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ACc;unparison of Linear Least Squares Computer ~ograms ,

Two line~r least squares test problems, both fifth degree polyno-
mials, have been run on mqre than twenty different computer programs
in order to assess their ntunerica1 accuracy.' Essentially five different
algorithms were used in the various programs to obtain the coefficients
of the least squares fits. The tests were run on several different
computers, in double precision as well as single precision. By
comparing the coefficients reported, it was found that those programs
using orthogonal Householder transfonnations or Gram-Schmidt orthononnal-
ization were much more accurate than those using elimination al¥ori thIns.'
Programs using orthogonal polynomials (suitable only for polynom1al fits)
also proved to be superior to those using elimination algorithms. One
program, using congruential methods and integer arithmetic, obtained
exact solutions. In a number of progr~, the coefficients reported in
one test program, were sometimes completely erroneous, containing not
even one correct significant digit.

Introduction:
Computational algorithms for linear least squares problems were

originally designed for calculators. However, many computer solutions
of the linear least squares problems are still obtained from programs
using calculator algorithms. The numerical accuracy of these solutions
is in many cases a tragedy.

The present study was tmdertaken to assess the numerical accuracy
of the RAX Statistical System program polynomial regres~ion and other
representative least squares programs from a variety of sources. Many
of the results sunnnarized herein are taken from a study by Wampler. [44J
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Twotest problems, both fifth degree polynomials, have peen nm

on more than twenty different programs. Included in the study were

programs from the BMDBiomedical computer programs 'collection, the
, .

C-E-I-R Multi-Access Computing Services Library, the IBMSHARELibrary, '

the IIM System/360 scientific 'subroutine package~ th~'Univac MATH~PACK

, and STAT-PACKcollections, and the Proj ect MAC-7094disk files. A

detailed listing of the sources of the programs is given in Appendix A,

together with a brief description of each program.

The programs included in this study used essentially five different

algori tluns: ortll0gonal Hotiseholder transformations, Gram-Schmidt

orthonormalization, orth,ogonal polynomials, Gaussion or Joroan

elimination, and a congruential method with computations in integer

arithmetic.

Previous studies appraising linear least squares program and

c,omparing the resu! ts of different 8:lgori thms Mve been made by

Cameron [9], Freund [20], Br,ight and Dawkins [7], Zellner and Thornber [48],

Longley [29], Jordan [27], and Wampler [44].

The linear least squares problem may be briefly stated as follows:

one has n observations or measurements of a "dependent" variable y

which are statistically independent with ~onunonvariance (;2 whose

expected values are given by a linear ftmction of the corresponding
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values of k "independent" variables, Xl' X2' ••••• , Xk, k ::.n. In

matrix notation the n observations have expected values E (Y) 1IlI. Xa,

whereY is an n x 1 vector, X is an n x k matrix, and /3 is a k x I

vector of unknowncoefficients. Assuningthat X i,s of rank k, ·the

least squares estimates of the coefficients are given by B = (X'X)-l X'Y.

Other quantities of interest are Y III X i, the vector of predicted

values; B = Y - Y, the vector of residuals; .and . i

,. •..
(Y-Y)' (Y-v) ,

an estimate of the variance a2.

The Test ProblEllls:

The twomain test problemswhichwere used throughout this inves-

tigation ar~ identified as Y1 and Y2 • Bothwere fi£:th degree polynanials,

with the values of x being the integers 0, 1, 2, •••• , 20. The "obser-

vations", Y1 and Y2' were calculated fran the following equations:

Y1: Y. 1 + x + x2 + x3 + xlt + x5 , X = O(lJ20~).

Y2: Y. 1 + 0.1 x + 0.01 x2 + 0.001 x3 '" 0.0001 xlt + 0.00001x5, x = 0(1)20.

Thus the values of Y1 were integers having one to seven.digits, and

those of Y2 were five decimal numbersranging fran 1.00000 to 63.00000.

If the least squares solutions were canputed with no rounding

error, one 'WOuldobtain:
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1 1.
1 ,. 0,.1

B (Yn = 1 B (Y~) III .01
1 .001
1 .0001

'? 1 .00001

and,for both problems the residual standard deviation wo01dbe zero.

