A fully implicit 3D extended MHD algorithm

L. Chacón

Los Alamos National Laboratory P.O. Box 1663, Los Alamos, NM 87545

> SIAM ANNUAL MEETING JULY, 10-14, 2006 BOSTON, MA, USA

Outline

Motivation

Spatial discretization

Resistive MHD (mature)

Hall MHD (proof-of-principle)

Conclusions and future work

Motivation for an implicit MHD solver

- The MHD formalism is a nonlinear system of stiff equations:
 - Elliptic stiffness (transport).
 - Hyperbolic stiffness (linear waves: magnetosonic, Alfvén, sound, whistler,...).
- Explicit methods:
 - Straightforward but inefficient (numerical stability).
- Semi-implicit methods:
 - Popular, efficient, but potentially inaccurate (linearization, splitting, simplifications in semi-implicit operator).
- Implicit methods: accurate and efficient, but of difficult implementation:
 - Non-linear couplings in equations.
 - Ill-conditioned matrices due to elliptic operators and stiff waves.
- Here, a viable, scalable implicit strategy using Newton-Krylov methods is explored.
- At the core of the approach is the so-called physics-based preconditioning strategy.

Properties of spatial discretization

L. Chacón, Comput. Phys. Comm., 163 (3), 143-171 (2004)

- A cell-centered (collocated) difference scheme has been devised that:
 - Is conservative in particles and momentum (energy also if energy equation is chosen instead of temperature).
 - Is solenoidal in the magnetic field.
 - Is linearly (no red-black modes) and nonlinearly (no anti-diffusive terms) stable in the absence of physical and/or numerical dissipation.
 - Eliminates the "parallel force" problem of the conservative formulation of EOM.
 - Is suitable for curvilinear representations (as needed in fusion applications).
- While only 2D tests have been presented, all properties carry to 3D (the code is fully 3D capable).
- Crucial to the scheme is the so-called ZIP differencing, which satisfies very desirable properties such as:
 - Being conservative.
 - Mimics the chain rule of derivatives exactly.
 - Modified equation (truncation error) contains no anti-diffusive terms.

Implicit resistive MHD solver

Resistive MHD model equations

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \nabla \cdot (\rho \vec{v}) = 0, \\ \frac{\partial \vec{B}}{\partial t} &+ \nabla \times \vec{E} = 0, \\ \frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot \left[\rho \vec{v} \vec{v} - \vec{B} \vec{B} &- \rho \nu \nabla \vec{v} + \overleftarrow{I} \left(p + \frac{B^2}{2} \right) \right] = 0, \\ \frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T &+ (\gamma - 1) T \nabla \cdot \vec{v} = 0, \end{split}$$

- Plasma is assumed polytropic $p \propto n^{\gamma}$.
- Resistive Ohm's law:

$$\vec{E} = -\vec{v} \times \vec{B} + \eta \nabla \times \vec{B}$$

Jacobian-Free Newton-Krylov Methods

- Objective: solve nonlinear system $\vec{G}(\vec{x}^{n+1}) = \vec{0}$ efficiently.
- Converge nonlinear couplings using Newton-Raphson method:

$$\left. rac{\partial ec G}{\partial ec x}
ight|_k \delta ec x_k = -ec G(ec x_k) \; \; .$$

• Jacobian-free implementation:

$$\left(\frac{\partial \vec{G}}{\partial \vec{x}}\right)_k \vec{y} = J_k \vec{y} = \lim_{\epsilon \to 0} \frac{\vec{G}(\vec{x}_k + \epsilon \vec{y}) - \vec{G}(\vec{x}_k)}{\epsilon}$$

- Krylov method of choice: GMRES (nonsymmetric systems).
- Right preconditioning: solve equivalent Jacobian system for $\delta y = P_k \delta \vec{x}$:

$$J_k P_k^{-1} \underbrace{\underline{P_k \delta \vec{x}}}_{\delta \vec{y}} = -\vec{G}_k$$

APPROXIMATIONS IN PRECONDITIONER DO NOT AFFECT ACCURACY OF CONVERGED SOLUTION; THEY ONLY AFFECT EFFICIENCY!

Concept of physics-based preconditioning

• Developing AN implicit Newton-Krylov MHD solver is "EASY":

JUST BUILD NONLINEAR FUNCTION EVALUATION ROUTINE!

