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Abstract

This report documents research to develop robust and efficient solution techniques for
solving large-scale systems of nonlinear equations. The most widely used method for solv-
ing systems of nonlinear equations is Newton’s method. While much research has been
devoted to augmenting Newton-based solvers (usually with globalization techniques), little
has been devoted to exploring the application of different models. Our research has been
directed at evaluating techniques using different models than Newton’s method: a lower
order model, Broyden’s method, and a higher order model, the tensor method. We have
developed large-scale versions of each of these models and have demonstrated their use in
important applications at Sandia.

Broyden’s method replaces the Jacobian with an approximation, allowing codes that
cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-
memory methods, which have been successful in optimization, allow us to extend this
approach to large-scale problems. We compare the robustness and efficiency of New-
ton’s method, modified Newton’s method, Jacobian-free Newton-Krylov method, and our
limited-memory Broyden method. Comparisons are carried out for large-scale applications
of fluid flow simulations and electronic circuit simulations. Results show that, in cases
where the Jacobian was inaccurate or could not be computed, Broyden’s method converged
in some cases where Newton’s method failed to converge. We identify conditions where
Broyden’s method can be more efficient than Newton’s method.

We also present modifications to a large-scale tensor method, originally proposed by
Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor meth-
ods are an alternative to Newton-based methods and are based on computing a step based on
a local quadratic model rather than a linear model. The advantage of Bouaricha’s method
is that it can use any existing linear solver, which makes it simple to write and easily
portable. However, the method usually takes twice as long to solve as Newton-GMRES
on general problems because it solves two linear systems at each iteration. In this paper,
we discuss modifications to Bouaricha’s method for a practical implementation, including
a special globalization technique and other modifications for greater efficiency. We present
numerical results showing computational advantages over Newton-GMRES on some real-
istic problems.

We further discuss a new approach for dealing with singular (or ill-conditioned) ma-
trices. In particular, we modify an algorithm for identifying a turning point so that an
increasingly ill-conditioned Jacobian does not prevent convergence.
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Chapter 1

Introduction

This report describes two classes of methods (and their extensions) for solving the nonlinear
equations problem

givenF : Rn→ Rn, find x∗ ∈ Rn such thatF(x∗) = 0, (1.1)

where it is assumed thatF(x) is at least once continuously differentiable. Large-scale
systems of nonlinear equations defined by (1.1) arise in the simulation of many physical
phenomena at Sandia, including systems produced by finite-difference or finite-element
discretizations of boundary value problems for ordinary and partial differential equations.
Typical examples include reacting flows, compressible flows, solid mechanics, device sim-
ulation, and circuit simulation.

Newton-based strategies are the most widely used methods for solving systems of
nonlinear equations. While much research has been devoted to improving Newton-based
solvers (usually with globalization techniques) [19, 38], little has been devoted to exploring
the applicability of different underlying models, such as Broyden’s method [57] and tensor
methods [13]. Our research focuses on these alternate methods and investigates their per-
formance on challenging problems. We present modifications to the basic algorithms that
result in better performance, increased robustness, and greater ease-of-use.

Newton’s method for solving (1.1) is based on creating a linear local modelMN(xk+d)
of the functionF(x) around the current iteratexk ∈ Rn:

MN(xk +d) = F(xk)+J(xk)d, (1.2)

whered ∈ Rn is the step andJ(xk) ∈ Rn×n is the current Jacobian matrix, which is defined
as the derivative of the residual equations with respect to the unknowns, i.e.,

Ji j =
∂Fi

∂x j
.

A root of the local model (1.2) provides the Newton step

dN =−J(xk)−1F(xk),
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which is used to reach the next trial point. Thus, Newton’s method is defined whenJk is
nonsingular, and consists of updating the current point with the Newton step,

xk+1 = xk +dN. (1.3)

Because the sequence of iterates based upon (1.3) is not guaranteed to converge, a technique
for modifying the step to ensure global convergence is used frequently. The two most
common choices of globalization schemes are a line search procedure (which scalesdN by
a fractional value) or a trust region algorithm (which chooses an optimal direction to the
extent that the local model is trusted); see, e.g., [19, 45].

Methods that use direct linear solvers are impractical on large-scale problems because
of the high linear algebra costs and large memory requirements. Thus, most practical ap-
proaches for solving large problems involve using an iterative method to approximately
solve a local linear model using the Jacobian and then using the “inexact” step produced
by the approximate solution. These methods are called “inexact” Newton methods [18].
Successively better approximations at each iteration preserve the rapid convergence behav-
ior of Newton’s method when nearing the solution. The computational savings reflected in
this less expensive linear solve is usually partially offset with more outer iterations, but the
overall savings is significant on large-scale problems.

Overall, Newton-based algorithms have many appealing properties such as robustness,
scale invariance, and, most importantly, quadratic convergence. While Newton’s method
is usually the de facto standard, it is not always the best choice. This report discusses two
alternate strategies.

1.1 Broyden’s Method for Nonlinear Problems

In some cases, the derivative information required for a Newton-based solve is either un-
available or cannot be calculated efficiently. In these cases, alternate strategies can be more
economical in terms of both implementation and execution costs.

Broyden’s method [13] is an alternative to Newton’s method that does not require an
accurate Jacobian matrix. Broyden’s method for solving (1.1) is based on creating an ap-
proximate linear local modelMB(xk + d) of the functionF(x) around the current iterate
xk ∈ Rn:

MB(xk +d) = F(xk)+Bkd,

whereBk ∈ Rn×n is an approximation to the Jacobian composed of a sequence of secant
approximations. Each secant approximation adds a rank-1 matrix to the Jacobian approxi-
mation so that the local model interpolates the function value at past iterates. In this way,
approximate derivative information in the direction of the previous steps is included in the
local model.

Since the Jacobian is approximated using information generated in previous iterates, the
application need only supplyB0, the initial approximation to the Jacobian. This matrix can
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be as simple as the identity matrix, thus removing any requirement of a Jacobian evaluation.
The closerB0 approximates the Jacobian, the more efficient Broyden’s method becomes.
Due to the simple nature of the approximation matrix, Broyden’s method requires very little
computation time to perform a step, which makes it suitable for solving some large-scale
problems.

The primary goal of our research with Broyden’s method was to evaluate its perfor-
mance and determine cases where this technology should be employed. We compare a
limited-memory version of Broyden’s method, based on [38], to various Newton-based
strategies on a limited set of test problems.

1.2 Tensor Methods for Nonlinear Problems

In some cases, the Jacobian may be available, but the problem may be so nonlinear or
difficult to solve with standard techniques that extra information is needed to converge. In
these cases, including second-order information in the local model can produce a better
step, which is the premise of tensor methods.

Tensor methods [57] solve (1.1) by including one more term from the Taylor series
expansion in the local model. More precisely, tensor methods base each iteration on a sim-
plified quadratic model ofF(x) such that the quadratic term is a low-rank secant approx-
imation that augments the standard linear model. The local tensor model has the generic
form

MT(xk +d) = Fk +Jkd+ 1
2Tkdd, (1.4)

whereTk ∈ Rn×n×n is a low-rank tensor, which includes second-order information about
F(x) and is where these methods get their name. For this research we only consider a
rank-1 approximation termTk. Computational evidence in [57] suggests that a higher-rank
approximation actually adds little to the computational performance of the direct method.

Tensor methods are aptly suited to target problems where the Jacobian at the root is
singular or, at least, very ill-conditioned [3, 4]. Newton-based methods do not handle
singular problems well because they converge linearly to the solution and, in some cases,
with poor accuracy [14, 15, 16, 47]. On the other hand, tensor methods are superlinearly
convergent on singular problems under mild conditions [23].

The primary goal of the tensor method research was to implement and refine large-scale
tensor method algorithms to solve large problems of interest at Sandia. Various tensor
strategies were developed and evaluated against Newton-based solvers.
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1.3 Tensor Methods for Bifurcation Tracking

A final aspect of this research dealt with turning point identification algorithms. Because
tensor methods have a faster rate of convergence than Newton’s method on singular prob-
lems [23], our research focused on applying this technology to the bifurcation tracking
algorithms in LOCA, particularly the turning point identification algorithm. LOCA uses a
special technique called a bordering algorithm for solving this nonlinear problem by solv-
ing four intermediate subproblems involving the Jacobian matrix [55]. A linear combina-
tion of these four subproblem solutions provides the Newton step for the overall problem.
However, because the algorithm is driving the Jacobian to a singularity, the four subprob-
lems are increasingly difficult to solve and less accurate, which makes the resultant step
less accurate and eventually unusable due to floating point round-off errors.

We investigated applying tensor methods to the bordered algorithm for turning point
identification. Our research showed that a straightforward applications of tensor methods to
the overall nonlinear problem did not appreciably improve the performance of the turning
point algorithm. Nonetheless, we were able to improve the stability and accuracy of the
turning point algorithm with a novel approach to solving ill-conditioned linear systems
using an idea from tensor methods.

1.4 Organization and Notation

The organization of this report is broken into three main chapters, following the three dis-
tinct topics in our research. Each chapter is intended to be a stand-alone paper. Chapter 2
presents our research on Broyden’s method. Chapter 3 discusses our research on tensor
methods. Chapter 4 discusses the tensor method techniques applied to bifurcation identifi-
cation algorithms. Each chapter contains its own summary and discussion, and Chapter 5
provides a broad summary of the overall project.

Throughout this report, the subscriptk refers to the iteration number of the nonlinear
iteration sequence. We denote the JacobianF ′(x) by J(x) and frequently abbreviateJ(xk)
asJk andF(xk) asFk. In keeping with the notation of Taylor series approximations for the
valueF(xk + d), we denote local models of a function about a pointxk asM(xk + d) and
have included a subscriptN, B, orT onM to specify the Newton, Broyden, or tensor model,
respectively. In addition, the respective steps that solve these local models are denoteddN,
dB, anddT .
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Chapter 2

Broyden Methods

In this chapter, we describe and evaluate Broyden’s method for the solution of nonlinear
equations, an alternative to Newton-based methods that does not require Jacobian informa-
tion (but will make efficient use of any approximation to the Jacobian that is provided). This
chapter presents Broyden’s method and compares the algorithm with Newton’s method.
Examples from application codes used at Sandia are shown. The results demonstrate situ-
ations where Broyden’s method is preferable to Newton’s method.

2.1 Theory

The most prevalent strategy for solving nonlinear equations is to apply Newton’s method
to iteratively solve a local linear model until convergence [19]. The local linear model is
defined as:

M(xk +d) = Fk +Jk d, (2.1)

wherek is the iterate number,xk is the current solution iterate (the approximation to the
solution at iterationk), Jk ∈ IRn×n is the Jacobian matrix evaluated atxk, andFk = F(xk) is
the residual evaluated atxk. The Jacobian matrix is defined as the derivative of the residual
equations with respect to the unknowns, i.e.,

Ji j =
∂Fi

∂x j
. (2.2)

The next iterate is defined as
xk+1 = xk +dk,

wheredk is the solution to 2.1.

Some form of globalization may be needed to guarantee convergence. If a line search
is used for globalization, then

xk+1 = xk +λkdk,
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whereλk is the line search parameter. The iterations progress until the approximate solution
satisfies some convergence criteria. If a line search is used for globalization, the algorithm
is as follows:

Algorithm GN [20]: Globalized Newton Method

LET x0 BE GIVEN.

FOR k = 0, 1, . . . (UNTIL CONVERGENCE) DO:

SOLVE: Jkdk =−Fk FOR dk

COMPUTE: λk VIA A LINE SEARCH

SET xk+1 = xk +λkdk.

If there is no line search, thenλk = 1 for all k.

The iteration sequence above can be rewritten as follows:

xk+1 = xk−λkJ
−1
k Fk (2.3)

Each nonlinear iteration requires solving a linear system. Difficulties arise not only in
inverting or preconditioning the Jacobian, but also in computing the Jacobian. In fact, it is
not always possible to compute the Jacobian directly because of the type of discretization
scheme or because of discontinuities in derivative evaluations (e.g., due to table look-ups
for material properties, third-party library functions, etc.). For example, the compressible
flow code Premo [1] uses a 2nd order accurate finite volume scheme with Roe flux limiting
that makes evaluating the Jacobian extremely complex and error-prone. Instead, colored
finite difference techniques [25] and automatic differentiation [30] are used to evaluate
the Jacobian. Finite differencing can be slow, especially if the connectivity graph is not
supplied by the user. Additionally, the Jacobian may be inexact due to residuals that involve
discontinuous derivatives (i.e., table look-ups) or difficult terms being ignored. Automatic
differentiation is a promising technology for evaluating the Jacobian, but no universal tool
has been developed. In some cases, Jacobians for FORTRAN and C code can be generated
using source transformation software such as ADIFOR [7] and ADIC [8]. C++, on the
other hand, requires an invasive templating of the scalar type in all residual fill algorithms.
This can be difficult to use especially when programming languages are mixed due to third
party libraries.

Instead of using a linear model as in 2.3, we propose to use an alternative model intro-
duced by Broyden [13]. The iteration sequence in 2.3 is then replaced by:

xk+1 = xk−λkB
−1
k Fk (2.4)

whereBk ≈ J(xk) is an approximation to the Jacobian based on a least-change secant up-
date. Our implementation follows the limited-memory Broyden algorithm in Kelley [37,
§8,3,2].

6



Recall that thesearch directionis denoted bydk =−B−1
k Fk. Let sk denote thekth step;

i.e.,
sk = xk+1−xk =−λkB

−1
k Fk = λkdk. (2.5)

If no line search is used (so thatλk = 1 for all k), thensk = dk.

It is interesting to note that the use of a line search can be problematic sincedk is not
guaranteed to be a descent direction. Kelley [38] recommends that if a line search with
Broyden’s method fails, one should look to better preconditioning strategies or move to a
Newton-Krylov scheme. In our computations, if the Broyden method fails during a line
search, we recompute the Jacobian estimate and attempt another solve.

The Broyden update is asecant update, i.e., it obeys the secant condition:

Bk+1sk = yk, (2.6)

whereyk = Fk+1−Fk. The Broyden update represents the least change from the previous
matrix,Bk, that satisfies the secant condition. It is defined as

Bk+1 = Bk +
(yk−Bksk)sT

k

‖sk‖22
. (2.7)

A more convenient expression forBk can be derived by observing that

yk−Bksk = (Fk+1−Fk)+λkFk = Fk+1− (1−λk)Fk, (2.8)

and so we can rewriteBk as

Bk+1 = Bk +
(Fk+1− (1−λk)Fk)sT

k

‖sk‖22
. (2.9)

This recursive formula means thatBk can be formed implicitly, as we discuss in more detail
in the sections that follow. Note that the updates are based on the residual evaluations (i.e.,
values ofF), and so there is no need to compute a Jacobian.

2.1.1 The Choice ofB0 for Broyden’s Method

The following is the analogue of Lemma 7.3.1 in [37]; here it is extended to the case with
a line search parameter.

Lemma 2.1.1 Let{xk,Bk} be the Broyden sequence generated by(F,x0,B0), and let{zk,Ck}
be the Broyden sequence generated by(B−1

0 F,x0, I). Then

xk = zk and Bk = B0Ck. (2.10)

(We assume the step lengths,λk, are the same for each sequence.)

7



This is a proof by induction. The case fork = 0 is trivial. Assume the claim holds fork.
Observe that,

xk+1 = xk−λkB
−1
k Fk

= zk−λk(B0Ck)−1Fk

= zk−λkC
−1
k (B−1

0 Fk)
= zk+1,

and

Bk+1 = Bk +
(Fk+1− (1−λk)Fk)sT

k

‖sk‖22

= B0Ck +B0

(
B−1

0 Fk+1− (1−λk)B−1
0 Fk

)
sT
k

‖sk‖22
= B0Ck+1.

Q.E.D.

An important consequence of this lemma is that we can assume thatB0 = I for all the
analysis that follows.

2.1.2 An Implicit Representation of the Broyden matrix

The Broyden matrix can be stored implicitly using only 2k vectors plusB0; see, e.g., Kelley
[37] whose derivation is as follows.

We can express the Broyden update as a function of the previous iterate’s Broyden
matrix and a pair of vectors:

Bk+1 = Bk +ukv
T
k , (2.11)

where

uk =
Fk+1− (1−λk)Fk

‖sk‖2
and vk =

sk

‖sk‖2
. (2.12)

We can now rearrange equation 2.11 into a more usable form that can be quite efficient.
The Sherman-Woodbury-Morrison formula [27] says

Bk+1 =

(
I −

(B−1
k uk)vT

k

1+vkB
−1
k uk

)
B−1

k . (2.13)

We define

wk =
B−1

k uk

1+vkB
−1
k uk

=
B−1

k (Fk+1− (1−λk)Fk)

‖sk‖2 +vT
k B−1

k (Fk+1− (1−λk)Fk)
. (2.14)
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Then

B−1
k+1 = (I −wkv

T
k )B−1

k =
k

∏
j=0

(I −w jv
T
j ). (2.15)

Thus, the inverse of the Broyden matrix can be stored using only 2k vectors plus the initial
matrix inverseB−1

0 .

2.1.3 A More Efficient Implicit Representation of the Broyden Matrix

Kelley [37] observed that the Broyden matrix can be stored using onlyk+ 1 vectors. His
derivation is as follows.

