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Abstract. As the sound speed is in�nite for incompressible ows, computation of

the pressure constitutes the sti�est component in the time advancement of unsteady sim-

ulations. For complex geometries, e�cient solution is dependent upon the availability

of fast solvers for sparse linear systems. In this paper we develop a Schwarz precondi-

tioner for the spectral element method using overlapping subdomains for the pressure.

These local subdomain problems are derived from tensor products of one-dimensional

�nite element discretizations and admit use of fast diagonalization methods based upon

matrix-matrix products. In addition, we use a coarse grid projection operator whose

solution is computed via a fast parallel direct solver. The combination of overlapping

Schwarz preconditioning and fast coarse grid solver provides as much as a fourfold re-

duction in simulation time over previously employed methods based upon deation for

parallel solution of multi-million grid point ow problems.

Key words. spectral element methods, domain decomposition, sparse matrices,

parallel algorithms.
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1. Introduction. We consider the problems encountered in large-

scale spectral element simulations of unsteady incompressible ows. For

semi-implicit time discretization of the incompressible Navier-Stokes equa-

tions based upon operator splitting, the linear subproblem associated with

the pressure/divergence-free constraint can become very ill-conditioned at

elevated resolutions, and consequently tends to be the most expensive phase

of the simulation when iterative solvers are employed. This problem can be

exacerbated by the presence of high-aspect ratio elements or widely varying

scales of resolution, both of which are frequently encountered in practice.

Therefore, a robust parallel preconditioning strategy is required.

We present a preconditioner for the pressure problem that derives from

a low-order �nite element Laplacian (with appropriate boundary condi-

tions) and is well suited for application to three-dimensional problems. The

low-order operator de�nes a system to which additive overlapping Schwarz

methods, as proposed by Dryja and Widlund (e.g. [11]), can be readily

applied. The combination of spectral methods and �nite element precondi-

tioning was �rst proposed by Orszag [27] and has been studied extensively

by Deville, Mund, and coworkers, (e.g. [9, 10]). For the case of the discrete

Laplacian, the combination of spectral methods, �nite element precondi-

tioning, and additive Schwarz methods has been investigated by Pahl [28],
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Pavarino and Widlund [30], and Casarin [5]. R�nquist [33] and Casarin

[6] have studied iterative substructuring methods for spectral element so-

lution of the fully-coupled steady Navier-Stokes equations. R�nquist also

proposed a block-Jacobi/deation-based scheme applied to the consistent

Poisson operator governing the pressure for the unsteady case [15, 32].

The present scheme is closely related to our earlier two-dimensional

work in which local subdomain problems were based upon linear �nite

elements [17]. Here we abandon the exible unstructured �nite element

(FEM) approach in favor of tensor-product forms for the local operators on

the overlapping regions. The tensor-product forms admit the use of solvers

based upon the fast diagonalization method (FDM) [7, 8, 31] that require

only O(KNd) storage and O(KNd+1) work per solve for problems in lRd

discretized withK spectral elements of orderN . Moreover, this formulation

obviates the need to tetrahedralize the Gauss points in lR3. Consequently,

we have been able to extend our earlier work to three dimensions and, for

several large runs, have found the method to yield a fourfold reduction in

simulation time over our previous deation-based production code [15, 16,

32].

The outline of the paper is as follows. In Section 2, we review the

spectral element formulation for the unsteady Navier-Stokes equations and

derive the system governing the pressure. In Section 3, we examine the

use of low-order discrete Laplacians as a basis for pressure preconditioners.

In Section 4, we extend this to develop an e�cient overlapping Schwarz

method based upon the FDM. In Section 5, we discuss the coarse grid

problem and our direct solver. In Section 6, we present numerical results

comparing the new method with earlier solution techniques. We close with

conclusions in Section 7.

2. Navier-Stokes discretization. As the nature of the pressure op-

erator is quite di�erent from discrete Laplacians based upon standard

weighted residual techniques, we briey review the temporal and spatial

discretization for the spectral element method.

We consider solution of the incompressible Navier-Stokes equations in

lRd, d = 2 or 3:

@u

@t
+ u � ru = �rp +

1

Re
r
2u in 
;

r � u = 0 in 
;

where u = (u1; : : : ; ud) is the velocity vector, p the pressure, and Re =
UL
�

the Reynolds number based on a characteristic velocity, length scale, and

kinematic viscosity. We have associated initial and boundary conditions

u(x; 0) = u0(x) ; u = uv on @
v ; rui � n̂ = 0 on @
o ;

where n̂ is the outward pointing normal on the boundary and subscripts

v and o refer to boundary regions where either \velocity" or \outow"

boundary conditions are speci�ed.
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2.1. Temporal discretization. Time advancement is based upon a

semi-implicit scheme in which the nonlinear convective terms are treated

explicitly either via a third-order Adams-Bashforth scheme or via a stable

characteristics-based scheme that allows for time step sizes exceeding stan-

dard Courant limited time step sizes [7, 24]. Such a splitting leads to an

unsteady Stokes problem to be solved at each time step:

Hun + rpn= fn in 
 ;(2.1)

r�un = 0 in 
 :

Here H is the Helmholtz operator, H =
�
�

1
Re
r
2 + c0

�t

�
, and c0 is an

order unity constant. The inhomogeneous term, fn, and c0 are determined

by the choice of the nonlinear treatment. For the following derivation we

assume that c0 = 1 and drop the superscript n in (2.1). We also assume,

without loss of generality, that uv � 0 on @
D.