The two test problems, YI and Y2' were chosen because they are

highly ill-conditioned. 'I118;tis, sane programsfail to obtain correct

solutions "Whileother programssucceed in obtaining reasonably accurate

solutions. Polynomialproblemswere chosen because polynomial fitting

is an important .type of linear leas.t squares problem'which occurs

frequently in: practice.

The~-condition defined as:

P (A) == I ~ I '
11

where }.,is the nunerica1ly largest eigenvalue of A and 11 is the

numerically, smallest eigenvalue of A, is the criteria whichwe shall

use to measure the condition of matrix A. (See Newnan[34, p. 240]).

Mostof the programswhichwere tested obtained more accurate

solutions for Y2 than for YI. If we let A denote the '7 x 7 matrix.
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Wefind that for Yh P(A)· 4.095 x 1013, whereas for Y1, peA) = 6.829 x 1013,

indkating that the systen involving YI is more ill-conditioned than

that involv,ing Y2•

~ SlDmnaryofthe Results:

Tables 1 to 6 present abr,lef st.D11JIlary of the main results. A count,

Cj' of the nUmberof correct significant digits in each canputed coefficient

Wasobtained as follows:

Let ej (j = 1, 2, ••••• , b) denote the "true" value of the

coeff~<cient - that is, the value computed with no rmmding error. Let
,.
f3j denote the value calculated by the canputer. Then

e· B· ,.- 10g10 I ~;. J I, if lej - Bj I ; 0 and 8j ; 0
J

D, the approximate number of decimal digits with which the
,.

machine computes, if Bj •• 8j • O.

The above approach to counting the n\.IIIlberof correct digits in a

canputed value has been used by Jordan [27] a,nd others.

Tables 1 to 6, in ,the columns headed "Average Nmnberof Correct

Digits" report
•...

6
C • 1/6 I:j-l

c· .J
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Bach of the tables (1 through 6) summarizes a set of results for
a particular machine precision - 8, 9, 16, 18., etc., digits •.'Wi thin .
.each table the various programs are ranked for each of the·two test
problems, with rank 1.~enoting the best perfonnance according to the
count C.' .

The symbols in the·Algori thn co11.U1lllof the tables denote the
following:

C - Congroential method, fnterger ari thnetic
E - Elimination method

GS - Gran-Schmidt orthonormalization
HI' - Orthogonal Householder transfonnations
OP - Orthogonal po1ynanials •

We shall include a d~scussion of only those p~ograms currently
available in SRS and the proposed p~ogram by Lautenschlager. 1 For a
detailed discussion of the algorithms employed by the other programs
summarized in this report see Wampler [44).

1 Lautenschlager is a mathematical statistician with the United
States Department of Agriculture, Statistical Reporting Service,
Washington, D. C. '
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.Programs Using Orthogonal Polynomials:
Since the two test problems are both polynomial fits, we wel'e

able to test programs in which the algorithm used orthogonal polynomials •.
This method, described by Forsythe [18], is attractive because it
generally requiresrmany fewer operations than other methods.

SlOOPR by Lautenschlager employs orthogonal polynomials and uses
a modification of Forsythe's metpod [18]. From Table 3 we see that
the double precision version in 16 digits of S100PR performed best on
test problem Y1, however, ranked last of the three programs on test
problem Y2.

Below are listed the actual coefficients and counts obtained for
SlOOPR.

DOUBLE PRECISION

BETA-HAT (Yl)
0.9999998617649907
1.0000002746473910
0.9999999016054061
1.0000000128933947
0.9999999992947720
1.0000000000136755

AVERAGE =

(16 DIGITS)

COUNT
6.859
6.561
7.007
7.889
9.152

10 •864

8.055



-8-

DOUBLE PRECISION (16 DIGITS)
BETA-HAT (Y2) COUNT

1.0000006249634456 6.204
.' 0.0999986609550127 4.873

0.0100004345935624 4.362
0.0009999576813923 4.374

,0.0001000011332467 4.946
0.0000100000037365 6.427

AVERAGE ::I 5.198

Programs Using E1iminat~on Algorithms:
The majority of the programs tested in this investigation used some

fonn of an elimination algorithm. Al though this was the most popular
method, it was the least successful. None of these programs performed
as well as those using Householders' transfonnatiofiS, Gram-Schmidt
ortlmonna1ization (with iteration), or orthogonal polynomials.

