evaluation time.
The implementation of LARS was shown to find a high-fidelity data subset creates a multi-fidelty global
model that compares well with high-fidelity test data. In addition, the optimization of a 4D design space
illustrated the capability of the multi-fidelity meta-model created with the TMM framework to locate an
optimal near the global high-fidelity optimum that was unobtainable with the low-fidelity data alone.

Future work includes taking a more sophisticated approach to choosing high-fidelity points to add to the
multi-fidelity surface in an attempt to improve the comparison of optimization solutions to the true optimal.
This will include implementing adaptive sampling that will build on the LARS multi-fidelity database by
choosing points that are likely to add new extrema, or information near existing extrema, to the meta-model.
More difficult multi-fidelity problems will also be investigated, including the optimization of an airfoil using
10-15 design variables, and the optimization of a 3D wing using 5-10 design variables.
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