Define

zk = B−1
k (Fk+1− (1−λk)Fk) and αk = ‖sk‖2 +vT

k zk+1, (2.16)

so that

wk =
zk

αk
. (2.17)

Then

dk+1 = −B−1
k+1Fk+1

= −
(
I −wkv

T
k

)
B−1

k Fk+1

= −
(
I −wkv

T
k

)(
B−1

k Fk+1− (1−λk)B−1
k Fk +(1−λk)B−1

k Fk

)
= −

(
I − zk

αk
vT

k

)(
zk +(1−λ−1

k )sk

)
= −

(
1−

vT
k zk

αk
−

(
λ−1

k −1

αk

)
vT

k sk

)
zk− (λ−1

k −1)sk

= −

(
1−

vT
k zk +(λ−1

k −1)‖sk‖2
αk

)
zk− (λ−1

k −1)sk

= −

(
1−

vT
k zk +(λ−1

k −1)‖sk‖2 +λ−1
k ‖sk‖2

αk
+

λ−1
k ‖sk‖2

αk

)
zk− (λ−1

k −1)sk

= −λ−1
k ‖sk‖2

zk

αk
− (λ−1

k −1)sk

= −λ−1
k ‖sk‖2wk− (λ−1

k −1)sk.
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Solving forwk, we have

wk =
−λk

‖sk‖2

(
dk+1 +(1−λ−1

k )sk

)
= −λk

dk+1

‖sk‖2
+(1−λk)

sk

‖sk‖2

=
−λk

λk+1

sk+1

‖sk‖2
+(1−λk)

sk

‖sk‖2
.

Substitutingwk in the expression fordk+1 yields

dk+1 = −B−1
k+1Fk+1

= −(I −wkv
T
k )B−1

k Fk+1

= −
(

I +λk
dk+1sT

k

‖sk‖22
− (1−λk)

sksT
k

‖sk‖22

)
B−1

k Fk+1

= −B−1
k Fk+1−λk

sT
k B−1

k Fk+1

‖sk‖22
dk+1 +(1−λk)

sT
k B−1

k Fk+1

‖sk‖22
sk.

Solving fordk+1, we get

dk+1 =
−B−1

k Fk+1 +(1−λk)
sT
k B−1

k Fk+1

‖sk‖22
sk

1+λk
sT
k B−1

k Fk+1

‖sk‖22

= −
‖sk‖22B−1

k Fk+1 +(λk−1)sT
k B−1

k Fk+1sk

‖sk‖22 +λksT
k B−1

k Fk+1

=
‖sk‖22 pk +(λk−1)sT

k pk sk

‖sk‖22−λksT
k pk

wherepk =−BkFk+1. The value ofpk is calculated recursively as follows. Let

p0
k =−Fk+1 and p j+1

k = (I −w jv
T
j )p j

k for j = 0, . . . ,k−1. (2.18)

Thenpk = pk
k = B−1

k Fk+1. The formula forp j+1
k can be rewritten as

p j+1
k = p j

k +
λ j

λ j+1

sT
j p j

k

‖sj‖22
sj+1 +(λ j −1)

sT
j p j

k

‖sj‖22
sj , (2.19)

for j = 0, . . . ,k−1.

The critical aspect in Broyden’s method is that, as the iterations ink progress, we build
up a set of rank-1 updates, and in combination with the initial Broyden matrix inverse,
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B−1
0 , we get an estimate of the action of the current Jacobian without having to evaluate it

directly at each iteration. We are in effect implicitly storing the inverse of the Jacobian at
each iteration. This fact allows the Broyden method to be very efficient since we can reuse
the factorization ofB0 for direct linear solves or we can reuse the preconditioner in the case
of iterative linear solves. Additionally, the Broyden method makes no assumptions on how
to solve the inverse of the Broyden matrix. This can be critical in certain applications. We
will comment more on this in section 2.3.1.1.

2.2 Implementation Issues

During the assessment of Broyden’s method, minor issues were found to have a critical
impact on performance. The implementation had to be adjusted in order to address both
robustness and efficiency issues. The key modification details are described in this section.

The first issue is the choice of the initial guess for the Broyden matrix,B0. One choice
is to simply use the identity matrix as the initial guess. This worked well for simple test
problems with a small number of unknowns, but did not perform very well when scaled to
larger problems. Instead, we found that an estimate of the Jacobian (hopefully inexpensive
to compute and invert) worked best.

A second issue was found during the efficiency studies. Broyden’s method was ob-
served to take many more iterations than Newton’s method to achieve the same reduction
in the residual norm,‖F‖. This behavior is to be expected because Newton’s method is
updating derivative information at each iteration. In order to make Broyden competitive
with Newton’s method, we added a restart procedure.

There exist many choices for handling restarts. We chose to use the convergence rate
as the trigger for initiating a restart of the broyden algorithm. The convergence rate,αk, is
defined as:

αk =
‖Fk‖
‖Fk−1‖

(2.20)

wherek is the current iterate. At the end of an iteration, if the convergence rateαk was
larger than the requested value, the method was restarted. A restart consisted of erasing
the update vectors and recomputingB0 using the current solution vector. Recall thatB0

is the approximate Jacobian supplied by the user. It may not require an update if it does
not depend on the solution vector. Based on our results, restating when the convergence
rate was greater than or equal to 0.1 had a dramatic improvement on solution times while
requiring few additional evaluations ofB0. This result is based on usingB0 = Jk and will
be discussed in more detail in the following sections.

The augmentation of Broyden’s method with a restart capability makes this method
look very similar to the modified Newton method [37]. Modified Newton reuses the same
Jacobian,J0 at each iterate:

xk+1 = xk−λkJ
−1
0 Fk (2.21)
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The difference between modified Newton and Broyden’s method is that Broyden’s method
stores rank-1 updates during the iteration sequence and does not require thatJ0 be exact. In
the results section, we include results for the modified Newton method in order to isolate
the effects of the rank-1 updates.

The use of Broyden’s method required modifications to the convergence criteria used in
some of the test codes. For example, in the reacting flow code MPSalsa, convergence was
evaluated based solely on a weighted root mean square (WRMS) norm [11]:

||δxk||wrms< tolerance (2.22)

where

||δxk||wrms≡C

√
1
N

N

∑
i=1

(
(xk)i− (xk−1)i

RTOL|(xk−1)i |+ATOLi

)2

(2.23)

This is a dangerous test when used by itself since convergence is only determined based
on the change between iterates,(xk)i− (xk−1)i . In our initial tests, Broyden’s method was
observed to trigger premature convergence while the far from the actual solution. This is
because the updates generated by Broyden’s method was observed in general to be much
smaller than solution changes between iterates for Newton’s method. These small changes
in x result in an artificially small WRMS norm that triggers convergence too soon. To
remedy this situation, an additional convergence test was added that forced the norm of the
residual,||Fk||, to be less than a specified tolerance. This points to the fact that one can
not blindly replace Newton’s method with Broyden’s method. The algorithms, while very
similar, generate different behavior in the order of magnitude of the solution update.

2.3 Results

Broyden’s method was tested on various applications of interest to Sandia, including re-
acting flow and circuit simulation. In this section, we report on the performance for these
applications.

The first section, 2.3.1, is an extensive analysis of the Broyden algorithm with compar-
isons to Newton, modified Newton, and Jacobian-Free Newton-Krylov methods for a fluid
flow simulation of a counterflow jet reactor [53]. It demonstrates the cases where Broy-
den’s method can have a large impact on robustness and performance. Following the CJR
results are two sections that give a broad analysis of the performance of Broyden’s method
on some benchmark problems in fluid flow and electrical circuit simulation.

2.3.1 Counterflow Jet Reactor

Counterflow jet reactors (CJRs) have a wide variety of industrial applications including dif-
fusion flame analysis for combustion [58], nanoparticle synthesis of semiconductors [56],
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Figure 2.1. Streamlines for the flow pattern in a CJR. Reynolds
number is 10.

and blood flow analysis [32]. Efficient and robust simulation of a CJR can significantly re-
duce difficulties in interpreting experimental observations [44]. The CJR problem is ideal
for use in testing the Broyden algorithm because the nonlinearity is controlled by a sin-
gle parameter, the Reynolds number (Re), and the Jacobian is available analytically. By
controlling the nonlinearity through the Reynolds number, the problem difficulty can be
controlled. By having an exact Jacobian, we can perform comparisons and isolate the er-
rors that come from inexact or incomplete Jacobians. Finally, we use this problem since
the parameter space and solution modes have been mapped out in detail [44].

The CJR consists of two co-axially aligned counterflowing jets of fluid. The jets collide
and form a stagnation flow pattern. Streamlines for a typical CJR are depicted in Figure 2.1.
The jets are aligned vertically, injecting fluid from the top and bottom of the domain. The
stagnation flow forms in the center of the reactor and the fluid exits horizontally, confined
between exit walls. The domain is two-dimensional using cartesian coordinates. There are
10,800 elements, 11,041 nodes, and 33,123 unknowns. The simulations were run on 16 1.0
GHz Pentium processors of a Linux cluster.

The fluid flow in the CJR model is described by the Navier-Stokes equations. We
assume the flow is a laminar, isothermal, incompressible, Newtonian fluid. The governing
transport PDEs used in our experiments are given below in dimensionless residual form.

Conservation of mass:
∂ρ
∂t

+∇ ·u = 0 (2.24)

Momentum transport:
∂u
∂t

+u ·∇u+∇P− 1
Re

∇2u = 0 (2.25)

The unknowns in dimensionless form are:u, the fluid velocity vector, andP, the hydrody-
namic pressure. The dimensionless Reynolds number isRe, defined asRe= ρDuo

µ , whereρ
is the fluid density,D is the spacing between the inlet jets,uo is the inlet jet velocity, and
µ is the fluid viscosity. The material properties are assumed constant since the system is
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isothermal.

To obtain an algebraic system of equationsF(x) = 0, a stabilized-Galerkin finite el-
ement formulation is used to discretize equations 2.24 and 2.25. The stabilized method
allows equal order interpolation of velocity and pressure and also provides stabilization of
the convection operators to limit oscillations due to high grid Reynolds number effects.
This formulation is described in [61] and follows the work of [35] and [63].

The equations are discretized and evaluated using the reacting flow code MPSalsa [60].
This code was developed by Sandia to simulate two- and three-dimensional reacting flows
at low Mach numbers (incompressible flow regime). MPSalsa solves both steady-state and
transient problems using a fully coupled Newton’s method. The nonlinear solvers (New-
ton’s method, modified Newton, Broyden’s method, and Jacobian-free Newton-Krylov)
were supplied by the NOX nonlinear solver package [41]. NOX is part of the Trilinos
project [21, 34], a generic solver framework designed to meet the numerical analysis needs
of Sandia applications.

Results concerning the CJR are divided into two sections based on the particular issue
that the study addresses. Section 2.3.1.1 discusses the robustness of Broyden’s method
when applied to problems with inaccurate Jacobians. Section 2.3.1.2 discusses efficiency
and performance issues where Broyden’s method is compared to Newton and modified
Newton techniques.

2.3.1.1 Robustness Under Inaccurate Jacobians

In this section, we compare the performance of Broyden’s method to Newton’s method
to demonstrate how a lack of information in the Jacobian affects robustness. In chapter
2.1, we discussed some of the difficulties encountered in evaluating the Jacobians required
by Newton’s method. If the Jacobian is not accurate, Newton’s method may have a slow
convergence rate or fail to converge at all. There are two options: switch to a Jacobian-free
Newton-Krylov (JFNK) approach [40] or use our Broyden implementation.

We now describe the JFNK approach. The Krylov-based methods only require matrix-
vector products to perform a linear solve. If an explicit evaluation of the Jacobian is ei-
ther inaccurate or unavailable, the matrix-vector products can be estimated by directional
derivatives:

Jv=
F(x+ηv)−F(x)

η
(2.26)

whereη is a scalar perturbation factor. Equation 2.26 forms the basis of the JFNK algo-
rithm. This allows JFNK to accurately solve the Newton system without directly assem-
bling a Jacobian.

There are drawbacks in this approach. The perturbation factor,η, in equation 2.26 is a
scalar value and for problems where the solution vector has a large range of magnitudes,
this value may not sufficiently perturb all the unknowns to get accurate sensitivities. This
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causes difficulties in obtaining the specified convergence tolerance and thus results in less
accurate or non-convergent predictions. For more information on choosing perturbation
parameters, we refer readers to [38]. Another difficulty is that a preconditioner is typi-
cally required for efficient linear solves using iterative solution techniques. This requires
an estimate of individual Jacobian entries that may not be feasible. Finally, JFNK methods
require that the residual equations be re-evaluated at each inner iteration of the GMRES
linear solve to evaluateF(x+ηv). This can be prohibitively expensive depending on both
the application’s residual evaluation and the preconditioner efficiency. Despite these disad-
vantages, JFNK is very robust in solving nonlinear equations and is used quite often.

The Broyden method is an alternative strategy that is less restrictive than JFNK but not
as efficient. Similar to JFNK methods, Broyden updates incorporate Jacobian information
as the nonlinear iterations progress, and do not require explicit Jacobians. The unique as-
pect that separates Broyden’s method from JFNK is that it makes no assumptions on how to
solve the linear systems. JFNK restricts the linear solve to be an iterative Krylov method. In
some problems, such as circuit modeling, we have observed run time efficiencies increased
by an order of magnitude by switching from iterative linear solvers to direct solvers. This
is due to the small size of specific problems, on the order of thousands of unknowns or less.
While Xyce did not require JFNK or Broyden since it provides analytic Jacobians, other
small-scale codes where the Jacobian is unavailable or inexact codes could benefit from the
use of Broyden over JFNK.

The results shown here are for a CJR model with a Reynolds number of 10. This means
that the advection term (u ·∇u) is roughly ten times larger than the diffusive term (µ∇2u)
in equation 2.25. To simulate a code with missing Jacobian information, we completely
remove all derivatives in the Jacobian that correspond to the advection term. The residual
equations are exact and evaluate all terms, but the Jacobian dependencies for the advection
term have been dropped. Solves were performed using Newton’s method, two variations
on Broyden’s method, and the JFNK method.

Figure 2.2 shows the L-2 norm of the residual as a function of the nonlinear iterate.
Convergence was based on the‖F‖ ≤ 10−6 and WRMS Norm≤ 1.0. As the iteration
sequence progresses, the missing information in the Jacobian causes Newton’s method to
diverge and fail. Broyden’s method with restarts also fails. This occurs because the restarts
throw away the accumulated dependency information on the convection term that is being
aggregated only through the rank-1 updates. Therefore, the rank-1 updates are critical in
obtaining convergence since they are the only way to incorporate missing Jacobian infor-
mation. In the figure, the restart occurs after iteration 12 because the convergence rate is
above the required value of 1.0. By disabling the restart capability, eventually the Broyden
method accrues enough information on the missing Jacobian term to attain convergence.
This demonstrates that Broyden’s methods can be more robust than Newton’s method when
inaccurate Jacobians are present. The JFNK method also achieves convergence since the
directional derivative used in the GMRES algorithm is computed using finite differencing
of the residual equations. It too is able to capture the missing Jacobian information.

There are some important points to note in comparing the Broyden’s method to JFNK
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Figure 2.2. Plot of the residual norm as a function of nonlinear
iteration number.

using Figure 2.2. First, we observe that JFNK has over-solved this problem by one nonlin-
ear iteration. This is the result of the convergence criteria in the application. In particular
this is caused by the WRMS norm stopping criteria. The change in the solution vector
between iterates is still large, even though the tolerance for‖F‖ was met. This results in
one extra nonlinear iteration in the JFNK algorithm. The second point to observe is that the
convergence for JFNK is superlinear while Broyden’s method exhibits linear convergence.
Broyden’s method takes about three times as many nonlinear iterations to converge as does
JFNK.

Figure 2.2 does not give enough information to determine which method, Broyden
or JFNK, should be used for a given application. The reason is that the total number
of nonlinear iterations does not directly correlate to the efficiency of the code since the
linear solves are much more expensive in JFNK. In table 2.1 we show the performance
characteristics for the two methods that converged, Broyden without restarts and JFNK. NS
is the total number of nonlinear iterations, F is number of residual (function) evaluations, J
is the number of Jacobian evaluations, LSI is the number of linear solve iterations (i.e., the
number of GMRES iterations), F Time is the total time taken to evaluate the residuals, J
Time is the total time to evaluate the Jacobians, LS Time is the total time spent in the linear
solve routines, and Total Time is the total run time. All times are reported in seconds. The

16



Method NS F J LSI F J LS Total
Time Time Time Time

Broyden 17 18 1 1586 0.9 0.1 37.7 40.0
JFNK 5 497 5 471 23.8 0.5 32.3 36.8

Table 2.1.A comparison of robust methods under inaccurate Ja-
cobians.

total run times are comparable to each other, with a slight edge going to JFNK. Assuming
an iterative linear solver (as used in this study), Broyden will take many more nonlinear
steps, resulting in a number of GMRES iterations proportional to the number of nonlinear
steps. This factor is what slows down Broyden’s method. This is balanced in JFNK by the
number of residual evaluations per nonlinear step. Since JFNK uses directional derivatives
in the matrix-vector multiply, the equations will be evaluated at least as many times as the
number of GMRES iterations are required in the linear solve. The choice of methods is
determined by how efficient the residual fills per nonlinear solve are compared to the extra
number of nonlinear steps required by Broyden’s method. Costly residuals favor Broyden
while a large number of nonlinear steps favor JFNK.

Another issue is the degree of nonlinearity in a problem. The Reynolds number used
in this study is relatively small. For larger Reynolds numbers, the difficulty in solving
the nonlinear system may require a globalization or homotopy technique similar to those
used in Newton’s method. We did not pursue the use of globalization techniques here,
but globalizations used in Newton-based methods can be trivially extended to the Broyden
method.

2.3.1.2 Efficiency Comparisons

In many applications, Newton’s method can be inefficient. This usually occurs when the
equations are only mildly nonlinear; i.e., the Jacobian values do not vary widely from
iteration to iteration. In such a situation, it may be more efficient to reuse the Jacobian in
successive iterations rather than re-evaluating it at each iteration. The Jacobian need only
be re-evaluated when the convergence rate (equation 2.20) stalls. This procedure is known
as a modified Newton method [37]. The Broyden method performs the same operations
as modified Newton, but has an advantage in that it additionally stores rank-1 updates
during the iteration sequence to approximate the current Jacobian inverse as opposed to the
original Jacobian inverse. This can give a better approximation to the Jacobian than just
blindly reusing the original Jacobian. The updates may increase the convergence rate and,
thus, boost efficiency.