- Developing an EFFICIENT Newton-Krylov MHD solver is "HARD": need SCALABLE preconditioning.
 - Elliptic and parabolic systems: use scalable MG methods. Usually OK.
 - Hyperbolic systems: diagonally submissive, not amenable to MG. HARD!
- Physics-based preconditioning: technique to develop effective, SCALABLE preconditioners for hyperbolic systems. Based on two concepts:
 - SEMI-IMPLICIT approximations: limit level of implicitness based on physical insight.
 - PARABOLIZATION: from hyperbolic to parabolic: a MG-friendly formulation.

Parabolization and Schur complement: an example

• PARABOLIZATION EXAMPLE:

$$\partial_t u = \partial_x v , \ \partial_t v = \partial_x u.$$

$$u^{n+1} = u^n + \Delta t \partial_x v^{n+1},$$

$$v^{n+1} = v^n + \Delta t \partial_x u^{n+1}.$$

$$(I - \Delta t^2 \partial_{xx})u^{n+1} = u^n + \Delta t \partial_x v^n$$

• PARABOLIZATION via SCHUR COMPLEMENT:

$$\begin{bmatrix} D_1 & U \\ L & D_2 \end{bmatrix} = \begin{bmatrix} I & UD_2^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} D_1 - UD_2^{-1}L & 0 \\ 0 & D_2 \end{bmatrix} \begin{bmatrix} I & 0 \\ D_2^{-1}L & I \end{bmatrix}.$$

Stiff off-diagonal blocks L, U now sit in diagonal via Schur complement $D_1 - UD_2^{-1}L$. The system has been "PARABOLIZED."

$$D_1 - UD_2^{-1}L = (I - \Delta t^2 \partial_{xx})$$

Resistive MHD Jacobian block structure

• The linearized resistive MHD model has the following couplings:

$$\begin{split} \delta \rho &= L_{
ho}(\delta
ho, \delta ec v) \ \delta T &= L_{T}(\delta T, \delta ec v) \ \delta ec B &= L_{B}(\delta ec B, \delta ec v) \ \delta ec v &= L_{v}(\delta ec v, \delta ec B, \delta
ho, \delta T) \end{split}$$

• Therefore, the Jacobian of the resistive MHD model has the following coupling structure:

$$J\delta\vec{x} = \begin{bmatrix} D_{\rho} & 0 & 0 & U_{v\rho} \\ 0 & D_{T} & 0 & U_{vT} \\ 0 & 0 & D_{B} & U_{vB} \\ L_{\rho v} & L_{Tv} & L_{Bv} & D_{v} \end{bmatrix} \begin{pmatrix} \delta\rho \\ \delta T \\ \delta \vec{B} \\ \delta \vec{v} \end{pmatrix}$$

• Diagonal blocks contain advection-diffusion contributions, and are "easy" to invert using MG techniques. Off diagonal blocks L and U contain all hyperbolic couplings.

PARABOLIZATION: Schur complement formulation

• We consider the block structure:

$$J\delta\vec{x} = \begin{bmatrix} M & U \\ L & D_v \end{bmatrix} \begin{pmatrix} \delta\vec{y} \\ \delta\vec{v} \end{pmatrix}$$
$$\delta\vec{y} = \begin{pmatrix} \delta\rho \\ \deltaT \\ \delta\vec{B} \end{pmatrix} ; M = \begin{pmatrix} D_\rho & 0 & 0 \\ 0 & D_T & 0 \\ 0 & 0 & D_B \end{pmatrix}$$

• *M* is "easy" to invert (advection-diffusion, MG-friendly).

Schur complement analysis of 2x2 block J yields:

$$\begin{bmatrix} M & U \\ L & D_v \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 \\ -LM^{-1} & I \end{bmatrix} \begin{bmatrix} M^{-1} & 0 \\ 0 & P_{Schur}^{-1} \end{bmatrix} \begin{bmatrix} I & -M^{-1}U \\ 0 & I \end{bmatrix},$$
$$P_{Schur} = D_v - LM^{-1}U.$$

- EXACT Jacobian inverse only requires M^{-1} and P_{Schur}^{-1} .
- Schur complement formulation is fundamentally unchanged in Hall MHD!

Physics-based preconditioner: SEMI-IMPLICIT approximation

• The Schur complement analysis translates into the following 3-step EXACT inversion algorithm:

Predictor : $\delta \vec{y}^* = -M^{-1}G_y$ Velocity update : $\delta \vec{v} = P_{Schur}^{-1}[-G_v - L\delta \vec{y}^*], P_{Schur} = D_v - LM^{-1}U$ Corrector : $\delta \vec{y} = \delta \vec{y}^* - M^{-1}U\delta \vec{v}$

• MG treatment of P_{Schur} is impractical due to M^{-1} .

