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Outline
• Overview of development activities
• Selected reviews

– Parallel computation
– 3D downcomer model
– Improved fuel deformation model
– 1994 Decay heat model
– 1995 Water properties

• Ongoing development
• Future work
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Development Highlights
Item Objective

Precompiler for Parallel Processing Clean up coding for parallel
processing on multiple CPU’s

Semi-implicit Coupling* Allow RELAP5-3D to couple to
other codes semi-implicitly

Improved Matrix Solution of the
Field Equations*

Reduce time step reductions caused
by ill-conditioned matrices

Downcomer Pressure Drop Allow single radial ring
downcomer in 3D component

RELAP5 Graphical User Interface
(RGUI)*

Further enhancements

Fuel Deformation Model Cause flow area and volume to
reduce due to fuel swelling

1994 ANS Decay Heat Implement 1994 standard
1995 Water Properties Implement IAPWS-95 standard for

water properties
PYGMALION Restore functionality

* Presentation in seminar
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Other Activities
• ATHENA Development

– Pb/Bi wall heat transfer and void model
– ITER heat transfer option

• RELAP5/RT Support
– Installed at Palo Verde, Comanche Peak, Salem, Hope

Creek

• INER Support
– Appendix K version of RELAP5-3D

• INSP Support
• Non-nuclear Applications
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Pre-compiler for Parallel Processing

• Objective: Render parallel coding easier to
read and maintain

• Method: Achieve parallel execution
capability solely through the use of
precompiler directives
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Example Speed-Up from Parallel
Execution

Problem: AP600 model (620 volumes)

Single
Thread

Two
Threads

% Change

CPU time
(sec)

26115.33 36073.22 +38.1

Wall clock
time (sec)

26416.78 18344.03 -30.6
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Downcomer Pressure Drop Model
Problem: Original implementation of 3D component model
required at least two radial nodes to properly compute the
pressure change due to momentum flux from a one-dimensional
pipe to a multidimensional downcomer.
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Downcomer Pressure Drop Model (cont’d)
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Improved Fuel Deformation Model
The existing fuel swelling and rupture model was improved
to account for the effects on control volume flow area,
volume, and hydraulic diameter.
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Improved Fuel Deformation Model (cont’d)

Change in fuel rod radius
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Sample problem: Burst of low and high power fuel rods
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Improved Fuel Deformation Model (cont’d)

Change in Volume Flow Area
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1994 Decay Heat Standard
The ANS94-4 Standard produces slightly higher decay heat than the
ANS79-3 Standard
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New Water Properties

• Implemented IAPWS-95 Formulation
• New tables built from calls to NIST

STEAM routines from new ‘stgh2o95’
program in environmental library

• Transport property tables also built from
NIST routines: thermal conductivity,
dynamic viscosity, and surface tension
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Ongoing Development

• Executive for code coupling
• Kinetics coupling

Advancing the code coupling capability:
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Executive for Code Coupling

PVM

Executive

RELAP5-3D Code 1 Code 2
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Functions of the Executive

• Start the codes to be coupled
• Coordinate choice of time step size
• Control code output (plot/print frequencies)

– Each code maintains its own output files
• Explicit or semi-implicit coupling
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Kinetics Coupling
Objective: Transmit Kinetics-related data between 
RELAP5-3D and a coupled code

PVMRELAP5-3D Coupled code

Thermal and hydraulic data

Power data
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Future Development
• Coupling follow-on tasks
• Further parallelization
• Convert bit-packing to FORTRAN 90
• Remedy code problems:

– Oscillations in default critical flow model
– Oscillations from flow regime transitions
– Unphysical temperatures when filling a vertical

stack