2.2. Spatial discretization. The Stokes problem (2.1) can be recast

in an equivalent variational form:

Find u 2 X , p 2 Y such that

1

Re
(ru;rv) +

1

�t
(u;v) � (p;r � v) = (f ;v) 8 v 2 X(2.2)

� (q;r � u) = 0 8 q 2 Y;

where

8 �;  2 L2(
) ; (�;  ) �

Z



�(x) (x) dx :

The proper subspaces for u, v and p, q are [21]

X = fv : vi 2 H
1(
); i = 1; : : : ; d ; v = 0 on @
vg

Y = L
2(
) :

Here L2(
) is the space of all functions that are square integrable over


, and H
1(
) is the space of all functions belonging to L2(
) whose �rst

derivatives are also in L2(
).

Spatial discretization proceeds by restricting u, v, p, and q to com-

patible �nite-dimensional velocity and pressure subspaces, XN
� X and

Y N
� Y , respectively, and using appropriate quadrature to approximate

the inner products in (2.2):

Find u 2 XN , p 2 Y N
such that

1

Re
(ru;rv)GL +

1

�t
(u;v)GL � (p;r � v)G = (f ;v)GL 8 v 2 X

N(2.3)

� (q;r � u)G = 0 8 q 2 Y N ;

where the quadrature rules (:; :)GL and (:; :)G are related to the spaces XN

and Y N .
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In the spectral element method [23, 29] the bases for XN and Y N

are de�ned by tessellating the domain into K nonoverlapping subdomains,


 = [
K
k=1


k, and representing functions within each subdomain in terms of

tensor-product polynomials on a reference subdomain 
̂ = [�1;+1]d. (We

will refer to the 
k's as subdomains to distinguish them from elements,

which will be de�ned in the context of �nite element preconditioners in

the next section.) Each 
k is the image of the reference subdomain under

a mapping: xk(r) 2 
k =) r 2 
̂, with well-de�ned inverse: rk(x) 2


̂ =) x 2 
k. Thus, each subdomain is a deformed quadrilateral in lR2 or

deformed parallelepiped in lR3. The intersection of the closure of any two

subdomains is void, a vertex, an entire edge, or an entire face.

To avoid spurious pressure modes, Maday, Patera, and R�nquist [25]

and Bernardi and Maday [3] suggest the following approximation spaces

for the velocity and pressure:

XN = X \ lPdN;K(
)

Y N = Y \ lPN�2;K(
) ;

where

lP
N ;K(
) =

�
v(xk(r))

��

k
2 lP

N
(r1)
 : : :
 lP

N
(rd); k = 1; : : : ;K

	
and lP

N
(r) is the space of all polynomials of degree less than or equal to N .

For the velocity space, we choose as a basis for lPN (r) the set of

Lagrangian interpolants on the Gauss-Lobatto-Legendre (GL) quadrature

points in the reference domain: �i 2 [�1;+1], i = 0; : : : ; N . For the pres-

sure space, the basis for lPN�2(r) is the set of Lagrangian interpolants on

the Gauss-Legendre (G) quadrature points �i 2 ]� 1;+1[, i = 1; : : : ; N � 1.

Figure 1 shows the nodal points for both the velocity (GL) and pressure

(G) meshes for a regular subdomain con�guration. Note that the basis for

velocity is continuous across subdomain interfaces, while the basis for the

pressure is not.

The Lagrangian bases permit convenient implementation of the quad-

rature rules, which we now de�ne. Let fk(r) := f(xk(r)), r 2 
̂. In lR2

we have

(f; g)GL :=
X
k

NX
i=0

NX
j=0

fk(�i; �j) � g
k(�i; �j) � jJ

k(�i; �j)j � �i�j(2.4)

(f; g)G :=
X
k

N�1X
i=1

N�1X
j=1

fk(�i; �j) � g
k(�i; �j) � jJ

k(�i; �j)j � �i�j ;(2.5)

where Jk(r) is the Jacobian arising from the transformation xk(r), �i is
the GL quadrature weight associated with �i, and �i is the G quadrature

weight associated with �i. The extension to lR3 follows readily from the

tensor-product forms.
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@
v
�
?

@
o

��

Fig. 1. Spectral element con�guration (K = 4; N = 5) showing Lagrange inter-

polation points for the pressure (Gauss) mesh on the left, and for the velocity (Gauss-

Lobatto) mesh on the right. Open circles denote true degrees-of-freedom. Solid circles

denote Dirichlet boundary nodes for velocity.

2.3. Spectral element operators. The locally structured/globally

unstructured bases of the spectral element method naturally de�ne a two-

level operator and data hierarchy, which we now describe. Our notation will

be two-dimensional, restricted to the case of a�ne mappings: xk(r1; r2) =

(xk0;1 +
Lk1
2
r1; x

k
0;2 +

Lk2
2
r2), where x

k
0;i and Lki represent local translation

and dilation constants.

We �rst de�ne the local bases and operators associated with the ve-

locity space. Within a given subdomain, every scalar �eld in lPN;K(
) is

represented in the form

f(x)j
k =

NX
i=0

NX
j=0

fkijhi(r1)hj(r2) r1; r2 2 [�1; 1]2 ;

where hi(r) 2 lPN (r) is the Lagrange polynomial satisfying hi(�j) = �ij ,
and �ij is the Kronecker delta function. For each subdomain, we associate

a natural ordering of the nodal values fkij , i; j 2 f0; : : : ; Ng2 with the

vector fk and, in turn, associate a natural ordering of the vectors fk, k 2

f1; : : : ;Kg with the K(N +1)2�1 vector f
L
. Note that if f(x) 2 H1, then

f
L
contains redundant information, since basis coe�cients on subdomain

interfaces are represented in each adjoining subdomain.