For these demonstrations, the CJR test problem will be used again, but in both steady-
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Run Method Max S/F NS F J F J Prec LS Total
Rate Time Time Time Time Time

1 Newton NA S 5 6 5 0.3 0.6 2.3 11.7 16.0
2 Mod. Newton 0.1 S 7 8 3 0.4 0.3 1.4 15.8 19.1
3 Broyden 0.1 S 7 8 3 0.4 0.3 1.4 15.9 19.6
4 Mod. Newton 1.0 S 14 15 2 0.7 0.2 0.9 31.7 34.9
5 Broyden 1.0 S 21 22 4 1.1 0.4 1.8 53.1 57.9

Table 2.2.Steady-state performance characteristics.

state and transient modes. The runs will use the full analytic Jacobian including all inter-
equation dependencies. We will compare Newton’s method, Broyden’s method and the
modified Newton method. For the Broyden and modified Newton runs, we performed two
sets of simulations using different values of the convergence rate,αk (section 2.2). The
values used are 0.1 and 1.0. The smaller the value, the more often restarts occur, making
the methods act more like the Newton method in terms of performance.

Table 2.2 shows the steady-state problem results at a Reynolds number of 10. Max Rate
is the largest value of convergence rate allowed before a restart is performed. S/F stands
for successful convergence or failure of the simulation. NS, F, and J are the number of
nonlinear steps, the number of residual (function) evaluations, and the number of Jacobian
evaluations, respectively. F Time, J Time, Prec Time, LS Time, and Total Time are the
time taken for residual evaluations, time taken for all Jacobian evaluations, time taken for
all preconditioner factorizations, time taken for the linear solve (excluding preconditioner
factorization time), and the total simulation time, respectively. All times are reported in
seconds.

We observed that Newton’s method performs the most efficiently while Broyden’s
method with a convergence rate restart value of 1.0 performed the least. This can be at-
tributed to the application code’s efficient implementation of the Jacobian evaluation and
fast preconditioners. Broyden’s method is expected to out-perform Newton’s method when
the Jacobian evaluations are expensive. In the case of MPSalsa, the Jacobian evaluations
were extremely efficient and did not factor into the overall run time. In our experience with
MPSalsa, we found that the residual and Jacobian fill times were less than 10% of the total
run time. A similar situation exists for the preconditioner. In Table 2.2 the time spent in
the preconditioner is also negligible to the overall time. Our conclusion is that in terms of
efficiency, MPSalsa should be using Newton’s method for steady-state solves.

Transient simulations were also performed for the CJR problem. Transient problems
are different from steady-state problems in that the nonlinear solves have a good initial
guess from the last time step and are much more robust. This allows for good efficiency
gains through reuse of the Jacobian and preconditioner because the initial values should not
change appreciably due to the good initial guess (unless very large time steps are used).
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Run Method Max S/F NS F J F J Prec LS Total
Rate Time Time Time Time Time

1 Newton NA S 52 72 52 3.8 6.0 23.8 111.9 151.9
2 Mod. Newton 0.1 S 46 66 22 3.5 2.5 10.1 89.3 110.1
3 Broyden 0.1 S 46 66 22 3.5 2.6 10.0 87.8 109.8
4 Mod. Newton 1.0 S 46 66 20 3.5 2.3 9.1 86.4 107.2
5 Broyden 1.0 S 49 69 20 3.7 2.3 9.0 95.6 117.0

Table 2.3.Transient performance characteristics.

A no-flow solution (zero initial guess) was used as the starting solution in this test. The
flow was turned on and the system was tracked for 0.1 seconds which corresponded to about
20 time steps with a constant step size. Table 2.3 shows the results with the true Jacobian
times in MPsalsa (Jacobians were not artificially inflated). In transient problems, the time
step size controls the amount of nonlinearity in the solution. In this case, the Broyden and
modified Newton methods perform much better than Newton. The efficiency is based on the
fact the each time step is using only one Jacobian evaluation and then reuses the Jacobian
and preconditioner for each successive linear solve. The difference in efficiency between
the Broyden and modified Newton methods was negligible. For transient runs, the rank-1
updates in Broyden’s method do not have enough iterations to accumulate information to
speed up convergence.

2.3.2 Thermal Convection

This section compares Newton’s method with Broyden’s method on a benchmark problem
for fluid flow: thermal convection (or buoyancy driven) flow of a fluid in a differentially
heated square cavity in the presence of gravity. The thermal convection problem is used in
many demonstration studies since it has a well defined problem space. MPSalsa simulations
on this problem are documented in [62], [45] and [46]. These resources provide a more
thorough description and additional references.

The governing PDEs are the incompressible Navier-Stokes equations, given below. The
unknown quantities in these equations are the fluid velocity vector (u), the hydrodynamic
pressure (P), and the temperature (T).

Conservation of mass: ∇ ·u = 0 (2.27)

Momentum transport: ρ u ·∇u−∇ ·T−ρg = 0 (2.28)

Energy transport: ρCpu ·∇T +∇ ·q = 0 (2.29)

In these equations,g is the gravity vector, andρ andCp are the density and specific heat
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Run Method Max S/F NS F J F J LS Prec Total
Rate Time Time Time Time Time

1 Newton NA S 152 202 152 14.3 23.2 227.0 119.5 395.4
2 Mod. Newton 1.0 S 104 154 50 11.5 7.8 155.3 40.7 228.0
3 Broyden 1.0 S 106 156 52 11.3 8.0 157.7 41.9 231.6
4 Mod. Newton 0.1 S 104 154 52 11.2 8.1 154.8 41.9 228.7
5 Broyden 0.1 S 104 154 52 11.2 8.1 155.7 41.9 230.0

Table 2.4.Transient thermal convection in a box.

at constant pressure of the bulk fluid, respectively. The constitutive equations for the stress
tensorT and heat fluxq are

T = −PI +µ(∇u+∇uT),
q = −κ∇T,

whereµ is the dynamic viscosity andκ is the thermal conductivity of the fluid.

The left and right walls of the box are kept at constant temperatures (one cold and the
other hot) and the top and bottom walls are insulated. This corresponds to the following
Dirichlet and Neumann boundary conditions:

T = Tcold, u = 0 at x = 0, (2.30)

T = Thot, u = 0 at x = 1, (2.31)
∂T
∂y

= 0, u = 0 at y = 0,1. (2.32)

Once the governing equations and boundary conditions are nondimensionalized, two
parameters appear: the Prandtl number (Pr) and the Rayleigh number (Ra). In our exper-
iments, we fixed Pr = 1 and varied the Rayleigh number, which increases the nonlinear
effects of the convection terms and makes the solution more difficult to obtain. We used a
100×100 equally spaced mesh, which has 40,804 unknowns.

Figure 2.3 shows a plot of the streamlines and temperature contours for the thermal
convection for Ra= 1.0×105. The fluid is heated on the right side and rises to the top due
to buoyancy-driven forces. The fluid on the left side is cooled and drops toward the bottom.
This induces a circular motion in the box as depicted by the streamlines.

The thermal convection was first run in transient mode, toward a steady state solu-
tion. Table 2.4 shows the timings for the problem at Ra= 1.0×103. The execution times
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Figure 2.3. Thermal convection problem. Color contour plot of
temperature with streamlines at Ra=10E5

show that Broyden’s method and the modified Newton’s method both are more efficient
that Newton’s method. We observe that the extra information in the rank-1 updates of
Broyden’s method has a minimal effect on the number of iterations required for conver-
gence. In this case, Broyden’s method did not accumulate enough information to impact
the performance because each nonlinear problem was solved in a very small number of
iterations (approximately 2 nonlinear steps per time step). For this problem, we conclude
that it would be best to apply a modified Newton method to to avoid the complexities of
Broyden’s method.

2.3.3 Circuit Simulation

This section documents the testing of Broyden’s method on Sandia’s circuit simulation
code, Xyce [36]. Circuit simulation represents a very difficult challenge to gradient-based
nonlinear solvers. The equations are highly nonlinear and the solutions generate steep gra-
dients. Some models can incorporate discontinuities into the equations. These difficulties
will push the Broyden’s method and help expose any drawbacks.

We have chosen four test problems from the regression test suite to perform our com-
parison. In this case, we compare the current default of Newton’s method against Broyden’s
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Test Circuit Method S/F NS F J Total
Time

Comparator Newton S 3439 5120 3439 0.80
Broyden S 3528 5206 1729 0.79

Dual Channel Newton S 9047 11495 9047 8.34
Broyden F 12572 14311 4985 16.7

Single Channel Newton F 30702 57731 31942 135.0
Broyden S 100589 264003 53563 417.0

ssunone Newton S 385165 556754 385165 181.4
Broyden F 227328 327575 102702 101.7

Table 2.5.Performance comparison for various circuits using the
Xyce circuit simulator.

method. We note that voltage limiting was disabled for the Newton’s method runs, since
a similar formulation for Broyden’s method could not be formed. Voltage limiting is an
algorithm designed to alter the Newton direction based on individual device performance;
see [36]. Voltage limiting is, by default, enabled in Xyce since it causes Newton’s method
to behave in a more robust manner.

All simulations are transient runs. The results are shown in Table 2.5. Failed runs,
marked byF in the S/F column are additionally highlighted in red. All observed failures
come from the transient solver prematurely ending the run due to the error “time step is too
small.” This condition is triggered when the the nonlinear solver fails to converge to the
requested tolerance and the time step is halved so many times that it is too small to make
any reasonable progress.

The results are mixed. The comparator circuit was the only circuit where both Broy-
den’s method and Newton’s method successfully converged to the correct solution. For this
circuit, the only difference in performance statistics was the number of Jacobian iterations.
Broyden’s method took about half as many iterations as Newton’s method. But the total
run times remained about equal. The reason for this is that Jacobian evaluation time for
circuit simulation is almost negligible. All the work is done to evaluate the residual. Once
a residual is computed, the Jacobian can be computed for almost nothing. For the case of
the comparator circuit, for Newton’s method the Jacobian evaluation accounted for 4% of
the run time while for the Broyden’s method it accounted for 2% of the run time. From an
algorithmic perspective, a 50% reduction in Jacobian evaluation time is very good, but it is
a negligible gain in the overall time.

A similar argument for reuse of the factorization holds. The Xyce runs used a direct
linear solver that saved the factorization for reuse. For the dual channel run that converged,
approximately 20% of the total run time is spent in the linear solve using Newton’s method.
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If Broyden’s method had converged, it could only improve on a fraction of that 20%. The
leads us to conclude that for circuit simulation, with respect to efficiency, the main advan-
tages in using Broyden’s method is lost. The ability to reuse the Jacobian and factorization
each lead to little gain, because most of the work occurs in the residual evaluation.

The other problems either converged with Newton or converged with Broyden but not
both. This shows that in circuits, the path an algorithm traverses is important in achieving
convergence. If circuit simulators have convergence problems with Newton’s method, one
option would be to try using Broyden’s method. In our experience with circuit simulation,
voltage limiting has been the most successful option.

The Xyce circuit simulator constructs analytic Jacobians and therefore does not need
to use JFNK or Broyden’s method. Therefore, we do not recommend the general use of
Broyden’s method in Xyce. The only situation it may be of some assistance is if Newton’s
method fails.

2.4 Discussion

We implemented a modified version of Kelley’s [37] limited-memory Broyden algorithm
and tested it on large-scale problems on parallel machines. We made certain implementa-
tion choices to make the method robust. Broyden’s method is similar to Newton’s method
but does not require a Jacobian be explicitly evaluated. Instead, a Jacobian estimate is con-
structed using a series of rank-1 updates to some initial guess. An added expense of storing
one extra vector per nonlinear iteration is incurred.

Testing has demonstrated that Broyden’s method can be used as a successful alternative
to the JFNK method for solving systems where the Jacobian either cannot be computed
explicitly or the estimation of the Jacobian is poor. Broyden’s method may be more efficient
than JFNK in cases where a large fraction of the run time is associated with the residual
evaluations. In addition, the Broyden method does not require an iterative linear solver, as
does JFNK, making it a more generally applicable algorithm.

An efficiency study has demonstrated that problems exist where Broyden’s method can
be more efficient than Newton’s method. The efficiency comes from the fact that Broyden
can reuse the Jacobian and the factorization/preconditioner for the linear solves. These
methods are most useful when the problems are mildly nonlinear. Such cases arise most
often from transient solves since there is a good initial guess and the time step size can
control the degree of nonlinearity.

If the Broyden updates are not stored, Broyden’s algorithm reduces to a modified New-
ton method. Comparing against modified Newton, we could isolate the effects of the rank-1
updates. In terms of efficiency, the updates do not play a critical role. These cases typically
require very few nonlinear iterations (less than 10) and the updates fail to generate a good
approximation to the Jacobian in such a small space. We do note, however, that in terms of
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robustness, the rank-1 updates can be critical if the Jacobian is inaccurate. As demonstrated
in section 2.3.1.1, the updates aggregate information on the missing/inexact Jacobian terms
to attain convergence at the cost of taking a larger number of Newton steps.

The Broyden algorithm has been implemented in the NOX Nonlinear Solver Library
[41] and is available for download under the GNU LPGL license.
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Chapter 3

Tensor Methods

In this chapter, we present our work with tensor methods [57] for solving large-scale sys-
tems of nonlinear equations. We discuss methods that were implemented in the nonlin-
ear software package NOX [41] and our modifications to the tensor-Krylov method of
Bouaricha [9], which considers a special case in a new way and improves its numerical
performance. This research is aimed at studying the efficiency and robustness of tensor
methods for problems at Sandia. In addition, we hope to bring tensor methods more into
the mainstream by offering an implementation that can use any linear solver.

3.1 Introduction

Standard methods for solving the nonlinear equations problem (1.1), such as Newton’s
method, base each iteration upon a local, linear modelM(xk + d) of the functionF(x)
around the current iteratexk ∈ Rn. These methods work well for problems with well-
conditioned Jacobians at the solution (they have a quadratic convergence rate), but they face
difficulties when the Jacobian is singular or nearly singular at the solution. Many authors
have analyzed the behavior of Newton’s method on singular problems and have proposed
acceleration techniques as remedies (see, e.g., Decker, Keller, and Kelley [14]; Decker and
Kelley [15, 16, 17]; Griewank [29]; Griewank and Osborne [31]; Kelley and Suresh [39];
and Reddien [47]). Their collective analysis shows that Newton’s method without accel-
eration is locallyq-linearly convergent with the ratio of the norm of consecutive residuals
converging to1

2. Acceleration techniques address this deficiency to some extent, but they
requirea priori knowledge that the problem is singular, which is not practical for general
problem solving.

Tensor methods for nonlinear equations [57] do not requirea priori knowledge of
whether the Jacobian at the solution is singular or ill-conditioned (henceforth we just refer
to the problem as being “singular” or “ill-conditioned”). They bypass this precondition by
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always including second-order information at each iteration in the local model:

MT(xk +d) = F(xk)+J(xk)d+ 1
2Tkdd,

whereTk ∈ Rn×n×n is a low-rank approximation toF ′′(xk), usually formed by a secant ap-
proximation. As a result, tensor methods have local superlinear convergence for a large
class of singular problems under mild conditions [23]. Specifically, [23] shows that on
problems where the rank of the Jacobian at the root isn− 1, “practical” tensor methods
(i.e., those using secant approximations for the tensor termTk) have three-step superlin-
ear convergence behavior withq-order 3

2. In practice, one-step superlinear convergence
frequently is observed on these problems. (Recall that Newton’s method without any ac-
celeration techniques on such problems exhibits onlyq-linear convergence.) In addition,
the analysis in [23] shows that tensor methods have at least quadratic convergence on non-
singular problems.

The additional termTk present in tensor methods provides second-order information
in recent step directions, which aids in cases where the Jacobian is (nearly) singular at
the solution. As the iterates approach the solution, the Jacobian lacks information in the
null space direction, but the second-order term supplies useful information for a better
quality step. Computational evidence in [57] on small problems shows that tensor methods
provide 21–23% average improvement (in terms of function evaluations and/or nonlinear
iterations) over standard methods on nonsingular problems and 40–43% improvement on
problems with rank(J(x∗)) = n−1. Thus, while tensor methods are not widely adopted,
they generally outperform standard methods, particularly on ill-conditioned and singular
problems.

Tensor methods that solve the local model with a direct factorization of the Jacobian
matrix (like standard Newton’s method) cannot efficiently solve large-scale problems due
to large storage considerations and the expensive direct solution of the tensor model. To this
end, several versions of inexact tensor methods have been developed for solving large prob-
lems. Bouaricha [9] describes an implementation that uses a Krylov-based linear solver and
constructs an inexact tensor step from the approximate solutions of two linear systems (with
the same Jacobian matrix). Feng and Pulliam [24] have developed a “tensor-GMRES”
method, which first finds the Newton-GMRES step and then solves for an approximate
tensor step. More recently, Bader has developed a class of methods called tensor-Krylov
methods [2, 3] that calculates a tensor step from a specially chosen Krylov subspace. All of
these algorithms are an amalgamation of various techniques, including tensor methods for
nonlinear equations [57], Krylov subspace techniques [12], and an inexact solver frame-
work [18], that make them well-suited for large-scale problems.

These large-scale tensor methods have advantages and disadvantages, especially when
considering the development cost of implementing them in a production code, such as
NOX. For example, while the tensor-Krylov methods generally have superior performance
and better theoretical properties than the other methods, they are more complicated to im-
plement due to a specialized local solver. On the other hand, Bouaricha’s tensor method is
simple to implement because it can use any linear solver, but it generally requires twice the
total number of linear iterations as the others and gives up some theoretical guarantees.
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It is with these tradeoffs in mind that we focused our research to develop a new tensor
method resulting in a modification to Bouaricha’s method that has good theoretical proper-
ties. The modified Bouaricha tensor method is implemented in the NOX Nonlinear Solver
Library [41], which is available for download under the GNU LPGL license.