Need suitable simplifications (SEMI-IMPLICIT)!

- We consider the small-flow-limit case: $M^{-1} \approx \Delta t$
- This approximation is equivalent to splitting flow in original equations.

Small flow PC

• Small flow approximation: $M^{-1} \approx \Delta t$ in steps 2 & 3 of Schur algorithm:

$$\begin{split} \delta \vec{y}^* &= -M^{-1} G_y \\ \delta \vec{v} &\approx P_{SI}^{-1} \left[-G_v - L \delta \vec{y}^* \right] ; \ P_{SI} = D_v - \Delta t L U \\ \delta \vec{y} &\approx \delta \vec{y}^* - \Delta t U \delta \vec{v} \end{split}$$

where:

$$P_{SI} = \rho^{n} \left[\overleftarrow{I} / \Delta t + \theta (\vec{v}_{0} \cdot \nabla \overleftarrow{I} + \overleftarrow{I} \cdot \nabla \vec{v}_{0} - \nu^{n} \nabla^{2} \overleftarrow{I}) \right] + \Delta t \theta^{2} W(\vec{B}_{0}, p_{0})$$
$$W(\vec{B}_{0}, p_{0}) = \vec{B}_{0} \times \nabla \times \nabla \times \left[\overleftarrow{I} \times \vec{B}_{0} \right] - \vec{j}_{0} \times \nabla \times \left[\overleftarrow{I} \times \vec{B}_{0} \right] - \nabla \left[\overleftarrow{I} \cdot \nabla p_{0} + \gamma p_{0} \nabla \cdot \overleftarrow{I} \right]$$

- *P*_{SI} is block diagonally dominant by construction!
- We employ multigrid methods (MG) to approximately invert P_{SI} and M: 1 V(4,4) cycle

Efficiency: Δt scaling (2D tearing mode)

32×32

Δt	Newton/ Δt	$GMRES/\Delta t$	CPU (s)	CPU_{exp}/CPU	$\Delta t/\Delta t_{CFL}$
2	5.9	20.9	115	3.1	354
3	5.9	25.6	139	3.8	531
4	6.0	30.5	163	4.3	708
6	6.0	34.7	184	5.8	1062

128×128

Δt	Newton/ Δt	$GMRES/\Delta t$	CPU (s)	CPU_{exp}/CPU	$\Delta t/\Delta t_{CFL}$
0.5	4.9	8.4	764	8.0	380
0.75	5.7	10.2	908	10.0	570
1.0	5.0	11.5	1000	12.7	760
1.5	5.6	14.7	1246	14.6	1140

Efficiency: grid scaling

$\Delta t \approx 1100 \Delta t_{CFL}$, 10 time steps

Grid	Δt	Newton/ Δt	$GMRES/\Delta t$	CPU	\widehat{CPU}
32x32	6	6.0	34.7	184	5.3
64x64	3	5.8	22.9	468	20.4
128x128	1.5	5.6	14.8	1246	84.2

Why does GMRES/ Δt decrease with resolution?

Effect of spatial truncation error

Sample 3D results: Screw pinch in 3D

Sample 3D results: 3D KHI

Knoll and Brackbill, Phys. Plasmas 9 (9) 2002

Implicit extended MHD solver

Extended MHD model equations

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \nabla \cdot (\rho \vec{v}) = 0, \\ \frac{\partial \vec{B}}{\partial t} &+ \nabla \times \vec{E} = 0, \\ \frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot \left[\rho \vec{v} \vec{v} - \vec{B} \vec{B} &- \rho \nu \nabla \vec{v} + \overleftarrow{I} \left(p + \frac{B^2}{2} \right) \right] = 0, \\ \frac{\partial T_e}{\partial t} + \vec{v} \cdot \nabla T_e &+ (\gamma - 1) T_e \nabla \cdot \vec{v} = 0, \end{split}$$

- Plasma is assumed polytropic $p \propto n^{\gamma}$.
- We assume cold ion limit: $T_i \ll T_e \Rightarrow | p \approx p_e |$.
- Generalized Ohm's law:

$$ec{E} = -ec{v} imes ec{B} + \eta
abla imes ec{B} - rac{d_i}{
ho} (ec{j} imes ec{B} -
abla p_e)$$