We de�ne the unassembled mass matrix to be the block-diagonal ma-

trix BL := diag(Bk), where each local mass matrix is expressed as a tensor

product of one-dimensional operators:

Bk =

�
Lk1L

k
2

4

�
B̂ 
 B̂ k 2 f1; : : : ;Kg :
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Here, B̂ = diag(�i), i = 0; : : : ; N , is the one-dimensional mass matrix on

the reference domain [�1; 1]. In a similar fashion we de�ne the unassembled

sti�ness matrix, or discrete Laplacian, as AL = diag(Ak), where Ak is the

local sti�ness matrix:

Ak =

�
Lk2
Lk1

�
B̂ 
 Â +

�
Lk1
Lk2

�
Â
 B̂ k 2 f1; : : : ;Kg :(2.6)

The one-dimensional sti�ness matrix, Â, is de�ned in terms of the spectral

di�erentiation matrix, D̂:

Âij =

NX
l=0

D̂li�lD̂lj i; j 2 f0; : : : ; Ng2

with

D̂ij :=
dhj

dr

����
r=�i

i; j 2 f0; : : : ; Ng2 :

Implementation details for fully deformed three-dimensional geometries are

in [13].

The local subdomain operators AL and BL are formally incorporated

into global nv � nv system matrices through the usual \direct sti�ness"

summation assembly procedure [35]. Let Q be the global-to-local map-

ping operator that transfers basis coe�cients from their global ordering to

their local ordering. The vector f
L
= Qf has basis coe�cients duplicated

in adjoining subdomains such that the corresponding continuous function

f(x) is in H
1. The action of QT upon a local vector, f

L
, is to sum any

multiple contributions to global degrees-of-freedom from their constituent

local nodal values. The assembled sti�ness and mass matrices are given by

QTALQ and QTBLQ, respectively.

We call QTALQ the Neumann Laplacian operator { it has a null-

space of dimension unity corresponding to the constant mode. We de�ne

the associated Dirichlet operator by formally constructing a diagonal mask

matrix, M, which has ones on the diagonal, except at locations that cor-

respond to Dirichlet boundary nodes where it is set to zero. We de�ne

the discrete Laplacian and mass matrices as A := MQTALQM, and

B := MQTBLQM, respectively, and will treat them as being both in-

vertible and symmetric positive de�nite (SPD), although this is not strictly

true because of the null space associated with M. Note that A is never

formed explicitly; only the action of A on a vector is required. This is

computed via the tensor product form (2.6) with appropriate application

of Q and M.
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2.4. Stokes operators. To complete the description of the Stokes

operator, we need to consider the bilinear form:

(q;r � u)G =

dX
l=1

�
q;
@ul

@xl

�
G

:

The de�nition (2.5) and the notations of the preceding section give rise to

the following matrix form in lR2:

(q;r � u)G =

KX
k=1

(qk)T
�
Dk
1u

k
1 + Dk

2u
k
2

�
:

For the case of the a�ne mappings de�ned above, the local derivative

matrices are

Dk
1 =

�
Lk2
2

�
~I 
 ~D ; Dk

2 =

�
Lk1
2

�
~D 
 ~I ; k = 1; : : : ;K ;(2.7)

where

~Dij = �i
dhj

dr

����
r=�i

; ~Iij = �ihj(�i)

�
i = 1; : : : ; N � 1

j = 0; : : : ; N

are, respectively, the weighted one-dimensional di�erentiation and inter-

polation matrices mapping from the Gauss-Lobatto points to the Gauss

points.

The extension from the local operator to the global operator proceeds

exactly as in the preceding section. The space of admissible functions in

XN is limited by the constraints that the velocity must be continuous

at the subdomain interfaces and must satisfy the homogeneous boundary

conditions, enforced by the action of the operators Q andM, respectively.

Let Di := DL;iQM, i = 1; : : : ; d, with DL;i := diag(Dk
i ). In lR2, the

matrix form of the Stokes problem (2.3) is then2
64

H �DT
1

H �DT
2

�D1 �D2 0

3
75
0
@ u1

u2
p

1
A =

0
@ f

1
f
2
f
p

1
A ;(2.8)

where H = 1
Re
A+ 1

�t
B is the discrete Helmholtz operator.

2.5. Stokes solvers. A common approach to solution of the Stokes

problem (2.8) is to decouple the velocity and pressure by formally carrying

out blockLU factorization (Uzawa decoupling) to yield a Schur complement

system for the pressure, Sp = g, which is solved iteratively. Here, S =P
iDiH

�1DT
i and g is the corresponding inhomogeneity. Once the pressure

is known, d Helmholtz solves serve to compute the velocity and complete

the solution at time level n.
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As it stands, the Uzawa approach requires a set of d Helmholtz solves

for each iteration, since H�1 is embedded in S. An e�ective means to cir-

cumvent this di�culty is to decouple the viscous and pressure terms via an

additional time splitting. Such an approach was suggested by Maday, Pat-

era, and R�nquist [24] and analyzed by Perot [4] and Couzy [7]; it follows

classical splitting approaches (e.g., [18, 26]) that lead to a Poisson equation

for the pressure except that, in the present case, the splitting is e�ected

in the discrete form of the equations. The correct boundary conditions are

preserved and no steady-state temporal errors are introduced.