3.2 Background on Tensor Methods

Some background on tensor methods will be helpful and is described here. In the first sub-
section, we review the tensor methods as they were introduced in [57] and also discuss an
alternative algorithm introduced in [9]. Since these standard approaches use direct factor-
izations of the Jacobian matrix, we refer to these methods as direct tensor methods. Due
to the storage and linear algebra costs, these methods are only practical for solving small,
dense problems. The last subsection discusses simple global strategies used by tensor meth-
ods, which require a modification to the standard global strategies because the tensor step
is not guaranteed to be a descent direction.

3.2.1 Tensor Methods

Tensor methods were first proposed by Schnabel and Frank [57] and since have been stud-
ied by many others [2, 3, 9, 23, 24]. In deriving tensor methods for nonlinear equations, we
consider the Taylor series expansion ofF(x) aroundxk:

F(xk +d) = F(xk)+F ′(xk)d+ 1
2F ′′(xk)dd+O(d3). (3.1)

Whereas Newton’s method solves the first-order Taylor series approximation at each it-
eration, tensor methods include a special, restricted form of the quadratic term from the
Taylor’s expansion. While it would be impractical to actually form and storeF ′′(xk) (i.e.,
1
2n3 second partial derivatives ofF(x)), further complications for solving a system ofn
quadratic equations inn unknowns would render this direct approach prohibitive. Thus,
practical tensor methods store a secant approximation toF ′′(xk)dd based on information
from previous iterations, similar to the concept of secant approximations for approximat-
ing the Jacobian (as in Broyden’s method). At each iteration, a low-rank approximation
to F ′′(xk) is formed, which requires considerably less storage and allows the model to be
solved efficiently. Augmenting the linear model with this term yields what we call the local
tensor model:

MT(xk +d) = F(xk)+J(xk)d+ 1
2Tkdd, (3.2)

whereTk ∈ Rn×n×n is a low-rank approximation toF ′′(xk). The termTk is selected so that
the model interpolatesp≤

√
n previous function values in the recent history of iterates,

which makesTk a rank-p tensor. Computational evidence in [57] suggests thatp > 1 adds
little to the computational performance of a direct tensor method, so we focus on the case
of p = 1, which uses only one secant update and creates a rank-1 tensor. There may be
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scenarios in which a higher-rank approximation may be useful, such as dealing with a
Jacobian having a rank less thann−1.

In the case ofp = 1, the tensor model aboutxk reduces to

MT(xk +d) = Fk +Jkd+ 1
2ak(sT

k d)2, (3.3)

where

ak ∈ Rn =
2(Fk−1−Fk−Jksk)

(sT
k sk)2

, (3.4)

sk ∈ Rn = xk−1−xk. (3.5)

After forming the model, we use it to determine the step to the next trial point. Because
(3.3) may not have a root, we solve the minimization subproblem

min
d∈Rn
‖MT(xk +d)‖2 , (3.6)

and a root or minimizer of the model is the tensor step. Due to the special form of (3.3),
the solution of (3.6) in the nonsingular case reduces to minimizing a quadratic equation
followed by solving a system ofn−1 linear equations in as many unknowns.

This minimization problem may be solved in a variety of ways. Schnabel and Frank
[57], for example, show how to find the solution for arbitraryp using orthogonal trans-
formations, and this method is described first. An alternative approach by Bouaricha [9],
based on a reduced system whenp = 1, is described later. Background in both approaches
is useful for introducing the large-scale tensor methods.

3.2.1.1 Method of Orthogonal Transformations

The first approach for solving (3.6) uses two orthogonal transformations to reduce the prob-
lem to two subproblems that are more easily solved. We refer to [57] for more details, but
briefly the approach is as follows. The first transformation finds an orthogonalQ1 ∈ Rn×n

such thatsk/‖sk‖ is the last column and permits a change in variables

d = Q1d̂.

The second transformation finds an orthogonalQ2 ∈ Rn×n such thatQ2JkQ1 is upper tri-
angular. Applying these two transformations to (3.3) and setting the system equal to zero,
yields the following triangular system ofn equations inn unknowns

Q2Fk +Q2JkQ1d̂+ 1
2Q2ak‖sk‖2 d̂2

n = 0, (3.7)

whered̂n ∈ R is the unknown appearing in the quadratic equation.
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Partitioning (3.7) into two smaller problems, the solution to (3.6) continues by first
solving for d̂n by minimizing the quadratic equation appearing in the last row of (3.7) and
choosing the smaller magnitude minimizer if there are two. Using the value ofd̂n in (3.7), a
triangular linear system of size(n−1)× (n−1) is revealed. Finally, the complete solution
to (3.6) is found by solving this resultant system for the remaining components ofd̂ and
then reversing the variable space transformation from the first step,d = Q1d̂.

3.2.1.2 Reduction Method

The second approach due to Bouaricha [9] for solving the tensor model (3.6) involves
solving a reduced system of quadratic equations after first solving two linear systems with
the same Jacobian matrix. The method may handle an arbitrary size ofp, but we will
restrict ourselves to the casep = 1. We will call this approach the “reduction method”
because it solves two linear systems and then reduces the system of quadratic equations to
a single quadratic equation.

In this approach, the tensor step is found by multiplying (3.3) bysT
k J−1

k and finding the
root or minimizer of the resulting equation,

sT
k J−1

k Fk +sT
k d+ 1

2sT
k J−1

k ak(sT
k d)2 = 0. (3.8)

Defining the quantitysT
k d asβ, a quadratic equation inβ—call it q(β)—is revealed,

β ≡ sT
k d

q(β) ≡ sT
k J−1Fk +β+ 1

2sT
k J−1

k akβ2. (3.9)

Since (3.9) may or may not have a root, solving the single-variable minimization problem

min
β∈R
|q(β)| (3.10)

provides the valueβ∗. If q(β) has two real roots, then the root of smaller magnitude is
taken. To solve the original problem and find the tensor step, we calculate the value of
q(β∗) and substitute this value andβ∗ into the explicit step

dT =−J−1
k

[
Fk + 1

2akβ2
∗−

J−T
k skq(β∗)

sT
k (JT

k Jk)−1sk

]
. (3.11)

We omit the proof that this step solves the tensor model (see [9] for details), but one can
verify that the step (3.11) is a root or minimizer of (3.3) by substituting it into the model,
simplifying, and recalling the definitionβ∗ = sT

k dT and thatq(β∗) has minimum norm.
Quite oftenq(β∗) = 0, which avoids computing the last term. This term requires a non-
trivial amount of extra arithmetic to form, so the large-scale implementation in [9] actually
neglects this term without apparent detriment.
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The operation count of this process whenp = 1 is the cost of a matrix factorization of
the JacobianJk, two back substitutions using this factorization, plus the cost of minimizing
(3.10), which for this case ofp = 1 a closed form solution exists. Thus, the total cost
beyond a standard method is aboutn2 multiplications due to the extra linear solve (ignoring
the extra term ifq(β∗) is nonzero).

If during an iteration the Jacobian is singular, then a modified approach may be taken
with thisq(β) formulation. It involves changing the Jacobian to be nonsingular, modifying
the function value, and redefiningβ, all in a way that still results in solving the original
model. The modified tensor model becomes

MT(xk +d) = F̂k + Ĵkd+ 1
2akβ̂,

whereĴk equalsJk plus a low-rank matrix. This technique is not new, but it has not been
published in much detail. We will discuss it in more detail in section 4.1.1.

3.2.2 Global Strategies

To achieve global convergence, most tensor method implementations use a line search strat-
egy for its simple implementation and reasonable robustness. To complete this section’s
background review of tensor methods, we provide brief descriptions of a common tensor
method line search strategy and the more advanced curvilinear line search.

First, we present the line search strategy introduced in [57], which chooses between the
tensor step and the Newton step for the search direction for backtracking. This strategy
always attempts the full tensor step first to preserve convergence properties of the tensor
method. However, because the tensor step is not guaranteed to be a descent direction on the
merit function f (x) = ‖F(x)‖, a “backup” descent direction is needed if the first trial point
is not acceptable and the tensor step is not a descent direction. Fortunately, the Newton
direction is guaranteed to be a descent direction on the merit function, which would be
used in place of the tensor step in such cases. An important aspect of tensor methods for
small, dense systems is that the Newton step can be computed readily with an extra linear
solve by ignoring the tensor term (or the Newton step is already computed with the method
of Bouaricha).

To be precise, the line search algorithm for step selection from [57], which we call the
“standard tensor line search,” is presented here:

Algorithm 2.1: STANDARD TENSORL INE SEARCH

If (no root or minimizer of the tensor model could be computed)
Or ((minimizer of tensor model that is not a root was found)
And (‖MT(xk +dT)‖2 > 1

2 ‖F(xk)‖2)),
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Thenxk+1← xk +λdN,λ ∈ (0,1] selected by line search;

Elsexk+1← xk +dT .

If xk+1 is not acceptable, then

If dT is a sufficient descent direction.

Thenxk+1← xk +λdT ,λ ∈ (0,1] selected by line search;

Elsexk+1← xk +λdN,λ ∈ (0,1] selected by line search.

As can be seen, different conditions necessitate line searches with either the tensor step
or the Newton step (dT or dN).

The second global strategy we present is the curvilinear line search [4]. The curvilin-
ear line search involves the solution of the modified tensor modelλF + Jd+ 1

2a(sTd)2,
whereλ ∈ (0,1] is the line search parameter. As the value ofλ changes according to some
prescribed procedure (e.g., quadratic backtracking or interval halving), the solution to the
modified tensor model is the curvilinear stepdT(λ). The curvilinear step has some nice the-
oretical properties, including guaranteed descent asλ→ 0 and monotonicity on the merit
function. Unlike the standard tensor line search, the curvilinear line search obviates the
need for special cases because it sweeps out a path spanned by the Newton direction and
the tensor step. In that regard, the curvilinear line search is similar to a trust region method
(cf. the optimal hook step [19]), which spans the steepest descent direction and Newton
step.

3.3 Review of Large-scale Methods

In the previous section, we reviewed direct tensor methods. We now shift our focus to
solving large, sparse problems, which requires a different approach to be computationally
efficient and have low storage requirements. Three classes of large-scale tensor methods
already exist and are predicated upon Krylov subspace methods.

We begin the discussion by reviewing inexact Newton methods [18] and, in particular,
Newton-Krylov methods [12], where linear Krylov subspace methods solve the local model
to some relative tolerance. Then we review the tensor-Krylov method of Bouaricha [9],
tensor-GMRES of Feng and Pulliam [24], and the tensor-Krylov methods of Bader [2, 3].

3.3.1 Newton-Krylov Methods

Large, sparse nonlinear systems often are solved successfully using a class of “inexact”
Newton methods:

xk+1 = xk +dk, where J(xk)dk =−F(xk)+ rk, ‖rk‖ ≤ ηk‖F(xk)‖ . (3.12)
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The local model is solved only approximately at each step using an iterative linear solver.

A common approach for approximately solving the local Newton model in (3.12) uses
Krylov-based methods [12]. A linear Krylov subspace method is a projection method that
seeks an approximate solutionxm to the linear systemAx= b from anm-dimensional affine
subspacex0 +Km. Here,Km is the Krylov subspace

Km(A, r0) = span{r0,Ar0,A
2r0, . . . ,A

m−1r0},

wherer0 = b−Ax0 is the residual at an initial guessx0. A popular Krylov subspace method
is the Generalized Minimum Residual method (GMRES) [52], which computes a solution
xm∈ x0+Km such that the residual norm over all vectors inx0+Km is minimized. That is,
at themth step, GMRES findsxm such that‖b−Axm‖2 is minimized for allxm∈ x0 +Km.
One drawback of GMRES is the storage requirement of an orthogonal basis, which could
be larger than a sparse Jacobian matrix unlessm is kept small, leading to the class of
restarted GMRES methods [52]. Other Krylov methods, such as BiCGSTAB and TFQMR
(see, e.g., [51]), do not have these additional storage requirements but may not be as robust.
A Newton-based method that uses GMRES as its local solver is called Newton-GMRES.
It is a popular algorithm for solving large-scale problems and will be used as the standard
Newton-based algorithm in our numerical experiments.

3.3.2 Bouaricha’s Method

As presented in section 3.2.1, the tensor step is calculated in one of two ways: (1) using
orthogonal transformations for small, dense problems, or (2) using the reduction method
for both sparse and dense systems (but with more difficulty if the Jacobian is singular or if
the model does not have a root).

With the reduction method, one needs the valuessTJ−1F andsTJ−1a in equation (3.9)
to find the value ofβ∗. The advantage of the reduction method is that any linear solver may
be used to solve these linear systems, which makes the method noninvasive. For instance,
efficient Krylov methods may be used for solving the linear systemsJ−1F andJ−1a, po-
sitioning them for use on large-scale problems. Indeed, this is the approach adopted by
Bouaricha in [9] for a large-scale tensor method, which he calls a tensor-Krylov method.
We believe this is an unfortunate name because the method is not restricted to using Krylov-
based linear solvers. For the sake of clarity to distinguish it from the tensor-Krylov methods
of [2, 3], we will refer to his tensor-Krylov method as “Bouaricha’s method.”

Bouaricha’s method uses principles from inexact Newton methods and expects only
approximate solutions to the two linear systems. Thus, when calculatingβ∗ from (3.10),
the value ofβ∗ will be inexact, but hopefully a good enough estimate.

A key point of Bouaricha’s algorithm, however, differentiates it from a straightforward
implementation that uses just the concepts above. For this discussion let the previous non-
linear iterate be denoted with the subscriptk−1. So instead of approximately solving the
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systemJ−1
k ak, his method solves a different linear problem,J−1

k Fk−1, and then reaches
J−1

k ak via the linear combination: 2(J−1
k Fk−1− J−1

k Fk− sk)/(sT
k sk)2. The beauty of this

approach is due to a clever initial guess for the second system,J−1
k Fk−1. Because the Jaco-

bian typically changes very little from iteration to iteration near the solution, the previous
Newton directionJ−1

k−1Fk−1 will be close toJ−1
k Fk−1 if the Jacobian at the root is nonsingu-

lar. If the Jacobian is singular, then the directions are likely to be collinear but of different
magnitudes. Thus, Bouaricha’s method uses the approximate Newton step calculated from
the previous step as an initial guess for the systemJkw= Fk−1. The complete algorithm for
solving the local model at each nonlinear iteration is presented below.

Algorithm 3.1: BOUARICHA’ S TENSOR-KRYLOV METHOD

1. Approximately solveJkdN =−Fk for dN using a Krylov subspace method.

2. Approximately solveJky=−Fk−1 for y using a Krylov subspace method and starting
from the initial guessy0 =−dNk−1 = J−1

k−1Fk−1.

3. Form the termw = J−1
k ak by using the following relationship:

w = J−1
k ak

=
2

(sT
k sk)2

(J−1
k Fk−1−J−1

k Fk−sk)

=
2

(sT
k sk)2

(−y+dN−sk).

4. Form the quadratic equation

q(β) = 1
2sT

k J−1
k akβ2 +β+sT

k J−1
k Fk (3.13)

= 1
2sT

k wβ2 +β−sT
k dN, (3.14)

and find the smallest magnitude real root or minimizer ofq(β).

5. Calculate the tensor step

dT = −J−1
k Fk− 1

2J−1
k akβ2

∗

= dN− 1
2wβ2

∗,

whereβ∗ is the solution of (3.14).

6. Select the next iteratexk+1 using a line search global strategy (as outlined in sec-
tion 3.3.4.3).
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When calculating the tensor step, Bouaricha’s method also neglects the complicated
term in (3.11) involvingq(β∗),

(JT
k Jk)−1sk

sT
k (JT

k Jk)−1sk
q(β∗). (3.15)

The justification for this omission is that the term has a considerable computational cost
for large-scale problems and that there appears to be no way to calculate it without having
all of Jk available. Also, it is proved in [9] that the step calculated without (3.15) still
retains the same convergence properties of the tensor method. As a sketch of the proof,
the expression (3.15) is negligible in the neighborhood of the solution and, therefore, has
no effect on the tensor method. In the numerical experiments in [9], omitting the term had
a seemingly negligible impact on the performance of the algorithm. Our modification to
Bouaricha’s method discussed in section 3.4 also seeks to avoid this complicated term.

Despite favorable results in [9], studies in [2] have found the method to be less impres-
sive on more practical problems. The two main disadvantages of Bouaricha’s method stem
from the fact that two linear systems must be solved for each outer iteration and that an
accurate value ofβ is not calculated. These disadvantages are discussed next.

As specified in the algorithm above, solving the two linear systems required by Bouaricha’s
method (Jkd = −Fk andJky = −Fk−1) is roughly twice the cost per nonlinear iteration of
Newton’s method. The clever initial guess for the second linear system usually does not
help until the iterates get close to the solution, at which point typically only a few more
nonlinear iterations are needed. Until then, solving the two linear systems separately dou-
bles the cost per nonlinear iteration as compared with Newton’s method. Thus, for these
methods to be competitive, the number of nonlinear iterations would need to be halved,
which does not happen very frequently on practical problems.

In addition to the added cost of solving two linear systems independently, it is not clear
how precise the solutions need to be to provide an accurate value forβ in Bouaricha’s
method. This feature can be detrimental to the method by making it potentially unstable.
That is, if both linear systems are solved only approximately, thenβ may be inaccurate,
affecting the quality of the computed tensor step since the scalar coefficient of the vector
J−1a is 1

2β2. Any errors inβ are magnified once the value is squared, particularly if the ap-
proximate value is much larger than the true value. Thus, Bouaricha’s method can and does
compute spurious steps and performs worse than corresponding Newton-Krylov methods.