Within this class of programs, there were several variations in the
method of obtaining the least-squares coefficients.

The programs POLRG and DFQ02 are the polynomial regression programs
of the IBM System/360 Scientific Subroutine Package [24, 25] and modified

\. SSP for RAX [24, 25, 38], respectively. These programs call for ,subroutines,
GDATA, ORDER, MINV, AND MULTR, in the course of obtaining the least squares
coefficients and other quantities of interest. These subroutines perform
the following operations:
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(1) GDATAgenerates the powers of the independent variable, findS

meansand standard deviations, and sets up a correlation matrix.

(2) ORDERchooses a dependent variable and a subset of independent

variables from a larger set of variables.

(3) MINVinverts the correlation matri'x using the "Standard Gauss-

Jordan method."

(4) MJI,.TR computesthe regression coefficients and related quantities,

such as the sumof squares attributable to the regression and the SlDD of

squares of deviations from regression.

Wesee from Table 1 that the single precision version of POLRG

obtained rather low scores and the RAX JIlOdificationDFQ02was almost the 'WOrst

of those programs included on both test problems. A double precision version

,of POLRGwas also run, and the perfonnance here as reported in Table 4 was

comparableto other programsusing similar elimination algoritbns.

,Theuser of POLRGor DFQ02specifies m, the highest degree polynomial

to be fitted, and the programautomatically reports the results of fitting

polynomials of successively increasing degrees, starting with: the first

degree• .If there is no reduction in the residual SlDD, of squares between

t'WOsuccessive degrees of polyncniaIs, the programstops the problembefore

completing the analysis for the highest degree specified. In rum.ing both

programs, POLRGand DFQ02,on both test problems, VI and Y2, in single

precision the analysis stopped after degree four, and in lieu of a fifth

degree polynanial fit, the message"NOIMPRDVEMBNT" was printed. In order



-10-

to complete the calculations for the fifth degree, the checks on "improvement"

were bypass~. In the double precision version, fifth degree results were

~btained without any such alterations in POLRG.DFQ02was not nm in double

precision.

The Progranmer's Manualfor the IBMSystem/360St:ientific Subroutine

Package [25] contains 'somewarnings regarding the accuracy of computations•
. .

The reader is Wonned that the accuracy of the computations in manyof the

routines is highly dependentupon the numberof significant digits available

for arithmetic operations. It is pointed out that matrix inversion and many

of the statistical subroutines fall into this category, and that the user may,

therefore, wish to use double precision versions of these routines. (The

programsare so constrUcted that conversion to double precision is an easy

matter. ) Anappendixof the manualclassifies the subroutines of this

package into three categories. Theyare: (1) subroutines having little

or no effect on accuracy, (2) subroutines whoseaccuracy is dependenton

the characteristics of the input data, and (3) subroutines in whichdefinite

statements on accuracy can be made. Onlyone of the four subroutines called

by the POLRGprogram, namelyORDER,.is in the first category. The other

three subroutines, GDATA,MINV,and KJLTR,fall in the second category. In

connection with this secondcategory we read that "it cannot be assuned

that the results are accurate simply because execution is completed."

Amoreexplicit statement is given in connection with the subroutine

GDATA.Here there is a conmentin the programstating that if in, the

highest degree polynomial to be fitted, is equal to 5 or greater, single

precision maynot be sufficient to give satisfactory results. Since the
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manual's test problem for POLRGspecifies m• 4 and has 15 data points,

one might infer that satisfactory results 'WOUldbe obtained for this problem.

This is not the case, however. In the solution to this problem given on

page 410 of the manua~,the inte:tcept term for the polynanial regression

of degree 4 is reported to be -5.26735. Anaccurate calculatio~ showsthat

this tem is ",actually ~6.04262, so that the reported tem had no correct

significant digits. The four reported regression coefficients were

correctly computedto only one or t1«> digits. Furthermore, the sm of

squares of deviations from the regression is reported to be 128.85156, wI;lereasit

is actually 17.67310. This error :is also propaaated into the calculation

of the meansquare, theF value, and the improvementin tems of SlUIlS of

squares.