Following [7], the unsteady Stokes system (2.8) is recast as:�
H ��tHB�1DT

�D 0

��
un

�pn

�
=

�
Bf +DT pn�1

f
p

�
+

�
r

0

�
;(2.9)

where �pn := pn�pn�1. Here, boldface indicates the d-dimensional vector

form of the previously de�ned operators. The residual

r := (I � �tHB�1)DT�pn

is neglected, resulting in a method that is formally second-order accurate in

time as noted in [4, 7]. Applying block Gaussian elimination to the above

Stokes system (without the residual term) yields the reformulated Stokes

problem to be solved at each time step:�
H ��tHB�1DT

0 E

��
un

�pn

�
=

�
Bf +DT pn�1

g

�
;(2.10)

where

E := �t

dX
i=1

DiB
�1DT

i ;(2.11)

and g is the modi�ed inhomogeneity arising from Gaussian elimination.

The advantage of the splitting procedure is that matrix-vector products

involving E can be computed without system solves, since B is diagonal.

To summarize, time advancement of the Navier-Stokes equations in-

volves: evaluating the contributions from the convective terms, solving

for the viscous contribution in the construction of g (2.10), solving for the
pressure (2.10-2.11), and �nally computing the divergence-free solution, un

(2.10). The systems involving H and E are solved iteratively. The Schur

complement system, E, is the most ill-conditioned of the subproblems and

we address e�cient strategies for preconditioning it next.

3. E preconditioner. Since E is SPD, save for a possible one-dimen-

sional null space associated with the hydrostatic pressure mode in cases

where @
o = ;, preconditioned conjugate gradient iteration can be em-

ployed if a suitable SPD matrix,M�1, can be found that is spectrally close
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to E�1 and is such thatM�1E be easily computable. E has several features

which make this task di�cult. First, because of the embedded interpolation

between the pressure and velocity spaces, the computational stencil of E is

locally full with O(Nd) nonzeros per row. (However, matrix-vector prod-

ucts involving E can be evaluated in only O(KNd+1) operations because of

the tensor-product forms (2.7).) Second, because it is in L2, no continuity

or boundary conditions are applied directly to the pressure { these condi-

tions are enforced in the velocity space. Fortunately, as discussed in [4], E
is in many respects similar to a discrete Laplacian with suitable boundary

conditions. Hence, classical preconditioning strategies developed for �nite

element discretizations of Poisson's equation can be used as a basis for the

development of a preconditioner for E.

3.1. Laplacian based preconditioning for E. To illustrate the

equivalence of E and the Laplacian we consider preconditioned conjugate

gradient iteration for the pressure on the �rst step of impulsively started

ow past a cylinder. The K = 93 spectral element mesh is shown in Fig. 2

and is typical of many (conforming) production meshes, so we have used

it as a baseline in a number of studies [16, 17]. The cylinder of diameter

D = 1 is centered at the origin in the half-domain 
 = [�10; 28]� [0; 15].
The Reynolds number is Re = DU=� = 5000, where (U; 0) is the free-

stream velocity taken both as the initial condition and the inow boundary

condition at x = �10. Symmetry boundary conditions are imposed at

y = 0 and y = 15 with Neumann-velocity (outow) boundary conditions at

x = 28. The free-stream velocity is U = 1 and the time step is �t = 0:025.

Fig. 2. Spectral element mesh (K = 93) for iterative convergence study.

The preconditioners considered are all global and based upon a Lapla-

cian with homogeneous Dirichlet boundary conditions speci�ed at outow

(@
o) and homogeneous Neumann conditions on the remainder of the

boundary. The �rst preconditioner, M�1
s := RT

vpA
�1
s Rvp, is based upon

the spectral element Laplacian, As, and a prolongation operator, RT
vp,

which interpolates from the pressure to the velocity mesh. The second,
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Mt, is identical to Ms, save that As is replaced by a �nite element-based

Laplacian using a triangulation of the Gauss-Lobatto points. The third,

M�1
g := RT

augA
�1
g Raug , uses a discrete Laplacian based upon a triangula-

tion of the Gauss (pressure) points, augmented with additional points to

enforce the Dirichlet boundary condition.

Table 1 shows the number of iterations required to reduce the residual

of the E system by 10�5 for varying degree and number of elements. The

K = 372 and K = 1488 meshes are obtained through successive quarter-

ings of the elements in the base con�guration. The dimension of the E
system is K(N � 1)2. Note that the spectral preconditioner exhibits no K
dependence in the iteration count for this problem, while the �nite element

preconditioners exhibit mild degradation in the rate of convergence. Of

the two �nite element preconditioners, it is clear thatMg is to be preferred

over Mt. Not only does it yield a lower iteration count, it also has a much

less expensive restriction operator (Raug is essentially the identity matrix)

and a lower-dimensional system to be solved with each iteration.

Table 1

Laplacian preconditioners for cylinder ow.

N = 7 N = 9

K Ms Mt Mg Ms Mt Mg

93 15 24 16 12 27 16

372 12 26 18 12 28 17

1488 12 26 18 12 29 18

4. Overlapping Schwarz method. The Laplacian-based precondi-

tioners described above require the solution of a global linear system on

each iteration. In practice, this is too expensive, and a suitable approxi-

mation, or preconditioning strategy, is required to replace the global solve.

This problem is decidedly easier than preconditioning E directly, as there

exist many good preconditioners for the �nite element-based Laplacian.

Domain decomposition-based preconditioners are a natural choice for

the spectral element method since the data is structured within a subdo-

main but is otherwise unstructured. Here we use the overlapping additive

Schwarz procedure developed by Dryja and Widlund [11] and Widlund [37].

