

## **RELAP5-3D Development Status**

Presented by

Gary W. Johnsen

Idaho National Engineering & Environmental Laboratory Idaho Falls, Idaho 83415

2000 RELAP5 International User's Seminar September 12-14, 2000 Jackson Hole, WY





# Outline

- Overview of development activities
- Selected reviews
  - Parallel computation
  - 3D downcomer model
  - Improved fuel deformation model
  - 1994 Decay heat model
  - 1995 Water properties
- Ongoing development
- Future work





# **Development Highlights**

| Item                                | Objective                          |  |
|-------------------------------------|------------------------------------|--|
| Precompiler for Parallel Processing | Clean up coding for parallel       |  |
|                                     | processing on multiple CPU's       |  |
| Semi-implicit Coupling*             | Allow RELAP5-3D to couple to       |  |
|                                     | other codes semi-implicitly        |  |
| Improved Matrix Solution of the     | Reduce time step reductions caused |  |
| Field Equations*                    | by ill-conditioned matrices        |  |
| Downcomer Pressure Drop             | Allow single radial ring           |  |
|                                     | downcomer in 3D component          |  |
| RELAP5 Graphical User Interface     | Further enhancements               |  |
| (RGUI)*                             |                                    |  |
| Fuel Deformation Model              | Cause flow area and volume to      |  |
|                                     | reduce due to fuel swelling        |  |
| 1994 ANS Decay Heat                 | Implement 1994 standard            |  |
| 1995 Water Properties               | Implement IAPWS-95 standard for    |  |
|                                     | water properties                   |  |
| PYGMALION                           | Restore functionality              |  |

\* Presentation in seminar





# **Other Activities**

- ATHENA Development
  - Pb/Bi wall heat transfer and void model
  - ITER heat transfer option
- RELAP5/RT Support
  - Installed at Palo Verde, Comanche Peak, Salem, Hope Creek
- INER Support
  - Appendix K version of RELAP5-3D
- INSP Support
- Non-nuclear Applications





### Pre-compiler for Parallel Processing

- Objective: Render parallel coding easier to read and maintain
- Method: Achieve parallel execution capability solely through the use of precompiler directives





#### Example Speed-Up from Parallel Execution

Problem: AP600 model (620 volumes)

|            | Single   | Two      | % Change |
|------------|----------|----------|----------|
|            | Thread   | Threads  |          |
| CPU time   | 26115.33 | 36073.22 | +38.1    |
| (sec)      |          |          |          |
| Wall clock | 26416.78 | 18344.03 | -30.6    |
| time (sec) |          |          |          |





#### Downcomer Pressure Drop Model

Problem: Original implementation of 3D component model required at least two radial nodes to properly compute the pressure change due to momentum flux from a one-dimensional pipe to a multidimensional downcomer.

$$\Delta p_{MF} = \rho \left( v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} \right)$$

Cross derivative terms ill-defined for one radial ring

RELAP5-3D<sup>©</sup>



#### Downcomer Pressure Drop Model (cont'd)

The last term is computed assuming  $v_{\theta}$  is constant in the radial direction:



### Improved Fuel Deformation Model

The existing fuel swelling and rupture model was improved to account for the effects on control volume flow area, volume, and hydraulic diameter.









### New Water Properties

- Implemented IAPWS-95 Formulation
- New tables built from calls to NIST STEAM routines from new 'stgh2o95' program in environmental library
- Transport property tables also built from NIST routines: thermal conductivity, dynamic viscosity, and surface tension









### Functions of the Executive

- Start the codes to be coupled
- Coordinate choice of time step size
- Control code output (plot/print frequencies)
  - Each code maintains its own output files
- Explicit or semi-implicit coupling







# Future Development

- Coupling follow-on tasks
- Further parallelization
- Convert bit-packing to FORTRAN 90
- Remedy code problems:
  - Oscillations in default critical flow model
  - Oscillations from flow regime transitions
  - Unphysical temperatures when filling a vertical stack