Conc;ludingthis discussion of the accuracy of the test problem

accompanyingthe programPOLRG,wenote a remark given in the Progranmer's

ManuallDlOOr"Purposes and Objectives of the Package•." "While this package

mayprovide man)'of the tools necessary to solve the more COJIIIlOD1yenCOlDltered

problems in engineering and science, there is no inten.t to imply that these

subrout~es represent the current state of the art in statistics or numerical

analysis."

Belowwe list the coefficients and counts obtained for POLRGand DFQ02.

Similar results for the remaining programs listed in Tables 1-6 maybe fOWldin

Wampler[44].
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DOUBLE PRECISION00100

BETA-HAT .(Yl)

1.00000011110114428
O~999999990457514712'
1.00000000321449412
0.999999999544922239
1.00000000002322160
0.999999999999491835

(18 DIGITS)

COUNl'

6,;954
8.020
8.493
9.342

10.634
12.294

AVERAGE• 9.290
BETA-~T· (Y2) COUNT

1.00000000000136645 11.864
0.0999999999999411990 12.231
0.0100000000000305940 11.514
0.Q0099999999999S541370 11.351
0.000100000000000227181 11.644
0.00000999999999999416480 12.234

AVERAGE • 11.806



I

DFQ02
BETA-HAT (Y1)

374.3750
-769.9102
285.2087
-37.12183

3.125595
0.9581172

SINGLE PRECISION .(8 DIGITS)
COONT

-3.428
-3.113
-3.546
-2.419
-1.672
1.378

"BETA-HAT (Y2)

0.9922342
0.1436781

-0.0070678
0.0032501

-0.000121566
0.00001231

AVERAGE • -2.133

COUNf

2.110
. 0.360

1. 768

1.648
1.915

0.636
AVERAGE • 1.406
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Conc1udin~ Remarks: ,
(1) Of the four procedures using f1oating--point arithmetic which were

included in thi.s study, orthogonal Householder transformations and Gram-
Schmidt ,orthonorma1ization proved to be the best. Orthogonal polYnomials

,ranked next. Elimination methods were the least successful, but the most
popular. The multiple precision integer arithmetic procedure using
congruential methods was unique ,in obtaining exact solutions.

, (2) Some other algorithms apparently of high quality which have been
published in the last few years were not included in this study. ' These
include: (a) Bauer [2],

(b) Bjorck and Golub [6],
(c) Bjorck [5].

(3) The importance of accumulating inner products in double precision
cannot be overstressed. A number of recent papers on least squares
comput,ltions have emphasized this point. These include Businger and Golub [9],
Bauer [2], Golub and Wilkinson [22], Bjorck and Golub [6], and Bjorck [5].

(4) Iterative refinement is another valuable feature of recent
algorithms.

(5) In any mathematical calculation carried "out on a computer. it is
desirable to know whether an accurate solution has been obtained or whether
the result of a calculation is contaminated by rounding error to such an
extent that it is worthless. This goal has been achieved in some areas.
Martin, Peters, and Wilkinson [31], in their paper giving an algorithm
for solving Ax. = b, where A is n x n positive definite matrix and b is
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an n x p.matrix, state that their procedure "either produces the correctly

rounded soluti?ns of the equation Ax = b or indicates that A is too

ill-condition~d for this to be achieved without working to higher
I

precision (or is possibly singular)." Similarly, Wilkinson's program [45]

fqr the solution of an ill-conditioned system of equations Ax:,.= b, where

"A is n x n, "gives either a solution of the system which is correct to

wO'rkingaccuracy or alternatively indicates that the syst~ is too

. ill-conditioned to be solved without working to higher precision and may

even be singular."

It appears that the goal set out above has nowbeen achieved in the

linear least squares program of Bjorck and Golub [6]. The authors state

that their ,procedure maybe used to computeaccurate solutions and residuals

to. linear least squares problems, but that the procedure will fail when

Xmodified by rounding errors has less than full rank, and that it will

also fail if X is so ill-conditioned that there is no perceptible

improvementin the iterative refinement. The user is easily infonned of

these situations.

(6) SRSusers of DFQ02 should be ~ognizant of the restrictions outlined

in the Programmer'sManual for the IBMSystem/360 Scientific Subroutine

Package modified for RAXregarding the accuracy of computations. Whenever

working with a problem similar to either of the test problems, Yl or Y2,

POLRG(ava~lable in the Center), or SlOOPRgive more accurate solutions,. than DFQ02.