We have chosen the additive Schwarz procedure because it is intrinsically

parallel and symmetric. Although multiplicative procedures have better

convergence rates and often can also be parallelized and symmetrized [34],

this is not easy to do if the originating operator (E) has less sparsity than
the preconditioner, as in the present case. We have chosen the overlapping

method as opposed to a Schur complement, or substructuring, approach

because the additive method does not require interface data structures, an

important consideration in this case because the pressure nodes do not lie

on the natural subdomain interfaces.
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Formally, the additive Schwarz preconditioner is expressed as the sum

of outputs from several subproblems:

M�1
o = RT

0 A
�1
0 R0 +

KX
k=1

RT
kA

�1
k Rk :

The subproblems for k � 1 correspond to the solution of local Poisson

problems on overlapping subdomains, ~
k. The restriction and prolonga-

tion operators, Rk and RT
k , k � 1, are Boolean matrices that transfer data

to and from the subdomain problems. The product p
k
= Rkp extracts the

components of a vector p which belong to ~
k, while p = RT
k pk copies the

components of a subdomain solution, p
k
, to a global vector, p, and sets

components outside of ~
k to zero. In addition to the local problems, the

Schwarz preconditioner has a coarse grid component, denoted here by sub-

script 0, which serves to e�ciently eliminate low-wave number components

of the residual. The coarse grid problem corresponds to a Poisson problem

discretized on a mesh de�ned by a triangulation of the subdomain vertices.

The prolongation operator, RT
0 , is simply an interpolant from the coarse

grid to the Gauss points.

@ ~
k�
?


k

q q q

q q q

q q b�

q q q

q q q

b b b

q q q

q q q

q qb�
q q

q q

q q

b

b

b

b b b

b b b

b b b

b

b

b

q q

q q

q q
q q

q q q

q q q

b� b b b

q q q

q q q

q q

q q q

q q q

b�

Fig. 3. Degrees-of-freedom (open circles) for FEM based (left) and tensor-product

based (right) discretizations of local problems. Values at nodes marked \
" are set to

zero by Rk. Zero Dirichlet boundary conditions are applied on @ ~
k.

4.1. FDM application to the subdomain problems. In this sec-

tion we consider the development of solvers for the local problems that

are particularly well suited to the spectral element method in lR3. Rather

than working with principal submatrices of Ag as in [17], we derive the lo-

cal sti�ness matrices, Ak, k � 1, from a tensor-product of one-dimensional

�nite element bases. This di�erence in strategy is reected in Fig. 3, which

contrasts the previous unstructured �nite element (FEM) basis on the left

with the structured tensor-product basis on the right. This allows the use
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of FDM-based solvers, which require only O(Nd) storage and O(Nd+1)

work per solve [7, 8, 31]. An added bene�t is the avoidance of having to

tetrahedralize the Gauss points in lR3.

We begin with the de�nition of the overlapping subdomains by con-

sidering the one-dimensional example shown in Fig. 4. Degrees-of-freedom

are associated with the nodes (open circles) in ~
k. The points �i, i 2
f1; : : : ; N � 1g are the images of the Gauss points in ]� 1; 1[ mapped onto


k. Similarly, �i, i � 0 and i � N are the images of the corresponding

Gauss points mapped onto the left and right subdomains, respectively. The

overlapping region, ~
k
2 [�

�1; �N+1], is obtained by extending 
k by two

nodal points in each direction. Homogeneous Dirichlet boundary condi-

tions are applied at �
�1 and �N+1 when 
k is in the interior of 
 so the

extension adds only two degrees-of-freedom to the local problem. We refer

to this as the minimal overlap case. If the left (right) side of @
k is co-

incident with the boundary, @
, then the domain is not extended beyond

0 (N ), and homogeneous Dirichlet or Neumann boundary conditions are

imposed at that point in accordance with the boundary conditions on @
.

d d d d

�1 �2 �N�2 �N�1 0 N

� 
k -

� ~
k -

t d

�
�1 �0



�

-

d t

�N �N+1

� 

+

Fig. 4. Depiction of overlapping subdomain ~
k in one dimension, minimal overlap

case.

To construct the �nite element operators for the standard (interior)

one-dimensional case, we consider the space of piecewise linear functions,

�i(�), � 2 [�
�1; �N+1], i = 0; : : : ; N :

�i(�) =

8>>>>>><
>>>>>>:

� � �i�1
�i � �i�1

�i�1 � � < �i

� � �i+1
�i � �i+1

�i � � < �i+1

0 otherwise:

i 2 f0; : : : ; Ng(4.1)

The variational form for the homogeneous Dirichlet problem, �u00(x) =

f(x) in ~
k, u = 0 on ~@

k
, gives rise to the tridiagonal sti�ness matrix:

~Aij =

Z �N+1

��1

d�i

d�

d�j

d�
d� i; j 2 f0; : : : ; Ng2 ;
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and associated diagonal (lumped) mass matrix:

~Bij = �ij

Z �N+1

��1

�j(�)d� i; j 2 f0; : : : ; Ng2 :

The matrices are modi�ed in the usual way if either end of 
k coincides

with @
.
The construction of the one-dimensional problem is extended to lRd

by taking the tensor product of the bases and operators just described. A

typical overlapping domain in lR2 is shown in Fig. 3 (right). The degrees-

of-freedom correspond to Lagrangian basis coe�cients associated with the

nodes (open circles) in the interior of ~
k. If the nodes are numbered lexi-

cographically, then the sti�ness matrix for the two-dimensional Laplacian

on ~
k can be written as the Kronecker product:

Ak = ~B2 
 ~A1 + ~A2 
 ~B1 :(4.2)

Here, the subscript on the one-dimensional matrices, ~A and ~B, indicates
the associated coordinate direction in the reference element.