Numerical results in [2] show that these disadvantages often outweigh any benefit of
calculating the tensor step. Indeed, testing on medium-sized problems (n < 1000) showed
that the performance of Bouaricha’s method usually trailed the performance of Newton’s
method as well as the other large-scale tensor methods. Due to the theoretical disadvantages
mentioned above and the lackluster numerical performance, this algorithm has not received
much attention. In section 3.4, we will examine modifications to Bouaricha’s method that
improve it.
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3.3.3 Tensor-GMRES Method

Another large-scale tensor method is that of Feng and Pulliam [24]. It is also a tensor-
Krylov method but employs a different strategy. It uses Krylov subspace projection tech-
niques for solving the Newton equations; and, in particular, it uses GMRES to find the
approximate Newton stepdN = d0 +Vmym. Once again, the columns ofVm form an or-
thonormal basis for the Krylov subspaceKm generated by the corresponding Arnoldi pro-
cess, and the Hessenberg matrixHm is also generated from the Arnoldi process. Given
these key matrices, their tensor-GMRES algorithm proceeds to solve a projected version
of the tensor model (3.3) along a subspace that spans the Newton step direction (i.e., the
approximate tensor step is in the span of the Krylov subspaceK N

m andd0, or equivalently
the span of the matrix[Vm,d0]). Thus, their algorithm solves the least-squares problem

min
d∈{d0}∪K N

m

∥∥Fk +Jkd+ 1
2Pa(sTd)2

∥∥ , (3.16)

whereP is the projection matrix

P = Y(YTY)−1YT , whereY = Jk[Vm,d0]. (3.17)

Despite the algorithm’s daunting algebra, the design is actually rather straightforward.
The algorithm may be viewed as an extension of Newton-GMRES, where the inexact New-
ton step is calculated via GMRES in the standard way. An approximate tensor step is calcu-
lated subsequently using the Krylov subspace information generated for the Newton step.
In this way, the method is also consistent with preconditioning techniques and a matrix-free
implementation, which makes it appealing for general use. However, because it requires
the orthogonal basisVm and Hessenberg matrixHm from the linear solver, we classify the
tensor-GMRES method as an “invasive” method.

The Feng and Pulliam tensor-GMRES method for solving the local tensor model in-
volves some difficult algebra, but the extra work and storage beyond GMRES is actually
quite small. The extra work is at most 4mn+5n+2m2 + O(m) multiplications plus a sin-
gle Jacobian-vector product for evaluating the rank-one tensor vectorak. The extra storage
amounts to two extran-vectors forak andsk plus a few smaller working vectors of length
m.

The analysis in [24] shows that the same superlinear convergence properties for the
unprojected tensor model considered in [23] also hold for the projected tensor model (3.16).
Both analyses consider ideal tensor models (i.e., whenak is formed using information from
the singular value decomposition ofJk instead of from a secant approximation) and extend
the ideal result to practical implementations that use a secant approximation forak. When
considering only ideal tensor models, the only difference between the model in [23] and
the projected model (3.16) is a projection matrixP in front of ak. In the ideal case, the
projection matrixP is the matrixWWT , such that the left singular vector corresponding to
the least singular value ofJk is in the span of the orthonormal column vectors ofW. Feng
and Pulliam show that this difference does not affect the proofs of Lemmas 4.1 and 4.2 in
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[23], so the rest of the convergence analysis follows exactly the proof of Theorem 4.4 in
[23].

Feng and Pulliam extend this convergence result of an ideal, projected tensor model to
the practical, projected tensor model of (3.16) with the use of two approximations. First,
the Newton direction found via GMRES,dN ∈ [Vm,d0], will be arbitrarily close tovc

N,
the right singular vector corresponding to the smallest singular value ofJk. Thus, the
difference between two consecutive iterates,sk = xk−1− xk, is likely to be along the null
space when approaching a rank-deficient solution, so a practical implementation usessk to
approximate the null space direction. Second, the ideal projection matrixWWT projects
onto the subspace containing the left singular vector corresponding to the smallest singular
value ofJk, which is in the same direction asJkvc

N. Hence, a reasonable approximation to
WWT is the projection matrix (3.17). While a rigorous proof is not provided in [24], these
two approximations for a practical tensor-GMRES method appear to work well in their
numerical tests. See [23] and [24] for more theoretical details.

The Feng-Pulliam tensor-GMRES method has been tested in a variety of numerical
experiments, including comparisons in [2, 3, 4, 24]. In all, the results suggest that tensor-
GMRES is a competitive algorithm that usually performs on par with other large-scale
tensor methods and in some cases even better. However, there are instances when perfor-
mance is hindered. These cases stem from a few theoretical deficiencies of tensor-GMRES
that are related to using a Krylov subspace generated from the solution of the Newton step.
We discuss these disadvantages in more detail next.

First, the variable space restriction ond in the minimization problem (3.16) illustrates a
possible disadvantage of the Feng-Pulliam method, particularly when using preconditioners
or restarted GMRES. Instead of solving (3.16) in the full variable space (which would
be expensive), Feng and Pulliam restrict the solutiond along a subspace that spans the
Krylov subspace generated from the Newton-GMRES step since the Newton step usually
provides good directional information. Hence, the norm of the projected tensor model is
only minimized to the extent that the Krylov subspace for the Newton-GMRES step is large
enough to capture important directional information of the second-order tensor term.

Consider, for example, using anexactpreconditioner, i.e.,M = Jk. One iteration of
GMRES solves the Newton equations exactly, and the Newton step direction isv1 from
the orthonormal basisVm. Then, according to the Feng-Pulliam method, the approximate
tensor step that solves (3.16) could only be a scalar multiple of the directionv1 (assuming
that d0 = 0). A similar example may be developed when using restarted GMRES in the
Feng-Pulliam method—if GMRES converges soon after a restart, then the orthonormal
basisVm is smaller than before the restart. A smaller basis may lead to a tensor step that
solves (3.16) with more error due to fewer degrees of freedom. Some limited testing in
[2] suggests that solving (3.16) in a smaller variable space adversely affects the practical
performance of this method when using preconditioners or restarted GMRES.

Second, the Feng-Pulliam method solves theprojectedtensor model (3.16) instead of
the true tensor model without a projection. Undoubtedly, some information is lost with the
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projection, which may lead to a less accurate tensor step. In the limit, this projection is not
supposed to be detrimental to the convergence rate of tensor-GMRES. Because the Newton
step tends to undershoot (or overshoot) when first-order information is lacking in the local
model, the solution to the tensor model is often nearly along the Newton direction, so the
subspace restriction ond might not be a problem.

A third and final disadvantage is that the relative stopping toleranceηk in the Newton-
GMRES step has no direct relationship with the error in the tensor model. That is, solving
the Newton step to a relative tolerance of 10−1 does not guarantee that the tensor step is
solved to a tolerance of at least 10−1. The implication is that the step may be of poorer
quality than the local tolerance suggests.

3.3.4 Tensor-Krylov Methods

The tensor-Krylov methods introduced in [2, 3] differ from previous large-scale tensor
methods due to their ability to solve the local tensor model to a specified tolerance. Using
either Bouaricha’s method or tensor-GMRES, the residual error‖MT(xk +d)‖ must be
computed explicitly, making it difficult to assess the quality of the approximate tensor step
that is computed. In addition, tensor-Krylov methods avoid the costly solution of two
linear systems (as opposed to two in Bouaricha’s method) and compute the solution to the
full tensor model, as opposed to a projected tensor model (as in the Feng-Pulliam method).
However, tensor-Krylov methods are invasive and require a customized solver.

In the same manner that GMRES is an algorithm for solving linear systems and Newton-
GMRES is the nonlinear solver, a distinction is made between the solver for the local tensor
model and the nonlinear solver. Here, we outline one of three procedures [2] for iteratively
solving the local tensor model that use the concepts from linear Krylov subspace methods.
All three procedures share the same conceptual design, so discussing only one will suffice.
Then, we consider the issues of the tensor-Krylov nonlinear solver that implements the
local solver.

Once again, we restrict ourselves to the rank-one tensor model in (3.3)–(3.5), which
only interpolates the function value at the previous iterate. Tensor-Krylov methods find a
solution to the minimization problem

min
d∈Km

‖MT(xk +d)‖2 = min
d∈Km

∥∥Fk +Jkd+ 1
2ak(sT

k d)2
∥∥

2 , (3.18)

whereKm is a specially chosen Krylov subspace that facilitates the solution of the quadratic
model. The three tensor-Krylov methods differ in their choice ofKm, which becomes their
signature difference and dictates the algorithm. The three variants are differentiated by the
size of their initial block subspace, identifying them as block-2, block-2+, and block-3. The
three variants have different complexities and usefulness as block algorithms. For instance,
the block-3 method is the most straightforward and capable block implementation, while
the block-2 methods are more complex but work better in scalar implementations.
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Here, we provide only the basic details of the block-3 methods, and we refer to [2, 3] for
more detailed information on all three algorithms. We discuss issues that are important to
a nonlinear equations solver, including block-Krylov subspace issues, residual calculation,
stopping conditions, preconditioning and scaling techniques, computation of the Newton
step, and cost. Section 3.3.4.2 wraps the local solver into a complete tensor-Krylov algo-
rithm for solving large-scale systems of nonlinear equations, and section 3.3.4.3 discusses
the global strategies for the tensor-Krylov algorithm.

3.3.4.1 Block-3 Local Solver

The block-3 algorithm for solving (3.18) proceeds in a block-Krylov-like fashion, operating
on a matrix of three initial vectors instead of the single residualr0 of a linear system. By
choosing three vectors, we may include information on the three known vectors in the local
tensor model (s, a, andFk) and allow a transformation of the variable space and function
space in a manner similar to the method of orthogonal transformations of section 3.2.1. To
that end, we consider the block of initial vectors

R0 = [s, (Jd0 +Fk−1), (Jd0 +Fk)]. (3.19)

The rationale for choosing these specific vectors is as follows. The vectors is listed first in
order to isolate the inner productsTd (via ‖s‖vT

1 d) and later create a single quadratic equa-
tion in a single unknown. The second vector is the residual involving the previous function
valueFk−1 and is needed for computing the tensor terma, (3.4). The third vector is the
residual of the Newton equations, and it may be placed as the second or third column inR0.
Collectively, these three vectors are chosen specifically to compute the tensor terma later
in the algorithm in addition to fully characterizing the local tensor model (i.e., representing
the three known vectorsFk,a,s) with this initial subspace.

The first step of the algorithm computes the QR-factorization ofR0,

R0 = VR= [v1,v2,v3]R, (3.20)

whereV ∈ Rn×3 = [v1,v2,v3] is unitary andR∈ R3×3 is upper triangular. A block-Arnoldi
process then creates additional columns of an orthonormal basisVm that spans the block-
Krylov subspace

span{V,JV,J2V,J3V, . . .}. (3.21)

There are several block-Arnoldi versions available for implementation, and the particular
variant is not critical to the implementation of the tensor-Krylov method. The standard
procedure works on a whole blockV ∈ Rn×t and addst vectors (t = 3 in this case) to the
subspace at a time. This block procedure may work well when considering cache memory
performance, and the single-vector version of block-Arnoldi more closely corresponds with
the scalar implementation of GMRES. The version in Algorithm 3.2 is very similar to the
standard Arnoldi algorithm, which operates on a single vector at a time and is due to Ruhe
[48] (see also [50]) for the symmetric case (block Lanczos).
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Algorithm 3.2: BLOCK ARNOLDI PROCESS—RUHE’ S VARIANT

1. Chooset initial orthonormal vectors{vi}i=1,...,t .

2. Choose a number of Arnoldi iterations to perform and set tom.

3. For k = 1, . . . ,m :

(a) Set j := k+ t−1

(b) Computew := Jvk

(c) For i = 1,2, . . . , j

i. hik := (w,vi)
ii. w := w−hikvi

(d) h j+1,k := ‖w‖2
(e) If h j+1,k 6= 0, then setv j+1 := w/h j+1,k;

Else if t = 1, then Stop;
Else sett := t−1 and continue.

The first step of the algorithm is to multiply a single vector,v1, by the Jacobian matrix
J and orthonormalize the resulting vectorw against allj vectorsv1, . . . ,v j ( j = t at the first
iteration) in the orthonormal basis, building the subspace one vector at a time. Thus, a
vector from the initial block{vi}i=1,...,t is multiplied byJ everyt steps. The last step 3e
avoids a division by zero and is commonly referred to as the breakdown condition. In the
scalar case (t = 1), a breakdown condition indicates that the solution is in the subspace
spanned by thek basis vectors computed thus far. Here in the block case, we must modify
the usual condition to reduce the block dimension by one until it eventually reduces to the
scalar case.

After m steps on the initial matrixV ∈ Rn×3 defined in (3.20), the block-Arnoldi pro-
cess produces an orthogonal matrixVm+3 ∈ Rn×(m+3) and a matrixH̄m∈ R(m+3)×m whose
nonzero entries are the elementshik computed in the process. It is important to note that
H̄m is banded upper Hessenberg with three subdiagonals. The orthonormal basisVm+3 and
the matrixH̄m have an important relationship,

JVm = Vm+3H̄m. (3.22)

The block-3 algorithm uses orthogonal transformations and permutation matrices to
switch rows and columns to isolate a quadratic equation in themth row. After the block-
Arnoldi process adds a basis vector and an extra column toH̄m, we perform a series of
plane rotations to put the matrix̄Hm in upper triangular form. In its current ordering, the
quadratic equation would not be isolated to a single variable in the first row and should
be switched to themth row. So we permute the first row and column with themth row
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and column to facilitate an easier solution. After all of the orthogonal transformations and
row/column permutations, the structure of the simplified problem is



?
?
?
...
?
?
?
?


+



? ? ? · · · ?
? ? ?

? · · · ?
...

...
?


ŷ+



?
?
?
...
?
?
?
?


(sTd0 +‖s‖ ŷm)2, (3.23)

whereŷ is the vector of unknowns and ˆym is the last element in ˆy. Similar to the last step
in the orthogonal transformations approach of section 3.2.1, one finds the minimizer ˆym

and then solves a linear system for the remaining elements in ˆy. Finally, one usesVm and
previous permutations/transformations to compute the optimal solutionx from ŷ.

The decision for stopping the Arnoldi process so that the approximate step solves the
tensor model to a specified tolerance appears before the computation of the explicit step,
which is at an inconvenient location.

There are two possible implementations for computing a stopping condition in these
Krylov-based methods, and they are fundamentally similar. Both may be checked without
explicitly computing the approximate stepdm after each step in the Arnoldi process. We
briefly mention one approach here, which is used in our numerical tests.

The idea is analogous to what is done in GMRES, which uses an efficient approach in
its least-squares solution. With GMRES, the least-squares error‖b−Ax‖2 is equal to the
last element ofQe1‖b‖, whereQ is the product of all Givens rotations to transform the
Hessenberg matrix to upper triangular form ande1 is the unit vector(1,0,0, . . .)T .

The approach with the block-3 method is similar in that it involves computing the norm
of the remaining rows below the triangular part ofH̃m. The last four rows of them×
(m+ 3) system (3.23) pertain to the least-squares error of the local tensor model. Hence,
one neglects the contribution from the quadratic equation in rowm of (3.23) (because it
is already minimal) and calculates the norm of the last three rows for use in a stopping
condition.

As a final remark, these local solvers are amenable to preconditioning and scaling.
The modifications to the block-Arnoldi method are no different from what is done with
preconditioning and scaling in GMRES. There are a few additional steps that deal with
handlingsk andak in the preconditioned mode, but they are minor.
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3.3.4.2 Tensor-Krylov Nonlinear Solver

Now that the Krylov-based iterative methods for solving the local tensor model has been
introduced, we return to solving the general nonlinear equations problem (1.1). The fol-
lowing algorithm outlines the tensor-Krylov algorithm, which at every outer iteration calls
a Krylov-based iterative method for solving the local tensor model.

Algorithm 3.3: TENSOR-KRYLOV METHOD

1. Given the nonlinear equations problemF(x), choose a starting pointx0 and set the
maximum iteration counterkmax.

2. For k = 0,1,2, . . . ,kmax, do:

(a) Choose a forcing term toleranceηk ∈ [0,1).
(b) If k = 0, then calculate the Newton-GMRES stepdN according to the relative

toleranceηk and proceed to step 2e.

(c) Form the local tensor modelMT(xk + d) = Fk + Jd+ 1
2a(sTd)2, whereFk =

F(xk), Fk−1 = F(xk−1), J = F ′(xk), s= xk−1−xk, anda = 2(Fk−1−Fk−Js)
(sTs)2 .

(d) Compute the inexact tensor stepdT according to the relative toleranceηk by
approximately solving the local tensor model according to the block-2, block-
2+, or block-3 methods.

(e) Setxk+1 = xk+λd, whered andλ are chosen according to a line search strategy
that uses the directionsdT and/ordN.

(f) If xk+1 is an acceptable approximation to a root ofF(x), then stop and signal a
success.

When referring to Algorithm 3.3 that uses a specific Krylov-based local solver in step 2d
(i.e., the block-2, block-2+, or block-3 methods), we will abbreviate the method as TK2,
TK2+, and TK3, respectively.

The main advantage of the tensor-Krylov method over other inexact tensor methods
is that the inexact tensor stepdT satisfies the local tensor model to within the specified
toleranceηk. The tensor-GMRES method, on the other hand, computes the solution of
a projectedtensor model, which is missing second-order information in the direction ofs,
and may compute a less desirable step. The Bouaricha method [9] uses the exact model, but
the relationship‖M(x+dT)‖< ηk‖Fk‖ is not guaranteed, thereby raising the possibility of
less accurate steps.

