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Outline

General Topic Areas

What can you do / can’t do

Computer arithmetic / floating point

Stability versus ill-conditioning

Power of Algorithms versus Hardware



General Topic Areas

Dense Linear Algebra

Sparse Linear Algebra

Spectral Methods (FFTs)

Structured Grids

Unstructured Grids

 N-Body Methods

Monte Carlo

http://www.eecs.berkeley.edu/Pubs/TechRpts/
2006/EECS-2006-183.html



What can you do/can’t do
In general 

Only solve to certain level of accuracy, 
either model or computer

Only solve linear systems

Only find local minima



Always want to consider 
what can go wrong

How much can we trust the final computed 
answer?

How good is the final answer?

What’s the relative accuracy of a solution?

How sensitive is the answer?

The purpose of computing is insight, not 
numbers.

                            R.W. Hamming



Floating Point 
Representation

Standard form to represent numbers is called 
normalized scientific notation

Usually of the form

Computers use binary numbers so

The set of real numbers that can be 
represented on a computer are called the 
machine numbers

x = r ∗ 10m, .1 ≤ r < 1

x = q ∗ 2m,
1
2
≤ q < 1



IEEE Floating Point 

0 1-11 12-63

sign exponent mantissa



IEEE 64-bit Floating-Point 

Approximate decimal exponent range: 10-308 
to 10308

Approximate decimal accuracy: 16 digits

Largest whole number that can be 
represented exactly: 253 = 9.0072 x 1015



Exception Handling
Exception handling deals with operations that 
either generate an invalid number, or one that 
is too small or too large to represent

Some common exceptions:

Overflow - exact result > OV, too large to 
represent

Underflow - exact result nonzero and < UN, 
too small to represent

Divide-by-zero - nonzero/0

Invalid - 0/0, sqrt(-1), …



Some Useful Facts

Integers are exact – unless they overflow

Every arithmetic operation is rounded off

too big yields overflow

tiny but nonzero yields underflow

Some operations are exact, e.g. x = -y

Machine epsilon is defined to be the Smallest 
floating point number such that: 

1 + ε > 1



High Precision Arithmetic
What if 64 or 80 bits is not enough?

Very large problems on very large machines may 
need more.

High precision can be simulated efficiently using 
standard floating points ops.

Each extended precision number s is represented by  
an array (s1,s2,…,sn) where:

each sk is a floating point number   

s = s1 + s2 + … + sn   in exact arithmetic

s1 >> s2 >> … >> sn 

Much more in Wednesday’s talk by David Bailey



Further References on 
Floating Point Arithmetic

W. Kahan

 CS267 lecture from 1996

www.cs.berkeley.edu/~wkahan/ieee754status/
cs267fp.ps

“Lecture Notes on IEEE 754”

www.cs.berkeley.edu/~wkahan/ieeestatus/ieee754.ps

David Bailey’s web pages

crd.lbl.gov/~dhbailey

MSRI-UP wiki (look in references

msri-up.msri.org



What’s the best that we 
can expect?

The computed 
solution should be 
the exact solution 
to a a slightly 
perturbed problem

Def: An algorithm is 
stable if it 
computes the exact 
solution to a 
nearby problem

Recall, with 
computer arithmetic 
we’re always 
solving perturbed 

x∗

x̂



What about the relative 
accuracy?

Def: A problem is 
ill-conditioned 
if small changes 
in the data can 
cause large 
changes in the 
solution. 

Need to 
emphasize the 
can and not will.

x2

x1

x3



Example: Ill-conditioning

By inspection the solution is x = y = 1.0

If we change 0.499 to .500 (a relative error of 0.001 
then the solution becomes: x = 3, y = 0

A relative change in the output of 100%

Irrespective of the method you choose to solve this 
problem with

x + 2y = 3
0.499x + 1.001y = 1.5



Summary: 
Stability vs. Ill-conditioning

Algorithms are stable / unstable

An algorithm is stable if it solves a 
nearby problem

Problems are well/ill conditioned

A problem is ill-conditioned if small 
changes in the input cause large changes 
in the output

Many people confuse the two leading to all 
sorts of problems and unwise decisions



Def: 

A Numerical Analyst 
is a person who solves 
a nearby problem, i.e. 
one that you are 
almost interested in



Improvements in Algorithms have 
outpaced those in hardware

Bixby ran a set of tests in 2002 

680 test problems with up to 7 million equality 
constraints 

Compared to algorithms and machines dating to 
1990

Results show improvements in simplex 
algorithms have yielded a speedup of 960 
compared to 800 for hardware
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Sparse GE

Gauss-Seidel

SOR
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Multigrid

Jacobi

Gaussian Elimination/CDC 3600

CDC 6600

CDC 7600

Cray 1

Cray YMP

1 GFlop

1 Teraflop

Similar improvements in linear algebra 



Summary
Insight not numbers

Always have to deal with inaccuracies

Don’t want just the solution, but a sense of 
how accurate/sensitive it is to perturbations

Algorithms have yielded greater improvement 
than computer hardware in many important 
problems



Problem Set 1

Search the web to find a problem of interest 
to you that uses computational mathematics.

Determine the mathematics areas that are used 
for the given problem.  

Explain why this problem is interesting, what 
mathematics is used, and why those 
mathematics areas were used.  

You should also think about how you would 
improve either the methods they use or how 
you would extend the work.

You will be asked to give a short presentation 
(5 minutes)