Matrices that satisfy (4.2) have a particularly simple inverse based

upon the FDM. If ~A is symmetric and ~B is symmetric positive de�nite,

then the following similarity transformation holds:

ST ~AS = �; ST ~BS = I;

where � = diag(�1; : : : ; �n) the matrix of eigenvalues, and S = (s1; : : : ; sn)
is the matrix of eigenvectors associated with the generalized eigenvalue

problem ~As = � ~Bs. As a result, Ak is readily diagonalized, and its inverse

is given by

A�1k = (S2 
 S1) (I 
 �1 + �2 
 I)�1 (ST2 
 ST1 ) :

The three-dimensional form is similar:

A�1k = (S3 
 S2 
 S1)D
�1(ST3 
 ST2 
 ST1 ) ;

with

D = (I 
 I 
 �1 + I 
 �2 
 I +�3 
 I 
 I):

This solution method was introduced by Lynch, Rice, and Thomas [31] and

successfully used in a number of spectral element preconditioning applica-

tions by Couzy and Deville [8] and by Couzy [7].

It is important to note that the use of tensor-product forms allows

matrix-vector products, to be recast as matrix-matrix products which are

particularly e�cient on modern vector and cache-based processors. For ex-

ample, if ~uk = ukij , i; j 2 f0; : : : ; Ng
2 is the vector of nodal basis coe�cients

on ~
k, then
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(ST2 
 ST1 )u
k = ST1

~UkS2 ;

where ~Uk is simply ~uk viewed as the matrix having entries ukij .

In two dimensions, the computation of A�1k ~uk requires four matrix-

matrix products. The leading order complexity for the work is 8(N + 1)3

operations and for storage is 3(N+1)2. This compares quite favorably with

a banded solver, which requires 4(N+1)3 operations and (N +1)3 storage.

In three dimensions, the leading order complexities for the tensor-product-

based solver are 12(N + 1)4 operations and (N + 1)3 words of storage. In

this case the banded solver is not competitive, as it requires 4(N + 1)5

operations and (N + 1)5 words of storage.

In general, the FDM cannot be used for arbitrarily deformed subdo-

mains because the discrete Laplacian can not always be expressed in the

tensor product form (4.2). However, for the purposes of a preconditioner,

all one requires is an approximation to the Laplacian on ~
k. Two essential

simpli�cationsmake it possible to apply the FDM to arbitrary (valid) spec-

tral element meshes in lRd. The �rst is to construct restriction operators

Rk that gather data only from the 2d subdomains sharing a common face

(edge) with 
k and that map zeros to nodes in the overlap region corre-

sponding to diagonally adjacent elements (denoted by 
 in Fig. 3). This

circumvents di�culties arising from cases where, for example, three or �ve

elements share a vertex in lR2.

The second simpli�cation, as suggested in the thesis of Couzy [7],

is to de�ne the Poisson problem on a rectangle or regular parallelepiped

having the correct average dimensions in each coordinate direction in the

reference domain. These dimensions are readily computed using Gauss-

Lobatto quadrature. For example, in lR2, the average separation of the

faces in the r1-direction is computed as

Lk1 =

"P
j �j [(x

k
Nj � xk0j)

2 + (ykNj � yk0j)
2]P

j �j

# 1
2

:

A similar procedure is used to �nd the average thickness (e.g., the distance

j�1 � �
�1j in Fig. 4) of each of the overlap regions. With these average

dimensions, construction of the Laplacian follows directly from the tensor

product formulation outlined above.

5. The coarse grid problem. The coarse grid operator, A0, is de-
rived from a linear �nite element discretization of the Laplacian subject

to homogeneous Dirichlet boundary conditions at outow (@
o) and ho-

mogeneous Neumann conditions on the remainder of the boundary. The

coarse grid space is based upon linear elements having nodes at the spectral

element vertices. The prolongation operator, RT
0 is simply a bi- or trilin-

ear interpolant from the 2d vertices to the (N � 1)d Gauss points in the

reference domain, and can be cast as a sequence of e�cient matrix-matrix

products.
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In two dimensions, the quadrilateral spectral element mesh is readily

triangulated by connecting one pair of diagonally opposing vertices in each

of the elements. In three dimensions, an equivalent local procedure is com-

plicated by the fact that the tetrahedral decomposition of a cube introduces

a diagonal on each face, which must match the direction of the diagonal

introduced on the face of the adjoining cube for the resulting discretiza-

tion to be conforming. The tessellation problem in lR3 can be localized by

computing the (local) sti�ness matrices for the two complementary tetrahe-

dralizations of the reference cube shown on the left in Fig. 5. If A0 and A00

denote the global matrices obtained by assembling compatible sets of local

sti�ness matrices, then A0 :=
1
2 (A

0 +A00) is the global sti�ness matrix one

would obtain by taking the average of two conforming sti�ness matrices.

However, A0 can be constructed without solving the nonlocal problem of

determining a conforming tetrahedralization by simply assembling the local

sti�ness matrices of all ten tetrahedra de�ned by the two complementary

decompositions.

[ �!

Fig. 5. The symmetric union of two complementary decompositions of the reference

cube localizes the problem of �nding a conforming coarse grid space.

5.1. Parallel coarse grid solver. Solution of the coarse grid prob-

lem has long been recognized as a bottleneck in parallel applications where

communication costs are non-negligible, such as on networks of worksta-

tions or when the number of processors is large (see, e.g., [2, 12, 22, 34]).

Since A�10 is full, each coarse grid solve requires an all-to-all communica-

tion, as every entry of the distributed input has a nontrivial impact on

every output value. Assuming that each processor is capable of sending or

receiving only one message at a time and that contention-free communi-

cation time for an m-word message obeys a linear cost model of the form

tc[m] = � + �m, then the minimum time for solution of the distributed

coarse grid problem is � log2 P . It is typically best to use a contention-free
routing schedule, which implies a minimum time of 2� log2 P for standard

schedules on low-dimensional networks.