3.3.4.3 Global Strategy and Step Selection

Algorithm 3.3 needs a robust strategy for global convergence if neither the full tensor step
nor the Newton step is satisfactory in step 2e. While step 2e uses a line search strategy,
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a trust region strategy is still viable, albeit less straightforward. Here we discuss details
regarding a line search implementation in the tensor-Krylov method.

The standard tensor line search of [57] and the TENSOLVE line search of [9, 10] are
straightforward applications of backtracking along the tensor step, if it is a descent direc-
tion, or otherwise along the Newton direction. The curvilinear line search implementation
in [4] requires a little adaptation. The curvilinear stepdT(λ) is the solution of the mod-
ified tensor modelλF + Jd+ 1

2a(sTd)2, whereλ is the line search parameter. Thus, in
the tensor-Krylov algorithm, the local tensor model is likewise changed and recomputed.
Fortunately, the scalarλ is carried through the process in a straightforward manner, irre-
spective of method. Specific details are covered in [2] Because the curvilinear line search
for tensor methods has posted encouraging results and has a nice theoretical basis, we will
use this line search implementation in the tensor-Krylov algorithm.

It should be noted that other large-scale tensor methods, such as the tensor-GMRES
method of Feng and Pulliam [24], could employ the curvilinear line search even though
these other methods have subtle differences in calculating an inexact tensor step. This is
because the curvilinear step is calculated from a simple scalar multiplication of the func-
tion value in the local tensor model and may be carried through the algebra of the step
calculation to arrive at a parametric form of the curvilinear step.

3.4 Modified Bouaricha Method

Tensor methods have a reputation for being difficult to understand and cumbersome to
implement. Our goal was to implement a tensor method for general use at Sandia that was
easy to understand (as far as tensor methods go), computationally efficient, robust on a
wide range of problems, capable of running in parallel, and capable of using preexisting
linear solvers with all of their advanced features.

Our experience has shown us that we cannot use just any linear solver for the difficult
applications at Sandia. Advanced linear solvers such as AZTEC [64] are needed. Unfor-
tunately, these linear solvers are not easily modified and typically do not provide the Hes-
senberg matrices and other information needed by the tensor-Krylov and tensor-GMRES
methods. More precisely, the tensor-Krylov methods [2, 3] require their own specialized
Krylov-based solver, which prevents them from serious consideration. Tensor-GMRES
[24], while more flexible with its linear solver requirements, still needs the Hessenberg
matrix and orthogonal basis, which are usually not accessible from a standard interface.
Bouaricha’s method [9], on the the other hand, is capable of using any stand-alone linear
solver, be it GMRES, TFQMR, BiCGSTAB, etc.

However, in experiments performed in [2], Bouaricha’s method usually lagged in per-
formance, sometimes by as much as twice the running time of the other algorithms. Thus,
here we propose modifications to Bouaricha’s method [9] that seek to address two aspects
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of the original algorithm. First, we address a theoretical deficiency that involves neglecting
a complicated term for an exact step. Second, Bouaricha’s method suffers from slow con-
vergence due to the sequential solution of two linear systems per outer iteration, which we
propose to address with block linear solvers. We describe both of these changes next.

Previously we saw that, when calculating the tensor step, Bouaricha’s method neglects
the complicated term in (3.11) involvingq(β∗),

(JT
k Jk)−1sk

sT
k (JT

k Jk)−1sk
q(β∗). (3.24)

Bouaricha justifies this omission by noting that the term has a considerable computational
cost for large-scale problems and that there appears to be no way to calculate it without
having all ofJk available. While it can be proven that the step calculated without (3.24) still
retains the same superlinear convergence properties of a standard tensor method, neglecting
this term means that the resultant step is no longer a minimizer of the local tensor model.
We believe there is a better approach than dropping (3.24).

Our modification to Bouaricha’s algorithm approaches the problem from a practical
standpoint. When the iterates are close to the solution, the tensor model in nearly all cases
has a root. The nonroot cases usually occurs when the solver is far from the real solution
and the solver is taking large steps. In this case, the second-order tensor termak, which
is formed by secant approximation and depends on the step length, is most likely a poor
approximation. Hence, the local model may deviate significantly from the actual function,
andMT(xk +d) may no longer have a root.

Intuition tells us that when the local model is significantly wrong, we should back
off and be less aggressive in attempts at modeling the function aroundxk. Thus, one of
our modifications to Bouaricha’s method attenuates the local tensor model by scaling the
second-order information closer to a linear model (i.e., closer to Newton’s method). We
accomplish this by multiplying the tensor term12ak(sT

k d)2 by a scalar parameterα:

MT(xk +d) = Fk +Jkd+ 1
2αak(sT

k d)2.

This parameter is initially set to one, which implies solving the standard tensor model as
before, but if a real root is not found, then we chooseα ∈ (0,1] such that the model has a
real root. This is done easily by forming the parameterized quadratic equation

q(β;α) = 1
2αsT

k J−1
k akβ2 +β+sT

k J−1
k Fk. (3.25)

If (3.25) does not have a real root forα = 1, then the value ofα that admits a single real
root is

α =
1

4(sT
k J−1

k ak)(sT
k J−1

k Fk)
. (3.26)

A second limitation of Bouaricha’s original method is its performance—two linear sys-
tems are solved per iteration. As mentioned in section 3.3.2, a clever technique attempts
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to address this issue by using the previous Newton step as an initial guess to the second
linear system,Jkw = Fk−1. In practice, this technique does not play a significant role until
the iterates are very close to the solution, which leaves a lot of early iterations where the
algorithm solves two linear systems with roughly equal work.

To address this, we propose a second modification of using a block linear solver to solve
the two linear systems in tandem. For instance, a block-Krylov method [51] works with a
block of initial vectorsV to produce the block-Krylov subspace

span{V,JV,J2V,J3V, . . .}. (3.27)

The block-Arnoldi process creates additional columns of the orthonormal basis for (3.27),
with many versions available for implementation. The standard block-Arnoldi procedure
works on a whole blockV ∈Rn×p and addsp vectors—p= 3 in this case—to the subspace
at a time.

Block solvers are more efficient with cache memory than scalar linear solvers solving
multiple right hand sides [6]. The reason is that, as memory latency costs begin to dominate
an algorithm, it becomes more expensive to retrieve a Jacobian matrix from memory. Block
solvers take advantage of this by multiplying multiple vectors with the parts of the matrix
that reside in cache memory. This extra computation is almost free compared to the time
that the matrix would have to be fetched and pulled through cache memory in subsequent
linear solves with a scalar method.

The option to use a block linear solver may or may not be available, depending on
the availability of a library. The complete algorithm for solving the local model at each
nonlinear iteration is presented below.

Algorithm 4.1: MODIFIED BOUARICHA METHOD

1. If a block solver is available, approximately solve the block system

Jk[dN y] =−[Fk Fk−1]

for dN andy using a block linear solver, such as block GMRES. Otherwise, solve
each system independently using a standard linear solver. The initial guess

y0 =−dNk−1 = J−1
k−1Fk−1

may be used for the second right hand side in the system.

2. Form the termw = J−1
k ak by using the following relationship:

w = J−1
k ak

=
2

(sT
k sk)2

(J−1
k Fk−1−J−1

k Fk−sk)

=
2

(sT
k sk)2

(−y+dN−sk).
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3. Form the quadratic equation

q(β;α) = 1
2αsT

k J−1
k akβ2 +β+sT

k J−1
k Fk (3.28)

= 1
2αsT

k wβ2 +β−sT
k dN, (3.29)

with α = 1 and find the smallest magnitude real rootq(β;α). If a real root does not
exist, then chooseα ∈ (0,1] such that a single real root exists:

α = (3.30)

4. Calculate the tensor step

dT = −J−1
k Fk− 1

2J−1
k akβ2

∗

= dN− 1
2αwβ2

∗,

whereβ∗ is a real root of (3.29).

5. Select the next iteratexk+1 using a line search global strategy (as outlined in sec-
tion 3.3.4.3).

3.5 Computational Results

This section describes numerical tests aimed at comparing the modified Bouaricha method
with Newton-GMRES. We provide a limited comparison of the other methods and pri-
marily focus on our modified Bouaricha method. Additional numerical tests comparing the
other tensor methods may be found in [3, 2], and results on several ill-conditioned problems
are included in [5].

3.5.1 Test Results on Fluid Flow Benchmark Problems

For an initial comparison, we consider a couple of CFD benchmark problems described
in [62] that are used for verification of fluid flow codes and solution algorithms: the 2D
backward-facing step problem and the 2D thermal convection problem.

We implemented the algorithms in a software package called NOX [41], which is a
C++ object-oriented nonlinear solver package being developed at Sandia National Labo-
ratories. For objective comparisons, all of the methods, including Newton-GMRES and
tensor-GMRES, used the same Arnoldi process (modified Gram–Schmidt) as the tensor-
Krylov method. That choice granted us more control over the algorithm and assured us of
a controlled experiment. Thus, the results in this section do not reflect the most efficient
and optimized implementations available.
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We set up the numerical experiments to closely correspond to those in [62], using many
of the same conditions and parameters. A successful termination was declared when both
of the following stopping conditions were satisfied:

‖F(xk)‖ ≤ εF ‖F(x0)‖ (3.31)

and
1√
n
‖Wdk‖< 1, (3.32)

wheren is the total number of unknowns,dk is the full Newton or tensor step, andW is a
diagonal scaling matrix with entries

Wii =
1

εr |xki |+ εa
,

in which xki is theith element of the current solutionxk. We used the same parameters as
in [62]: εF = 10−2, εr = 10−3, andεa = 10−8.

In practice, the step length criterion (3.32) is more stringent than (3.31) and is necessary
to resolve finer details of the fluid flow and transport by requiring that eachith element of
the Newton or tensor step be small relative to its current valuexki . All successful runs,
except for two noted below in section 3.5.1.2, satisfied (3.31) with at leastεF = 10−8 and
converged to the same solution. The last several iterations in each run were needed to
satisfy (3.32).

If the test problem required more than 200 nonlinear (outer) iterations or if there was
a line search failure (i.e.,f (xk +λd)≤ f (xk)+αλ∇ f (xk)Td, where f (x)≡ 1

2 ‖F(x)‖2 and
α = 10−4, could not be satisfied withλ > 10−12 in at most 40 backtracks), then we declared
a failure for the run.

The tests in [62] used a variety of forcing terms, particularly the adaptive forcing terms
of Eisenstat and Walker [20]. As mentioned in section 3.3.4.3, more research is needed
to determine how best to apply adaptive forcing terms to tensor methods. Consequently,
we have used a constant forcing term ofηk = 10−4 in the 2D problems andηk = 10−2

in the 3D problem. As in [62], we allowed the local solver (i.e., GMRES or its tensor-
Krylov equivalent) a restart value of 200 with a maximum of 600 total iterations. If the
local solver did not satisfy the desired tolerance within the 600 iterations, then we used the
step computed thus far and tested for step acceptance with our global strategies. Restarting
became more of an issue as the problem difficulty increased.

We used an explicit Jacobian, which our PDE code computed efficiently by a com-
bination of analytic evaluation and numerical differentiation, and enabled the option for
maximum accuracy in the Jacobian. We employed right preconditioning in all cases us-
ing an ILUT preconditioner [49], and we performed no variable or function scaling in the
problems. The initial approximation was the zero vector for all cases.

While we recommended using a block linear solver for our modified Bouaricha method,
one was not available for these experiments. Belos [22] is a suite of block solvers in
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the Trilinos software framework [34], but it was not interfaced to NOX in time for these
experiments. Thus, we have tallied a worst-case type estimate for the method if a block
linear solver were used. For each nonlinear iteration, we recorded the number of linear
iterations for both linear solves. Then we took the larger of the two and added that to our
running tally. We believe this is a reasonable estimate for two reasons. First, this number
would be greater than or equal to the actual number of block iterations because the union of
the two Krylov subspaces that solve the two right-hand sides in the scalar case is contained
within the span of the block Krylov subspace generated in this many iterations. Second, the
time per block linear iteration would be just slightly more than a scalar linear iteration due
to the simultaneous computation of matrix-vector products as the matrix is pulled through
cache memory only once [33].

We used a standard backtracking line search procedure for Newton-GMRES and used
the complete tensor-GMRES algorithm in [24], including their globalization. For the
tensor-Krylov methods, we used the curvilinear line search due to favorable theoretical
and performance considerations in [4]. For selecting the line search parameter at each trial
step, we used theλ-halving procedure (dividingλ by two at each inner iteration). Quadratic
backtracking was an option but generally required more iterations and function evaluations
than λ-halving across all methods in preliminary tests on these problems, so it was not
used.

All single processor tests were performed on a dual 3GHz Pentium Xeon desktop com-
puter with 2GB of RAM, which was more than sufficient for these problems. However,
the computer was not dedicated to these tests, so the timing statistics provided are only
approximate and could be off by 10% or more relative to each other. The parallel proces-
sor test was performed on a dedicated 16 node/32 processor cluster of 1 GHz Pentium III
processors.

The fluid flow problems are set up using a particular spatial discretization of the gov-
erning steady-state transport equations for momentum and heat transfer in flowing fluids.
These governing PDEs are given below. The unknown quantities in these equations are the
fluid velocity vector (u), the hydrodynamic pressure (P), and the temperature (T).

Conservation of mass: ∇ ·u = 0 (3.33)

Momentum transport: ρ u ·∇u−∇ ·T−ρg = 0 (3.34)

Energy transport: ρCpu ·∇T +∇ ·q = 0 (3.35)

In these equations,g is the gravity vector, andρ andCp are the density and specific heat
at constant pressure of the bulk fluid, respectively. The constitutive equations for the stress
tensorT and heat fluxq are

T = −PI +µ(∇u+∇uT),
q = −κ∇T,

whereµ is the dynamic viscosity andκ is the thermal conductivity of the fluid.
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The particular spatial discretization of (3.33)–(3.35) that we use is from a finite el-
ement reacting flow code called MPSalsa [60] developed at Sandia. MPSalsa generates
an algebraic system of equations by a pressure-stabilized Petrov–Galerkin finite element
formulation of the low Mach number Navier–Stokes equations with heat transport. This
scheme uses equal-order interpolation of velocity and pressure, and we enabled the option
for streamline upwinding to limit oscillations due to high grid Reynolds numbers. Since
the publication of [62], the pressure-stabilized streamline upwinding Petrov–Galerkin for-
mulation in MPSalsa has been changed to a Galerkin least squares–type method [59]. This
stabilization method is slightly less dissipative, and the nonlinear convergence behavior
for difficult problems can be less robust at higher Reynolds numbers. Consequently, this
change precludes direct comparisons with results in [62].

To complete a problem’s specification, boundary conditions are imposed on the gov-
erning PDEs, which we discuss in the subsections that follow. The problems differ only in
their boundary conditions and in whether they use (3.33)–(3.35) or only (3.33)–(3.34). The
next two subsections describe the test problems and their results.

3.5.1.1 Thermal Convection Problem

This problem consists of the thermal convection (or buoyancy driven) flow of a fluid in
a differentially heated square cavity in the presence of gravity. It requires the solution
of (3.33)–(3.35) on the unit square with the following Dirichlet and Neumann boundary
conditions:

T = Tcold, u = 0 at x = 0, (3.36)

T = Thot, u = 0 at x = 1, (3.37)
∂T
∂y

= 0, u = 0 at y = 0,1. (3.38)

Once the governing equations and boundary conditions are nondimensionalized, two pa-
rameters appear: the Prandtl number (Pr) and the Rayleigh number (Ra). In our experi-
ments, we fixed Pr = 1 and increased the Rayleigh number from Ra = 104 up to 2×107,
which increases the nonlinear effects of the convection terms and makes the solution more
difficult to obtain. The range in [62] is Ra = 103 to 106, but we shifted the range to ex-
plore the effectiveness of tensor methods on more difficult problems. We used a 100×100
equally spaced mesh, which has 40,804 unknowns. On this size mesh, it is unclear whether
the choice of Ra> 106 admits a physically accurate and/or stable solution, but we are in-
terested only in the relative performance of the numerical methods on this problem, which
remain valid comparisons.

Figure 3.1 shows the overall performance of Newton-GMRES and all of the tensor
methods on this problem. As the Rayleigh number increases, Newton-GMRES and tensor-
GMRES require increasingly more iterations to solve the problem. For Ra≥ 107, Newton-
GMRES fails to solve the problem in 200 iterations. Thus, the trend for Newton-GMRES is
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a clear degradation in performance as the problem becomes more difficult to solve. Tensor-
GMRES is unable to solve the problem for Ra≥ 8× 106. In contrast, the other tensor
methods (due in part to the curvilinear line search) are much less affected by the transition
and see a much smaller increase in nonlinear iterations.
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Figure 3.1. 2D Thermal convection problem results for Newton-
GMRES and all tensor methods.

Figure 3.2 shows just the results for the modified Bouaricha method and Newton-
GMRES. The middle plot shows the results of the modified Bouaricha method with a stan-
dard linear solver (scalar implementation rather than block). The results are less impressive
but still better than Newton-GMRES on the most difficult problems. As seen in Figure 3.1,
other tensor methods perform better in a scalar implementation due to solving only one
system as opposed to two linear systems.

The bottom plot of Figure 3.2 shows the expected performance of a block linear solver
implementation of the modified Bouaricha method. One block iteration (unit on the y-
axis) is just slightly more expensive than an iteration from a scalar implementation. This is
because the cost of multiplying an extra vector with a sparse Jacobian that already resides
in cache memory is small compared to the cost of retrieving the matrix from main memory.

