
Basics of
Computational

Mathematics

Juan Meza
Lawrence Berkeley National Laboratory

Outline

General Topic Areas

What can you do / can’t do

Computer arithmetic / floating point

Stability versus ill-conditioning

Power of Algorithms versus Hardware

General Topic Areas

Dense Linear Algebra

Sparse Linear Algebra

Spectral Methods (FFTs)

Structured Grids

Unstructured Grids

 N-Body Methods

Monte Carlo

http://www.eecs.berkeley.edu/Pubs/TechRpts/
2006/EECS-2006-183.html

What can you do/can’t do
In general

Only solve to certain level of accuracy,
either model or computer

Only solve linear systems

Only find local minima

Always want to consider
what can go wrong

How much can we trust the final computed
answer?

How good is the final answer?

What’s the relative accuracy of a solution?

How sensitive is the answer?

The purpose of computing is insight, not
numbers.

 R.W. Hamming

Floating Point
Representation

Standard form to represent numbers is called
normalized scientific notation

Usually of the form

Computers use binary numbers so

The set of real numbers that can be
represented on a computer are called the
machine numbers

x = r ∗ 10m, .1 ≤ r < 1

x = q ∗ 2m,
1
2
≤ q < 1

IEEE Floating Point

0 1-11 12-63

sign exponent mantissa

IEEE 64-bit Floating-Point

Approximate decimal exponent range: 10-308
to 10308

Approximate decimal accuracy: 16 digits

Largest whole number that can be
represented exactly: 253 = 9.0072 x 1015

Exception Handling
Exception handling deals with operations that
either generate an invalid number, or one that
is too small or too large to represent

Some common exceptions:

Overflow - exact result > OV, too large to
represent

Underflow - exact result nonzero and < UN,
too small to represent

Divide-by-zero - nonzero/0

Invalid - 0/0, sqrt(-1), …

Some Useful Facts

Integers are exact – unless they overflow

Every arithmetic operation is rounded off

too big yields overflow

tiny but nonzero yields underflow

Some operations are exact, e.g. x = -y

Machine epsilon is defined to be the Smallest
floating point number such that:

1 + ε > 1

High Precision Arithmetic
What if 64 or 80 bits is not enough?

Very large problems on very large machines may
need more.

High precision can be simulated efficiently using
standard floating points ops.

Each extended precision number s is represented by
an array (s1,s2,…,sn) where:

each sk is a floating point number

s = s1 + s2 + … + sn in exact arithmetic

s1 >> s2 >> … >> sn

Much more in Wednesday’s talk by David Bailey

Further References on
Floating Point Arithmetic

W. Kahan

 CS267 lecture from 1996

www.cs.berkeley.edu/~wkahan/ieee754status/
cs267fp.ps

“Lecture Notes on IEEE 754”

www.cs.berkeley.edu/~wkahan/ieeestatus/ieee754.ps

David Bailey’s web pages

crd.lbl.gov/~dhbailey

MSRI-UP wiki (look in references

msri-up.msri.org

What’s the best that we
can expect?

The computed
solution should be
the exact solution
to a a slightly
perturbed problem

Def: An algorithm is
stable if it
computes the exact
solution to a
nearby problem

Recall, with
computer arithmetic
we’re always
solving perturbed

x∗

x̂

What about the relative
accuracy?

Def: A problem is
ill-conditioned
if small changes
in the data can
cause large
changes in the
solution.

Need to
emphasize the
can and not will.

x2

x1

x3

Example: Ill-conditioning

By inspection the solution is x = y = 1.0

If we change 0.499 to .500 (a relative error of 0.001
then the solution becomes: x = 3, y = 0

A relative change in the output of 100%

Irrespective of the method you choose to solve this
problem with

x + 2y = 3
0.499x + 1.001y = 1.5

Summary:
Stability vs. Ill-conditioning

Algorithms are stable / unstable

An algorithm is stable if it solves a
nearby problem

Problems are well/ill conditioned

A problem is ill-conditioned if small
changes in the input cause large changes
in the output

Many people confuse the two leading to all
sorts of problems and unwise decisions

Def:

A Numerical Analyst
is a person who solves
a nearby problem, i.e.
one that you are
almost interested in

Improvements in Algorithms have
outpaced those in hardware

Bixby ran a set of tests in 2002

680 test problems with up to 7 million equality
constraints

Compared to algorithms and machines dating to
1990

Results show improvements in simplex
algorithms have yielded a speedup of 960
compared to 800 for hardware

Algorithms
Computers1965

1968
1973

1976
1980

1986
1996

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

C
P

U
 t

im
e

 (
s

e
c

.)

Sparse GE

Gauss-Seidel

SOR
PCG

Multigrid

Jacobi

Gaussian Elimination/CDC 3600

CDC 6600

CDC 7600

Cray 1

Cray YMP

1 GFlop

1 Teraflop

Similar improvements in linear algebra

Summary
Insight not numbers

Always have to deal with inaccuracies

Don’t want just the solution, but a sense of
how accurate/sensitive it is to perturbations

Algorithms have yielded greater improvement
than computer hardware in many important
problems

Problem Set 1

Search the web to find a problem of interest
to you that uses computational mathematics.

Determine the mathematics areas that are used
for the given problem.

Explain why this problem is interesting, what
mathematics is used, and why those
mathematics areas were used.

You should also think about how you would
improve either the methods they use or how
you would extend the work.

You will be asked to give a short presentation
(5 minutes)