Extended MHD Jacobian block structure

• The linearized extended MHD model has the following couplings:

$$\begin{split} \delta \rho &= L_{\rho}(\delta \rho, \delta \vec{v}) \\ \delta T &= L_{T}(\delta T, \delta \vec{v}) \\ \delta \vec{B} &= L_{B}(\delta \vec{B}, \delta \vec{v}, \delta \rho, \delta T) \\ \delta \vec{v} &= L_{v}(\delta \vec{v}, \delta \vec{B}, \delta \rho, \delta T) \end{split}$$

• Jacobian coupling structure:

$$J\delta\vec{x} = \begin{bmatrix} D_{\rho} & 0 & 0 & U_{v\rho} \\ 0 & D_{T} & 0 & U_{vT} \\ L_{\rho B} & L_{TB} & D_{B} & U_{vB} \\ L_{\rho v} & L_{Tv} & L_{Bv} & D_{v} \end{bmatrix} \begin{pmatrix} \delta\rho \\ \delta T \\ \delta \vec{B} \\ \delta \vec{v} \end{pmatrix}$$

• We have added off-diagonal couplings.

Extended MHD Jacobian block structure (cont.)

• The coupling structure can be substantially simplified if we note $(p \approx p_e)$:

$$\frac{1}{\rho}(\vec{j} \times \vec{B} - \nabla p_e) \approx \frac{D\vec{v}}{Dt}$$

and therefore:

$$\vec{E} \approx -\vec{v} \times \vec{B} + \frac{\eta(T)}{\mu_0} \nabla \times \vec{B} - d_i \frac{D\vec{v}}{Dt}$$

• This transforms jacobian coupling structure to:

$$J\delta\vec{x} \approx \begin{bmatrix} D_{\rho} & 0 & 0 & U_{v\rho} \\ 0 & D_{T} & 0 & U_{vT} \\ 0 & 0 & D_{B} & U_{vB}^{R} + U_{vB}^{H} \\ L_{\rho v} & L_{Tv} & L_{Bv} & D_{v} \end{bmatrix} \begin{pmatrix} \delta\rho \\ \delta T \\ \delta \vec{B} \\ \delta \vec{v} \end{pmatrix}$$

We can therefore reuse ALL resistive MHD PC framework!

Extended MHD preconditioner

- Use same Schur complement approach.
- *M* block contains ion scales only! Approximation $M^{-1} \approx \Delta t$ is very good in extended MHD (ion scales do NOT contribute to numerical stiffness).
- Additional block U_{vB}^{H} results, after the Schur complement treatment, in systems of the form:

$$\partial_t \delta \vec{v} - d_i \vec{B_0} \times (\nabla \times \nabla \times \delta \vec{v}) = rhs$$

- This system supports dispersive waves $\omega \sim k^2!$
- We have shown analytically that damped JB is a smoother for these systems!

We can use classical MG!

Preliminary efficiency results (2D tearing mode)

 $d_{i} = 0.05$

1 time step, $\Delta t = 1.0$, V(3,3) cycles, mg_tol=1e-2

Grid	Newton/ Δt	$GMRES/\Delta t$	CPU (s)	CPU_{exp}/CPU	$\Delta t/\Delta t_{exp}$
32x32	5	22	25	0.44	110
64x64	5	12	66	1.4	238
128x128	5	8	164	6.2	640
256x256	4	7	674	30	3012

Again, GMRES/ Δt decreases with resolution!

Effect of spatial truncation error

Residual history vs. GMRES it# with fixed time step Dt=1

Parallel performance with PETSc Toolkit (unpreconditioned)

Conclusions and future work

- Physics-based preconditioning for hyperbolic systems: parabolization, semi-implicit approximation.
- Parabolization: Schur decomposition.
- Semi-implicit approximation: appropriate simplification of exact Schur decomposition.
- Concept tested for MHD stiff waves, in both resistive (mature), Hall (proof-of-principle) primitive variables formulations.
- Highlights:
 - SCALABILITY: $CPU \sim \mathcal{O}(N)$ (MG based)
 - WINS OVER EXPLICIT METHODS: CPU speedup up to 30!.
- Future work:
 - Characterize Hall MHD more exhaustively.
 - Demonstrate preconditioning scalability in 3D.
 - Extend efficiency results to other geometries.
 - Parallelization: incorporate preconditioner in PETSc parallel version.