We show similar results in Figure 3.3 for results run on 8 processors of a parallel com-
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Figure 3.2. 2D Thermal convection problem results for Newton-
GMRES (◦) and the modified Bouaricha method (�).

puter. The significance of this plot is that the other tensor methods (TK2, TK3, and tensor-
GMRES) are not capable of running in parallel as they are implemented in NOX. Sig-
nificant changes would be needed to convert the tensor-Krylov methods to run in parallel,
and some customizations of the linear solver interface would be necessary to parallelize
tensor-GMRES. Here the plots show the same behavior as in the single processor case—
Newton-GMRES requires dramatically more iterations as the problem difficulty increases
whereas the modified Bouaricha method is much less affected. In comparison to the single
processor results, the modified Bouaricha method happened to display even better perfor-
mance relative to Newton-GMRES.

3.5.1.2 Backward-facing Step Problem

This second fluid flow problem consists of a rectangular channel with a 1×30 aspect ratio
in which a reentrant backward-facing step (i.e., a sudden expansion in the channel width)
is simulated by injecting fluid with a fully developed parabolic velocity profile in the upper
half of the inlet boundary and imposing a zero velocity on the lower half. The channel
geometry and flowing fluid produce recirculation zones beneath the entering flow on the
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Figure 3.3. 2D Thermal convection problem results for Newton-
GMRES (◦) and the modified Bouaricha method (�) on 8 proces-
sors of a parallel computer.

lower wall and, for sufficiently fast flow, farther downstream on the upper wall. This prob-
lem requires the solution of (3.33)–(3.34) on the unit square with the following Dirichlet
boundary conditions:

u = 24y(1
2−y)U0x̂ at x = 0, 0≤ y≤ 1

2,

u = 0 at x = 0, −1
2 ≤ y < 0,

u = 0 at y =−1
2, 1

2,

Txx = Txy = 0 at x = 30,

wherex̂ is the unit vector in thex-direction. Once the governing equations and boundary
conditions are nondimensionalized, the Reynolds number (Re) appears, which is a measure
of inertial forces to viscous forces. In our experiments, we increased the Reynolds number
up to 800, which increases the nonlinear inertial terms in the momentum equation and
makes the solution more difficult to obtain. Beyond Re = 800, it is not clear that the problem
is stable and admits a physical solution. All solutions for this problem were computed on a
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20×400 unequally spaced mesh, which has 25,263 unknowns. All methods converged to
the same point except for the case Re = 400 and so was not included in the results.
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Figure 3.4.2D Backward-facing step convection problem results
for Newton-GMRES and all tensor methods.

The plots in Figure 3.4 show that all of the methods require about 10–12 nonlinear
iterations, on average, to solve, with Newton-GMRES requiring considerably more itera-
tions in some cases. Newton’s method tended to be more erratic, having slight difficulty at
Re = 300, improvements at Re = 500 and 600, and then more difficulty on the three hardest
problems. The two Newton solutions at Re = 700 and 750 actually converged to a local
minimizer of the line search merit function yet still satisfied the relative residual reduction
criterion of 10−2. If εF in (3.31) were 10−3, then these two runs would have been line
search failures.

Figure 3.5 shows just the results for Newton-GMRES and the modified Bouaricha
method. The bottom plot shows the predicted performance for a block implementation
of the modified Bouaricha method, which is rather favorable and comparable to the perfor-
mance of the other tensor methods.

52



100 200 300 400 500 600 700 800
5

10

15

20

25

N
on

lin
ea

r 
Itn

s

2D Backward−facing Step

100 200 300 400 500 600 700 800
0

1000

2000

3000

4000

A
rn

ol
di

 It
ns

100 200 300 400 500 600 700 800
0

1000

2000

3000

4000

B
lo

ck
 A

rn
ol

di
 It

ns

Reynolds Number

Newton−GMRES

Mod. Bouaricha

Figure 3.5.2D Backward-facing step convection problem results
for Newton-GMRES (◦) and the modified Bouaricha method (�).

3.5.2 Test Results on a Circuit Simulation Problem

For a numerical experiment from a different problem domain, we considered an elementary
circuit problem from Xyce [36], which is a circuit simulator being developed at Sandia.
We investigated the performance of the algorithms on a comparator circuit. The switches
in the circuit cause strong nonlinearities and in some case near discontinuities, all of which
are difficult for Newton-based solvers to handle. In particular, the Jacobian can be very
ill-conditioned or singular during an iteration. Some linear algebra techniques, such as
singleton elimination, help address these issues, but the nonlinear solver still faces some
difficulties. For example, the computed Newton step still can be very long in the direction
of the singular vectors corresponding to the smallest singular values.

Due to the second-order information in the local model at each step, tensor methods
tend to have less difficulty with singular and ill-conditioned Jacobian matrices. Most often
the secant approximation contains information that is missing in the (near) null space of the
Jacobian. This prevents the nonlinear step from growing too large and requiring cutbacks
in the line search routine. While ill-conditioned and singular matrices in tensor methods
may be handled easily using a technique described in section 4.1.1, the technique was not
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implemented here. Instead, we tested the pure performance of a tensor method versus
Newton’s method.

Because circuit simulation problems are very difficult for standard nonlinear solvers,
tuning is necessary to avoid catastrophic failures and/or achieve satisfactory performance.
Because tuning is usually problem specific, it is not knowna priori which set of parameters
will work the best on a particular problem. Thus, we chose the conditions of this experiment
to mimic this idea of parameter tuning. One often tries different global strategies and/or
parameters to see what works best in a trial-and-error fashion. Here we run each algorithm
with the same solver options and parameters (linear solver tolerance, full step vs. global
strategy, etc.) and compare their performance for that run only. Because different parameter
sets affect the algorithms differently, we are looking for the algorithm that has the best
average performance over all parameter sets.

Figure 3.6 shows a binary comparison over fifteen runs with different algorithmic tun-
ing parameters. The same set of parameters are used for both algorithms for that particular
run. In the plot we record the logarithm (base 2) of the ratio of nonlinear iterations of New-
ton to tensor. The resulting plot shows which method performed better and by how much.
Blue bars extending above zero show the extent to which the tensor method was better. On
average, the modified Bouaricha method converged in 39% fewer nonlinear iterations than
Newton-GMRES.

Figure 3.7 takes the same results and shows the binary comparison for execution time.
On average, the modified Bouaricha method converged in 10% less time than Newton-
GMRES. This is due once again to the fact that two linear systems are being solved per
nonlinear iteration in the Bouaricha method. If a block linear solver were used to solve the
two linear systems simultaneously, then each nonlinear iteration would take just slightly
more time than Newton’s method, and this plot would look more like Figure 3.6.

3.6 Discussion

The results of the fluid flow problems are encouraging for our modified Bouaricha tensor
method. They show a preliminary indication that the modified Bouaricha method is more
robust and oftentimes more efficient than standard Newton-GMRES. In general, the ten-
sor method would perform on par with Newton-GMRES on the easier problems (lower
Rayleigh or Reynolds numbers), but as the difficulty increased, the modified Bouaricha
method would outperform Newton-GMRES. This general trend is seen also with the other
tensor methods to varying degrees; see [3].

Part of the success is due to the curvilinear line search, which produces a trial step that
has a direction in the span of the Newton step and tensor step and that reduces to the Newton
direction asλ→ 0, which is a descent direction on the merit function. In a separate study of
line search procedures for tensor methods [4], it was found that the curvilinear line search
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Figure 3.6. Log-ratio of the number of nonlinear iterations on
the Xyce comparator circuit problem for the following methods:
Newton-GMRES and the modified Bouaricha method. Red bars
extending below zero favor Newton-GMRES and blue bars extend-
ing above zero favor the tensor method.

was the most robust and efficient. In many of the numerical experiments, Newton-GMRES
had several line search failures, which are more catastrophic than exceeding the maximum
iteration limit because the algorithm cannot make forward progress. The second-order in-
formation in the tensor model tends to provide a correction to the Newton step in difficult
areas, such as bogging down in a line search, that helps the tensor method “escape” faster.
Coincidentally, the accuracy of this second-order information increases during difficult re-
gions because, as the line search cuts the step back, the secant approximation in the tensor
method becomes more accurate.

Tensor methods are especially effective at solving large-scale problems that possess
Jacobians at the solution that are highly ill-conditioned or singular. For theoretical reasons,
algorithms based on Newton’s method exhibit very slow convergence on such problems.
In the next chapter, we discuss a technique that allows tensor methods to deal with highly
ill-conditioned or singular Jacobians during the iterative process.

From our experience with Xyce, tensor methods perform modestly on circuit simula-
tion problems, but our observation is that tuning algorithm parameters is a key ingredient to
success on these types of problems. In addition, very ill-conditioned and singular Jacobian
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Figure 3.7. Log-ratio of execution time on the Xyce comparator
circuit problem for the following methods: Newton-GMRES and
the modified Bouaricha method. Red bars extending below zero
favor Newton-GMRES and blue bars extending above zero favor
the tensor method.

matrices frequently turn up in these problems. Ultimately, this causes problems for New-
ton’s method, but it also caused problems for our implementation of Bouaricha’s method.
The reason is that we were still solving two linear systems with this matrix. When the Ja-
cobian was ill-conditioned, then the two solutions were accurate only to a limited number
of digits (which depends on the condition number). The tensor step is formed from a linear
combination of these two vectors of limited accuracy, and so some of the significant digits
may be lost, yielding a potentially spurious step.

The next chapter discusses a technique to avoid such difficulties associated with ill-
conditioned and (mildly) singular matrices. Unfortunately, we were not able to implement
this technique for testing on this class of difficult problems. We would expect to see better
performance provided that the rank of the Jacobian is (or near)n−1. If the rank deficiency
is greater, then a higher-order tensor term should be computed to account for the extra
missing information in the null space. Following the paradigm outlined in the next chapter,
additional rank-1 matrices may be added to the Jacobian to make it well-conditioned. With
this approach, we would expect to see a more robust and stable algorithm for dealing with
circuit simulation problems.
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There are several research questions left at this point to explore. We mention two fu-
ture extensions here. First, adaptive forcing terms like the form by Eisenstat and Walker
[20] may help improve robustness. Second, there is still the question of accuracy ofβ as a
function of linear solver toleranceη. If the two linear subproblems are solved very approx-
imately, then it is possible that a large value ofβ may be calculated, which could unduly
bias the tensor correction and yield a step far from the Newton direction.
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Chapter 4

Turning Point Algorithm

In this chapter, we present research on a modified turning point algorithm that works with
ill-conditioned and singular Jacobians. We first describe an approach that tensor methods
may use to deal with singular and ill-conditioned Jacobian matrices. We then extend that
idea to a general linear system and apply it to a turning point identification algorithm.

To be consistent with previous chapters, we will keep the subscriptk when discussing
the tensor model at iterationk in the nonlinear solver. Later in this chapter when we are
dealing strictly with a local model at the same iterationk, we will drop the subscriptk on
Jk, Fk, ak, andsk.

4.1 Singular and Ill-conditioned Jacobians

4.1.1 Tensor Methods

Tensor methods [57] incorporate second-order information in a localized model about some
current pointxk:

MT(xk +d) = Fk +Jkd+ 1
2Tkdd, (4.1)

whereTk ∈ Rn×n×n holds some second-order information computed from a secant approx-
imation; see section 3.2.1. Unlike local models that are strictly linear, (4.1) can still have a
single real root even if the Jacobian is singular, provided thatTk contains information that
is missing in the null space ofJk. The standard approach for solving the model in this case
is to use orthogonal transformations, as outlined in section 3.2.1.

Briefly, the solution of a rank-1 tensor model can be reduced to the solution of a system
of q quadratic equations in 1 unknown, plus the solution of a system ofn−q linear equa-
tions inn−1 unknowns; see [57]. Most oftenq = 1, but a singular Jacobian with a rank
deficiency greater than one will makeq > 1. In this case, the number of linear equations

58



is decreased by this rank deficiency from the normal case, and the number of quadratic
equations is increased correspondingly, leaving the number of variables in each system
unchanged.

The other approach for solving a rank-1 tensor model, what we will call the “reduction
method” and is used in Bouaricha’s method [9], solves two linear systems withJk to form
a reduced system of quadratic equations. Clearly, ifJk is singular, then the linear systems
are unsolvable and this method breaks down.

We outline an approach that makes the reduction method feasible for a singular (or
ill-conditioned) Jacobian under mild conditions. Once again, we will concentrate on the
rank-1 tensor model formed by a secant approximation as derived in section 3.2.1:

MT(xk +d) = Fk +Jkd+ 1
2ak(sT

k d)2. (4.2)

In the nonsingular case, the solution to (4.2) is found by solving two linear systems withFk

andak (or Fk−1 as we have shown before) as right hand sides. Then we form the quadratic
equation

q(β)≡ sT
k J−1

k Fk +β+ 1
2sT

k J−1
k akβ2

solve for the smallest magnitude real root, which we callβ∗. For this section, we consider
only the case of real roots; see section 3.2.1 for the minimizing case. Then the solution to
(4.2) is

dT =−J−1
k Fk− 1

2J−1
k akβ2

∗.

Clearly, this method breaks down whenJk is singular, but there can be problems whenJk is
ill-conditioned, too. These problems are caused by the accuracy of the two linear solutions
and the fact that they are added together. If they are of opposite signs, then there may be
cancellation of the accurate digits, leaving one with fewer (or no) accurate digits.

The approach to solving (4.2) whenJk is singular or ill-conditioned deals with modify-
ing the system such that the underlying system is unchanged. We start by adding a clever
form of zero,[aksT

k d−aksT
k d], and rearrange terms.

0 = Fk +Jkd+ 1
2ak(sT

k d)2

0 = Fk +Jkd+ 1
2ak(sT

k d)2 +[aks
T
k d−aks

T
k d]

0 = Fk +(Jk +aks
T
k )d+ 1

2ak(sT
k d)2−aks

T
k d

0 = Fk + J̃kd+ 1
2ak(sT

k d)2−aks
T
k d (4.3)

The matrixJ̃k ≡ (Jk + aksT
k ) is the original Jacobian plus a rank-1 matrix,aksT

k . It is this
rank-1 matrix that makes̃Jk better conditioned thanJk. We will comment later on condi-
tions that make it so.

We continue by noting that (4.3) may be simplified further by “completing the square”
of the last two terms. By adding another clever form of zero, this time[1

2ak− 1
2ak], the last
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two terms may be collected and written as a square:

0 = Fk + J̃kd+ 1
2ak(sT

k d)2−ak(sT
k d)+ [1

2ak− 1
2ak],

0 = Fk− 1
2ak + J̃kd+ 1

2ak(sT
k d)2−ak(sT

k d)+ 1
2ak,

0 = F̃k + J̃kd+ 1
2ak(sT

k d−1)2. (4.4)

Equation (4.4) is identical to our original system (4.2) because we have added nothing but
zeros to the system. Indeed, using these definitions,

J̃k ≡ Jk +aks
T
k ,

F̃k ≡ Fk− 1
2ak,

β̃∗ ≡ sT
k dT −1,

the model in (4.2) may be written as

MT(xk +d) = F̃k + J̃kd+ 1
2akβ̃2. (4.5)

Because (4.5) is identical to (4.2) in form, we may solve (4.5) using the reduction
method. That is, we form the quadratic equation

q(β̃)≡ sT
k J̃k
−1F̃k + β̃+ 1

2sT
k J̃k
−1akβ̃2

and find its smallest magnitude real rootβ̃∗. Then the root of both (4.2) and (4.5) is given
by

dT =−J̃k
−1F̃k− 1

2J̃k
−1akβ̃2

∗.

We now discuss the conditions that makeJ̃k have a lower condition number thanJk. We
start our analysis with the singular value decomposition (SVD) ofJk. Let Jk = UΣVT =
∑n

i=1uiσivi , whereU andV are unitary matrices with orthogonal columns andΣ is a diago-
nal matrix of singular valuesσ1≥ σ2≥ ·· · ≥ σn≥ 0. The condition number ofJk is given
by κ(Jk) = σ1

σn
. Thus, if the smallest singular valueσn is zero, then the matrix is singular

andκ(Jk) = ∞.

The rank-1 matrixaksT
k that is added toJk will add some amount to one or more of the

singular values ofJk. If ak is a multiple ofun andsk is a multiple ofvn, then the contribution
is purely in the last singular value and the condition number of

J̃k =
max(σ1,uT

n aksT
k vn)

min(σn−1,uT
n aksT

k vn)
.

In practice, it is never the case thatak is a multiple ofun, but there is some theory forsk.

An ideal tensor method [23] would construct the tensor termTk from exact second
derivatives as well as the null space ofJk. More precisely,sk would correspond tovn, the
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least singular vector ofJk, andak would beF ′′(xk)vnvn. Normally, this is too expensive
to compute so a practical approach uses a secant approximation to obtainsk andak. The
choice ofsk = xk− xk−1 approximately lies in the direction ofvn because the difference
between two consecutive iterates is likely to be along the null space when consecutive
iterates are in the funnel around the null space near the solution [23, 24]. Close to the
solution, the vectorF ′′(xk)vnvn is likely to be approached by ourak in (3.4).

Thus, one approximately hassk proportional tovn but no such condition onak. Provided
thatuT

n aksT
k vn 6= 0, then the condition number of̃J will no longer be infinite. In effect, the

rank-1 matrix boosts the smallest singular value ofJk, which makesJ̃k nonsingular. For
ill-conditioned matrices, it is likely, but not guaranteed, that the condition number will
improve.

4.1.2 General Linear Systems

We now apply this technique to general linear systems that are very ill-conditioned. In
keeping with our notation from all previous sections on nonlinear equations, where the
matrix is a Jacobian, we write the linear system asJx= b instead of the more traditional
Ax= b. For this discussion we assume thatJ ∈ Rn×n is either singular with rankn−1 or
very ill-conditioned with the smallest singular valueσn� σn−1. However, the approach
outlined here is generalizable to a larger rank-deficiency.