As noted by Gropp in [19], most parallel solvers for an n�n coarse grid
problem require log2 P messages of length n for each solve. Since n > P ,
this can become prohibitive if either � or P is large. We have recently

developed a parallel coarse grid solver with a communication complexity

of only O(n
1
2�log2P ) in lR2 and O(n

2
3�log2P ) in lR3 [16, 36]. The solver



16 P.F. FISCHER, N.I. MILLER, AND H.M. TUFO

derives from the observation that projection of a distributed vector onto a

distributed basis is naturally parallel.

Let A0x = b denote the n � n coarse grid system to be solved, with

b and x identically distributed across processors at the beginning and end

of the solution phase. If X = (x1; : : : ; xl) 2 lRn�l is a matrix of A0{
orthonormal vectors satisfying xTi A0xj = �ij , then the projection of x onto

spanfx1; : : : ; xlg is given by �x = XXT b. If the xi's are mapped in the same

manner as x and b, then parallel evaluation of �x on P processors involves

three steps:

i: �
(p)
i =

�
x
(p)
i

�T
b(p) i = 1; : : : ; l p = 0; : : : ; P�1

ii: �i =
X
p

�
(p)
i i = 1; : : : ; l

iii: �x(p) =
X
i

�ix
(p)
i p = 0; : : : ; P�1 :

(5.1)

Here, the superscript (p) indicates the processor index for distributed data.
Step (ii) is an interprocessor vector-reduction and can be computed via

a fan-in/fan-out on a binary tree in 2 log2 P communication phases with

messages of length l.
Note that if l = n, then �x � x, and the projection produces the exact

solution. If A0 is sparse, it is possible to choose a (quasi-) sparse basis forX
such that many of the xi's are void on any given processor. This implies a

reduction in communication as well as work since the corresponding values

of �i are not needed by all processors. For low-order discretizations in lRd

it is possible to choose the columns of X such that it has only O(n
2d�1

d )

nonzeros and such that only log2 P messages of length O(n
d�1

d ) are required

to compute XXT b. Further details may be found in [36].

We note that the vertex-based coarse grid problems such as considered

here nominally require communication in the restriction and prolongation

steps because each vertex may be shared by many processors. These extra

communications can be avoided by embedding them directly into the XXT

computation. Let z := RT
0 A

�1
0 R0r, denote the full coarse grid problem.

Consider the factorization:

R0 = QT
0Q

T
PI

T
P ;

where IP represents the local interpolation from the subdomain vertices

to the Gauss points, QT
P represents the direct-sti�ness summation (or as-

sembly of the load vector) of vertex values within each processor, and QT
0

represents the interprocessor direct-sti�ness summation step. Only the ap-

plication of Q0 (QT
0 ) requires communication. Writing X0 := XQ0, we

have

z = (IPQP )X0X
T
0

�
QT
PI

T
P r
�
:
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This corresponds to computing a projection of the form x0 = X0X
T
0 b0

and is identical in complexity to (5.1) on an enlarged vector space. No

pre- or post-communication is required during the coarse grid solve, since

application of (IPQP ) is local. All communication is embedded in the

log2 P fan-in/fan-out stage (5.1.ii) of X0X
T
0 b0.

6. Numerical results. We compare the results of the FDM-based

additive Schwarz method to the results of the FEM-based additive Schwarz

preconditioner [17] and the block-Jacobi/deation-based scheme developed

in [15, 32].

6.1. Two-dimensional cylinder problem. We �rst consider the

cylinder problem of Fig. 2. The conditions are the same as those used in

the Laplacian preconditioning tests of Section 3.1 save that we restrict the

polynomial order to N = 7. Table 2 shows the iteration count and CPU

times for the FDM-based additive Schwarz procedure with minimal overlap.

Also shown are the iteration counts and times for the additive Schwarz

procedure based upon the unstructured FEM discretization where the local

sti�ness matrices, Ak, k � 1, are principal submatrices of Ag . The No = 0

column corresponds the the FEM scheme with no overlap. Introducing

a minimal amount of overlap (No = 1) reduces the iteration count almost

twofold and the CPU time slightly less than twofold. Increasing the overlap

to No = 3 does not yield signi�cant improvement. The importance of the

coarse grid solve is illustrated by the A0 = 0 column, which shows a �ve- to

eightfold increase in iteration count for the K = 1488 case when the coarse

grid solver is excluded. The �nal column shows the performance of our

deation-based production code [15]. It requires roughly twice the number

of iterations as the FDM scheme and almost three times the CPU time.

(The deation approach requires two applications of E per iteration.)

Table 2

Performance of the additive Schwarz algorithm.

FDM No = 0 No = 1 No = 3 A0 = 0 Deation

K iter cpu iter cpu iter cpu iter cpu iter cpu iter cpu

93 67 4.4 121 10 64 5.9 49 5.6 169 19 126 17

372 114 37 203 74 106 43 73 39 364 193 216 125

1488 166 225 303 470 158 274 107 242 802 1798 327 845

We note that, because of the use of the approximate Laplacians, the

FDM-based scheme has a slightly higher iteration count than the FEM

scheme in the minimal overlap case (No = 1). Despite this and despite its

higher complexity estimate (8K(N + 1)3 vs 4K(N + 1)3) the FDM-based

scheme requires less time. This clearly illustrates the importance of the

matrix-matrix product-based solution algorithm.