SlOOPRis nowstored on the SRSRemoteAccess Tenninal.
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a E= Elimination methQdj GS = Gram-Schmidt orthononna1ization;
OP = Ott~~gona1 polynomials.

Table 3.--Summary of programs run in double precision--16 digits

Average nunber of Rank
Program .' Com- Algo- correct digits.

: puter rithm a
Y1 Y2 Y1 Y2

IMDOSR 7094 E 6.953 6.230 3 2
DP\IMTX 1107 E 7.882 9.959 2 1
S100PR 360 OP 8.055 5.198 1 3

a E = Elimination method; OP = Orthogonal polynomials.
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Table 5. --Stunmary of programs n.m in single, precision (8 digits) with bmer
products accumulated in double precision (18 digits)

,Average number of Rank

: Com- Algo-
correct digits

, Program
: puter rithm a ..

• Y1 Y2 YI : Y~
,
I'
I

i ALSQ 1108 HI' 3.506 6.530 3 1,I
j LSTSQ 1108 HI' 8.000 6.279 1 3j
I

I ORTIiO 1108 GS 3.904 6.459 2 2
, , .

a GS = Gram-Schmidt orthonormalization; fIT = Orthogonal Householder
transformations ..



Table 6.--Surmnary of program run in multiple precision integer arithmetic

'-19-

..: Average number of
correct digits

1
I
\
\

\
\
i

" ,
I

Program : COm-
: puter...

Algo a
ri thm

Y1 Y2

SOLVER 1108 C
Of GO

Rational fO.nn' 18.000 17.347
Floated fonn

a C = Congruential method.
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Appendix A. Sources of tbe Pro.grams, With
Brief Descriptions.

ALSQ. A FORTRANIV subroutine to solve the linear least squares ·problem,

wri tten by G. W. St~r~ JII, Union Carbide Corp., Oak Ridge, Tennessee

(present. address: The University of Texas, Austin, Texas). This program

uses a modification of the :Businger-Golub algorithm [8].

BMD02R,Stepwise Regression. One of. the Biomedical Computer.Programs, written

in FORTRAN[15].

JM>03R,M1ltiple Regression with Case Combinations. One of the Biomedical

Computer Programs, written in FORTRAN[15].

Jf.ID05R,Polynomial Regression. One of the Biomedical Computer Programs,

Written in FORTRAN[15].

DAM. A general purpose computer program for data processing and JmJltiple .

regression, written in FORTRANby Rudolf R. Rhomberg, Lorette Boissonneault,

and Leonard Harris, International Monetary Fund [36].

, .
DFQ02,Polynomial Regression. One of the programs of the IJH System/360

Scientific Subroutine Package written in FORTRANII modified for Remote

Access Statistical System ~) [24, 25, 38].

DPVMrX.A double precision FOln'RAN IV program for inverting a matrix or

solving a set of linear equations. To a program from the SHARElibrary

(7090-Fl 3l8lINV2 Double Precision Matrix Inversion with Selective Pivot,

written by A. R. Sadaka [26]), Sally T. Peavy, National Bureau of Standards,

incorporated accuracy checks.
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LINFIT. A program which fits a linear function to collected data via

least squares. Optional constraints maybe applied to :the fitting

coefficients to make them nonnegative, add to a constant, etc. One of

eighteen statistical routines written by James R. Miller [32]. 'I'h;is.

library of routines exists in the Project.

LINFIT***. A program written in BASICfor linear least squares curve fitting

and computing correlations. Origin: Dartmouth College, Hanover, N.H.

Available in the C-E-I-R Multi-Access ComputerServices library [10].

LSCF--***. A least squares polynomial curve fitting subroutine written in

BASIC. Origin: Dartmouth College, Hanover, N.H. Available in the C""E-I-R

Multi -Access ComputerServices library [to].

LSFITW***.A least squares curve fitting program written in BASIC. Adapted

by John B. Shtunaker, National Bureau of Standards, from Philip J. Walsh's

ORTHOalgorithm [42]. Available in the C-E-I-RMulti-Access ComputerServices

library [10].