The approach to solving (4.2) whenJ is singular or ill-conditioned is similar to the
approach above. It is actually a variation of the Sherman-Morrison-Woodbury formula
[27]. A similar but unrelated idea is contained in the Interlocking Eigenvalue Lemma due
to Loewner (stated in [42]), which relates the eigenvalues of a symmetric matrixA to the
eigenvalues ofA plus a rank-1 matrixeieT

i , whereei is theith unit vector.

We start by choosing two vectorsu,v∈Rn such that their inner product with the small-
est left and right singular vectors ofJ (resp.) is nonzero. For simplicity we’ll assume that
u,v have unit length. Ideally we would likeu = un andv = vn. We also choose a scale
factorα and form the rank-1 matrixαuvT . Then we take its product with the unknownx,
add it to both sides of the linear equation, rearrange terms, and solve forx:

Jx = b,

Jx+αuvTx = b+αuvTx,

(J+αuvT)x = b+αuvTx,

J̃x = b+αuvTx,

x = J̃−1b+αJ̃−1u(vTx).

BecauseuvT provides information in the smallest singular vectors ofJ, the matrixJ̃ ≡
(J+ αuvT) is nonsingular and hopefully better conditioned thanJ. Later, we will discuss
issues for choosingα, u, andv to makeJ̃ better conditioned thanJ.
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Now, in a manner similar to the reduction method for solving a rank-1 tensor model,
we take the inner product of both sides withv and solve for the unknownβ≡ vTx,

vTx = vT J̃−1b+αvT J̃−1u(vTx)

β ≡ vTx =
vT J̃−1b

1−αvT J̃−1u

Finally, the solution to the linear system is given by

x = J̃−1b+αJ̃−1uβ (4.6)

where

J̃ ≡ J+αuvT ,

β ≡ vT J̃−1b

1−αvT J̃−1u
.

Some comments are in order. First, as mentioned above, the vectorsu andv must not
be orthogonal to the smallest singular vectors ofJ. If they are orthogonal, theñJ is no
better conditioned thanJ. Second, it is best to haveu andv close toun andvn. Third, the
scaling factorα is used to scale the contribution of this matrix so that the smallest singular
value ofJ is boosted betweenσ1 andσn−1. Fourth, this technique cannot be used to solve
Jx= b if J is singular. For such a system, there is either no solution or an infinite number
of solutions. However, even ifb is in the range ofJ, the denominator ofβ would be zero.
Last, this technique involves the solution of two linear systems with the same matrixJ̃ but
different right hand sides,b andu. The cost associated with solving two systems may be
amortized over a single loop with block linear solvers.

The benefit of this technique is that many iterative methods are adversely affected by a
large condition number of the matrix. Hence, preconditioning techniques have been devel-
oped to address these issues with linear systems and to help speed up convergence. This
technique is a different approach that may address many of the same issues.

4.2 Turning Point Identification

We turn our attention to an application of this technique for solving ill-conditioned linear
systems. In particular, the identification of turning points in physical systems involves
finding the point on a curve of a family of solutions to a physical problem such that the
Jacobian matrix has rankn−1.

More precisely, we are interested in a general physical problem described by the system
of nonlinear equationsF(x,λ), wherex is the state vector andλ is a parameter. We may
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trace out a family of solutions tox for a range of values ofλ. If the curve turns back on
itself, then there is a critical valueλ∗ that has only one solution. On one side ofλ∗ there are
two solutions and on the other side there are no solutions toF(x,λ). The pointλ∗ is called
a turning point, and the Jacobian at this point is singular with rank deficiency of one.

A system of nonlinear equations that explicitly defines a turning point may be written
down and solved:

F(x,λ) = 0, (4.7)

Jv = 0, (4.8)

φTv = 1. (4.9)

The first equation is the state equation of the physical problem. The second equation spec-
ifies that the Jacobian ofF(x,λ) with respect tox is singular with a null vectorv. The last
condition is a scalar equation to keepv away from the trivial solution ofv = 0. This is a
system of 2n+1 equations, which may be solved by Newton’s method:

 J 0 ∂F
∂λ

∂(Jv)
∂x J ∂(Jv)

∂λ
0 φT 0

∆x
∆v
∆λ

=−

 F
Jv

φTv−1

 (4.10)

4.2.1 Bordered Algorithm

In practice, it is difficult to solve (4.7)–(4.9) strictly by Newton’s method because some
entries of the full Jacobian matrix are difficult to calculate. We discuss a practical algorithm
in LOCA [54, 55] for solving this system. It is called a bordered algorithm, and it may be
derived from a block elimination procedure. We provide a brief outline of the algorithm
here; for more details see [54, 55];

The bordered algorithm involves four intermediate solves with the Jacobian matrix:

Ja = −F,

Jb = −∂F
∂λ

,

Jc = −∂(Jv)
∂x

a,

Jd = −∂(Jv)
∂x

b− ∂(Jv)
∂λ

.
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Then we may compute the Newton step with the four solutions toa,b,c, andd:

∆λ =
1−φTc

φTd
∆x = a+∆λb

∆v = c+∆λd−v

The JacobianJ grows more ill-conditioned and eventually singular as we approach the
turning point, but the(2n+1)× (2n+1) “system” Jacobian in (4.10) remains nonsingular.
Because there are four solves with an ill-conditioned matrix that is being driven to a sin-
gularity, the linear combination of these four solutions to form the Newton step would be
increasingly inaccurate.

4.2.2 Modified Bordered Algorithm

To address this issue of an increasingly ill-conditioned system, we propose solving the four
linear systems using the approach outlined in section 4.1.2. At the current stage of this
research, this technique only works with an iterative solver that solves each system only
approximately.

The approach involves adding a nonzero vector to both sides of the Newton equation to
facilitate a way to improve the conditioning of the matrix (the Jacobian) appearing in the
linear subproblems:uvT∆x

uvT∆v
0

+

 J 0 ∂F
∂λ

∂(Jv)
∂x J ∂(Jv)

∂λ
0 φT 0

∆x
∆v
∆λ

=−

 F
Jv

φTv−1

+

uvT∆x
uvT∆v

0

 . (4.11)

The solution to this problem is the same as if it were calculated by standard Newton’s
method.

Using the same bordering algorithm approach, we may solve (4.11) by solving smaller
subproblems with the same matrix. That is, we solve the four linear systems

J̃a = −F +uvTa

J̃b = −∂F
∂λ

+uvTb

J̃c = −∂(Jv)
∂x

a+uvTc

J̃d = −∂(Jv)
∂x

b− ∂(Jv)
∂λ

+uvTd

for a,b,c,d, where J̃ ≡ J + uv. In this case we letv equal the current estimate of the
null space vector being solved for in the turning point problem, and we chooseu to be a
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scaled approximation to the smallest left singular vector ofJ. We use the approximation
u= αJv/‖Jv‖, whereα is a scaling factor to make the condition number ofJ̃ be acceptable.
The actual value ofα is not important so long as it is not too high and not too low. Ideally,
α should be between the largest singular value ofJ and second smallest singular value of
J, i.e.,σ1 > α > σn−1.

We point out that for each linear system, the solution is implicitly defined, and one must
calculate its solution in the manner of section 4.1.2. That is, to solve fora,b,c,d, one also
needs the solution toJ−1u, or at least an approximation. Thus, this approach requires five
linear solves per Newton step.

Once the solutions fora,b,c,d have been computed, one forms the Newton step in the
standard way:

∆λ =
1−φTc

φTd
,

∆x = a+∆λb,

∆v = c+∆λd−v.

As a final remark, we consider why this technique works. We mentioned in the be-
ginning that this technique is only useful with iterative solvers that approximately solve a
system to a specified tolerance. It has not been fully analyzed why this is the case, but it is
related to the solver tolerance. The solution to each linear system computed by the modified
method is no more accurate than a standard solution. Thus, as the solver approaches the
turning point, each individual solution toa,b,c,d is increasingly less accurate. However,
the contribution byJ̃−1u is computed separately and used in each system. Hence, when
∆λ,∆x, and∆v are computed, it is believed that the numerical error related to the null space
direction cancels out, leaving an accurate Newton step.

4.3 Computational Results

This section describes a numerical experiment aimed at comparing the modified turning
point method with the original bordering method used in LOCA [54, 55]. We use both
approaches to solve for the turning point in the Bratu problem. The conclusions from
these results extend to other types turning point identification problems that we tested. We
performed all experiments in MATLAB .

The Bratu problem is a simplified model for nonlinear diffusion phenomena occurring,
for example, in semiconductors and combustion, where the source term is related to the
Arrhenius law for modeling exothermic reactions. The following version is taken from the
set of nonlinear model problems collected by Moré [43]. The problem is the nonlinear
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partial differential equation inu

−∇2u = λeu in Ω, u = 0 on∂Ω, (4.12)

where∇2 = ∑n
i=1∂2/∂x2

i is the Laplace operator,λ ∈ R is a parameter,Ω is the bounded
domain(0,1)× (0,1), and∂Ω the boundary ofΩ.

Problem (4.12) has a unique solution forλ ≤ 0, but forλ > 0, there may be zero, one,
or two solutions (cf., [26]). The critical valueλ∗ = 6.80812 is a turning point such that for
0 < λ < λ∗, problem (4.12) has two solutions; and forλ > λ∗, it has no solutions. Also,
the Jacobian at the limit point is singular with a rank ofn− 1, and asλ approaches the
limit point, the discretized problem becomes harder to solve. To investigate the effects
of ill-conditioning on the turning point algorithms, we used both the standard bordering
algorithm of [54] as well as our modified approach to solve for the turning pointλ∗.

When testing the Bratu problem, the initial approximate solution as well as the initial
null space vector was a scaled vector of ones on a uniform grid of size 31×31. We chose
an initial value ofλ = 3, which was far from the critical value.

The Laplace operator was discretized using centered differences (5-point stencil), and
we computed an analytic Jacobian at each step. We used GMRES [52] with a relative
tolerance of 10−4 for each linear subproblem, and the linear systems were solved without
a preconditioner although one could have been used. We used the current approximation
of the null space vector in our rank-1 augmentation matrix to the Jacobian for the modified
method.

Figure 4.1 presents the results of these tests, comparing the progress of each method by
residual norm (top plot) as well as the condition number of the Jacobian at each iteration
(bottom plot). Up to the fourth iteration, both methods perform virtually identically. After
that the original method diverges from the modified method, and we start to see a “see-saw”
motion of the original solver’s progress. This behavior is caused by the condition number
of the Jacobian matrix. As the solution becomes more accurate, the condition number is
larger because it is closer to the turning point. If the condition number is greater than say
1010, then the computed step is bad and takes us away from the exact solution. Thus, the
solver can only get so close to the turning point until the next (bad) step kicks it away again.

On the other hand, the modified method always deals with a matrix that is well con-
ditioned (roughly 103). Here the error in each linear system is determined largely by the
relative tolerance passed into GMRES (10−4), and the nonlinear step computed from the
linear combination of these five subproblems is much more accurate. These factors enable
the modified algorithm to find the turning point to within machine precision.

Figure 4.2 tabulates the total number of linear iterations for each step of the two al-
gorithms. Each nonlinear iteration on the x-axis in Figure 4.2 corresponds to the same
subproblem in Figure 4.1. Thus, for step 6 the condition number of the actual Jacobian
is roughly 1013, and the condition number of the effective Jacobian used in the modified
method is roughly 103.
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Figure 4.1. Comparison of turning point methods (residual norm
and condition number) on the Bratu problem: Original bordering
algorithm (�) and our modified method (◦). The solid lines in the
bottom plot track the condition number of the matrix used in the
linear solver (augmented Jacobian for the modified method). The
dashed line indicates the condition number of the actual Jacobian
(modified method).

It is evident that even though the modified method must solve five linear systems rather
than four like the original method, the condition number of the matrix makes a large differ-
ence in the overall efficiency. For instance, at step 6 our modified method needed only 134
total linear iterations versus 206 for the original method.

4.4 Discussion

This chapter outlined an approach for solving ill-conditioned linear systems. It is based on
a technique from tensor methods for dealing with ill-conditioned and singular Jacobians.

The main benefit of this modified approach is that it effectively lowers the condition
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number of the matrix used in a linear solver. For iterative solvers, such as GMRES [52],
the distribution of eigenvalues of the matrix (and consequently its condition number) plays
an important role in determining how many iterations are necessary to reach convergence
[28]. From our experience, as the condition number increases, the number of iterations
necessary to satisfy a fixed tolerance also increases. Thus, lowering the condition number
from say 1012 to 103 can improve the performance of an iterative solver. In a similar
approach, preconditioning techniques attempt to change the linear system to one that is
closer toIx = A−1b so that the eigenvalues are clustered around one, which also makes the
matrix better conditioned.

The modified approach has two principal disadvantages, namely that two linear systems
must be solved and that it may be difficult to determine an appropriate rank-1 matrix for a
general problem. The first disadvantage may be mitigated through the use of block linear
solvers.

More research is needed to determine the viability of this approach in practical applica-
tions. We have described one application by applying it to the turning point identification
algorithm, which conveniently computes the null vector.
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Chapter 5

Summary

The first objective of our research was to investigate Broyden’s method for use in large-
scale simulations. We implemented a parallel version and evaluated its applicability and
performance on reacting flow problems and circuit simulation problems. The important
finding was that Broyden’s method could be used as a replacement for Newton’s method
when the Jacobian required for Newton’s method either could not be evaluated or was inac-
curate. In this case, the rank-1 update vectors could approximate the missing information
as the iteration sequence progressed. This application of Broyden’s method can be seen as
a competitor to the Jacobian-free Newton-Krylov method since neither require a Jacobian.
The advantage for Broyden’s method is that it does not require an iterative linear solver.

Broyden’s method was also evaluated for efficiency. The results were mixed in that
some problems performed better with Newton’s method and others better with Broyden’s
method. In general, Broyden’s method was more efficient for systems that are dominated
by the Jacobian evaluation time and for transient simulations. Broyden’s method requires
fewer Jacobian evaluations than Newton’s method, thus enhancing run times for codes with
costly Jacobian evaluations. For transient simulations, Broyden’s method has a good initial
guess for each nonlinear solve and should only require one single Jacobian approximation
on the first step. This again saves time due to fewer Jacobian evaluations. The modified
Newton method was just as efficient as Broyden’s method on transient problems and is
much less complex to implement. Therefore, unless the Jacobian is unavailable of inac-
curate, we would recommend using a modified Newton method over Broyden’s method in
terms of efficiency.

The second objective of our research was to investigate tensor methods for solving a
number of difficult problems at Sandia. We implemented a variety of tensor methods and
investigated their performance and usefulness. The ability to use state-of-the-art, stand-
alone linear solvers in serial or in parallel without modification was a key requirement.
A secondary goal was to simplify these methods to make them more understandable and
accessible to researchers.
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Of the several tensor method implementations available, all but one need to access or
manipulate data structures that are inaccessible in many linear solver packages. This re-
quirement effectively narrowed the field to Bouaricha’s tensor-Krylov method. However,
Bouaricha’s method neglects a term in certain situations, which is theoretically undesir-
able, and because it solves two linear systems per iteration, it could require up to twice
as much execution time as other methods. We have devised a modified Bouaricha method
that is more satisfying from a theoretical standpoint and can potentially exploit block linear
solvers for faster performance. Because block linear solvers are not yet widely available,
we analyzed the predicted performance of a block implementation.

The modified Bouaricha method proposed here eliminates an argument against Bouaricha’s
method, namely that it neglects a term in certain circumstances. Moreover, the modified
Bouaricha method retains the capability of using stand-alone linear solvers, including all
of their associated technology, such as preconditioning and restarting techniques. We have
also proposed using block linear solvers and investigated their expected worst-case perfor-
mance.

Our numerical results suggest that tensor methods clearly have some advantages over
Newton-GMRES method, especially as the problem becomes more difficult to solve or the
Jacobian grows more ill-conditioned. In addition, the modified Bouaricha method has a
potential advantage over other tensor method implementations that makes it likely to be
beneficial on some important problems. Specifically, it modifies the step so that in cases
where the tensor model does not have a root, which usually occurs far from the solution
where the secant approximation may be poor and a Newton step may be better, it attenuates
the second-order information and changes the direction to be closer to the Newton step.

A third objective of our research was to apply tensor methods to the turning point al-
gorithms used in LOCA. Because a turning point is located at a point where the Jacobian
is singular, tensor methods seemed a natural fit for this problem. Over the course of our
research with the turning point problem, the tensor method did not produce the expected
breakthroughs. The reason is that while the Jacobian of the set of state equations is sin-
gular, the Jacobian of the overall system of equations that describes the turning point is
nonsingular. Thus, there is no theoretical advantage for a tensor method in this case.

Instead, over the course of this research, we developed a novel technique for dealing
with ill-conditioned linear systems. By adding a rank-1 matrix to the linear system matrix,
one may change a linear system to one that is better conditioned and more amenable to
iterative solvers.

We applied this technique to the turning point identification algorithm and developed a
modified method. The standard bordering algorithm, which solves four subproblems with
the Jacobian and forms the Newton step from their solution, is plagued by an increasingly
ill-conditioned Jacobian matrix. Ill-conditioned matrices cause the solution to blow up in
the direction of the null vector and cause the standard algorithm to be unstable the closer
it approaches the turning point. On the other hand, our modified method was stable and
robust. It was able to solve the problem to within machine precision, which meant that

70



the Jacobian was effectively singular. For all iterative solves, instead of dealing with an
ill-conditioned matrix, our method dealt with a nicely conditioned matrix.

We believe that more research is needed to understand the nuances of our modified
turning point identification algorithm. In addition, we believe there are more potential ap-
plications of this modified approach to solving ill-conditioned linear problems. Lowering
the condition number of a matrix involved in a linear solve is a powerful idea. Our ex-
perience has shown us that iterative solvers require more iterations as a matrix becomes
more ill-conditioned, and this technique is a potential form of “preconditioning” for such
systems.
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