Somewhat disappointingly, the iteration counts for the overlapping

Schwarz method are not bounded with K. Our experience indicates that
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the iteration count does eventually approach a bound, but only after many

levels of re�nement. We have investigated two possible solutions. The �rst,

suggested by Widlund [38], is to use more overlap on the (few) subdomains

which have high aspect ratio. This reduces the iteration count while main-

taining low CPU time [17]. The second is use of nonconforming spectral

element methods, which remove these high aspect ratio subdomains alto-

gether. As demonstrated by G. Kruse [20], this results in signi�cantly lower

iteration counts.

6.2. Three-dimensional hemisphere problem. We now consider

parallel simulation of the three-dimensional ow arising from the interac-

tion of a at plate boundary layer with a hemispherical protuberance. This

ow was studied experimentally by Acalar and Smith [1] and, at su�ciently

high Reynolds numbers, exhibits periodic shedding of hairpin vortices as

evinced by the isotherms in the centerplane of the channel shown in Fig. 6.

The unit radius hemisphere is centered at x = (0; 0; 0), and the Reynolds

number is Re = RU1
�

= 500. A Blasius pro�le with �:99 = 1:15 and U
1

= 1

is speci�ed for the x-component of velocity both as an initial condition and

inlet pro�le at x = �8:4. Symmetry boundary conditions are speci�ed at

y = 0, y = �6:4, and z = 6:5, and Neumann outow boundary conditions

are imposed at x = 25:6. Discretizations consisting of K = 512 and 4096

spectral elements of order N = 7, 9, and 11 are considered for a �xed time

step of �t = 0:00636. Timings are performed on the P = 512 node In-

tel Delta at Caltech, which is a mesh connected multicomputer based on

512 Intel i860 40 MHz microprocessors, each with 16 Mbytes of memory.

Sustained performance on this machine for these runs is typically about 5

gflops in 32-bit arithmetic.

Fig. 6. Isotherms reveal the presence of hairpin vortices generated by the interac-

tion of a at-plate boundary later with a (heated) hemisphere in this (K = 4096; N = 7)
spectral element simulation.

In Fig. 7 we show the CPU time per step for the deation- and FDM-

based computations with (K;N) = (512; 11) and (4096,9). A good initial

guess, computed from an orthogonal projection of the data onto previ-

ous solutions, signi�cantly reduces the iteration count after the �rst few

time steps, so the performance at later times is most representative of the

asymptotic behavior of the solvers during the course of the simulation [14].
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Fig. 7. 512-node CPU time for the �rst 19 steps of the hemisphere problem for

(K;N) = (512; 11) (left) and (4096; 9) (right).

Table 3 shows the number of pressure iterations and CPU time required for

the 19th step. We observe that the overlapping Schwarz procedure yields a

three- to �vefold reduction in iteration count over the deation scheme and

a fourfold improvement in CPU time for the largest problem. The fact that

the CPU-time reduction is less than that of the iteration count shows that

the overlapping Schwarz procedure has e�ectively eliminated the pressure

solve as the computational bottleneck for this class of problems. In fact, it

is now on par with the cost of the Helmholtz solves.

Table 3

Timing for hemisphere/plate problem on 512 node Delta.

Deation Schwarz

K N # vel. pts. # pres. pts. iter cpu iter cpu

512 7 179000 111000 19 5.3 4 3.2

512 9 380000 262000 27 8.8 5 4.7

512 11 693000 512000 36 15.8 13 8.1

4096 7 1423000 884000 78 58.4 20 18.2

4096 9 3016000 2097000 137 143.0 26 36.7

We examine the importance of the XXT -based coarse grid solver via

direct comparison to the same overlapping Schwarz code modi�ed to use a

distributed A�1-based solver. The latter has O(n log2 P ) communication

complexity for each coarse grid solve, versus the O(n
2
3 log2 P ) complexity

of the XXT based solver. For K = 512 the dimension of the coarse grid

system is n = 781, while for K = 4096 it is n = 5114. Table 4 indicates the

percentage of overall solution time spent in the coarse grid solver as well as

the time per coarse grid solve for both cases. For the K = 4096 data, there
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is a 12 and 9 percent reduction in overall solution time due to the use of

XXT based solver. In addition, there is fourfold improvement in the time

per coarse grid solve for n = 5114, and twofold for n = 781. We note that

this is consistent with predictions based on the theoretical models for both

solvers discussed in [36].

Table 4

Coarse grid costs for hemisphere/plate problem on 512 node Delta.

A�1 Method XXT Method

K N # d.o.f. % time sec./slv. % time sec./slv.

512 7 781 4.82 0.021 2.66 0.011

512 9 781 5.32 0.021 3.03 0.011

512 11 781 5.38 0.021 3.08 0.012

4096 7 5114 16.4 0.091 4.26 0.021

4096 9 5114 12.6 0.094 3.45 0.023

7. Conclusions. We have developed an overlapping Schwarz precon-

ditioner for the pressure subproblem in time-split spectral element formu-

lations of the incompressible Navier-Stokes equations that is particularly

e�cient for problems in three dimensions. The method employs tensor-

product discretizations for the local subdomain problems that admit so-

lution via fast diagonalization techniques having the same computational

complexity as the originating spectral element operators, and that are read-

ily implemented within the locally structured context of the spectral ele-

ment method. The parallel performance of the method is enhanced by a

fast coarse grid solve algorithm that has signi�cantly better communica-

tion complexity than competing approaches. In comparison to our earlier

block-Jacobi/deation based production code, we observe a �vefold reduc-

tion in iteration count and, for the largest problems, a fourfold reduction

in CPU time. The overlapping Schwarz preconditioner has e�ectively elim-

inated the pressure solve as a computational bottleneck. It now becomes

important to consider whether the other phases of the solution process can

be further improved.
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