LSI'SQ. A FORTRANIV subroutine which solves for X the 'overdetennined system
,

AX.= B of m linear equations in n unlmowsfor p right-hand sides. Written

by Peter Businger, Computation Center, University of Texas (present address:

Bell Telephone Laboratories, Murrary Hill, N.J.), using the Businger-Golub

algorithm [8].

MATH-PACK,ORMS, Or~ogona1 Polynomial Least-Squares Curve Fitting. One of

the Univac 1108 MATH-PACKp~ograms, written in FORTRANV [4Q].
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MPR3,.Stepwise Multiple Regression with Variabl~ Transformations.

A FORTRANII program written by M. A. Efroymson, Esso Research and Engineering
..

Co., Madison, N.J., using the E£roymsonalgorithm [16]. Available in the

SHARElibrary: 7090-G2 3l45MI>R3[26].

,Iv'

OMNITAB,a general-purpose computer program for statistical and numerical

analysis. Developed at the National Bureau of Standards by Joseph Hi1senrath

et al. [23]. Nowavailable in an A.S.A. FORTRANversion, <J.1NITABallows the

user to communicate with a computer in an efficient manner by means of

simple English sentences.

ORlHO. A program written by Philip J. Walsh, National Bureau of Standards

(present address: lh1iversity Computing Co.., East Brunswick, N.J.), which uses

a Gram-Schmidtorthonor.malization process for least squares curve fitting.

ORlHOexists as an ALGOLprocedure [42], a FORTRANpr.ogram, a BASICprogram

(see LSFITW***on page 21), and as a routine of ClvINITAB[23], where it is

called by the camnands FIT and POLYFIT.

ORlHQL. A modification of the Davis-Rabinowitz orthonormalization algorithm

[12, 13, 14], written in FORTRANII by James W. Longley, Bureau of Labor

Statistics, Washington, D. C., and Roger A. Blau, Bureau of Labor Statistics

and Carnegie-Mellon lh1iversity, Pittsburgh, Pa. [30] .

POLFIT. .Ananonymousprogram written in BASICfor least squares polynomial

curve fitting using orthogonal polynomials •
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POLRG,Polynomial Regression. One of the programs of the IJJ4 System/360

Scientific Subroutine Package written in FORTRANIV [24, 25].

SIOOPR. A program written by Lyle Lautenschlager,. Statistical Reporting

Service, which uses an orthogonal polynomial approximation method, written

in FORTRANI I.

SIMEX-***. A program written in BASICfor solving n simultaneous equations

in n unknowns. Origin: Naval Ordinance Laboratory, Silver Spring, Md.

Available in the C-E-I-R M.1lti-Access Computer Services library [10].

SOLVER.A FORTRANprogram written by Morris Newman,National Bureau of

Standards, for obtaining the exact solution of the system AX= B, or the

inverse of a matrix A, by co~gruential methods [35]. The elements of

A and B must be integers.

SPVMTX.A single precision FORTRANIV program for inverti~g a matrix or

solving a set of linear equations. To a program from the SHARElibrary

(7090-F1 3180INVl Single Precision Matrix Inversion with Selective Pivoting

written by A. R. Sadaka [25], Sally T. Peavy, National Bureau of Standards,

incorporated accuracy checks.

STAT-PACK,GLH,General Linear Hfl>otheses. One of the Univac 1108 STAl-·PACK

programs, written in FORTRANV [42].

STAT-PACK,REBSO\1,Back Solution Multiple Regression. One of the Univac 1108. ,
STAT-PACKprograms, written in FORTRANV [42].

STAT-PACK,RESTEM,Stepwise Multiple Regression. One of the Univac 1108 STAT-
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PACK programs, written in FORTRAN V [42].

STAT 20***. A program written in BASIC for stepwise multiple linear regression.
Wri tten by Thomas E. Kurtz, D,artmouth College, Hanover, N.H. ' Available in

, ' ,

the C-E-I-R Multi-Access Computer Services library [10].
" ~STAT2l***. A program writt~n in BASIC for multiple linear regression with

detailed output. Written by Gerald Childs, Dartmouth College, N.H.
Available in the C-E~I-R Multi-Access Computer Services library [10].

WRAP, Weighted Regression Analysis Program. A FORTRAN II program written by
M. D. Fimple, Sandia Corp., Albuquerque, New Mexico. Available in the
SHARE library: 7090-G2 3231 WRAP [26]•
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