

SANDIA REPORT

SAND2003-2643
Unlimited Release
Printed July 2003

Algorithms and Analysis for Underwater
Vehicle Plume Tracing

Raymond H. Byrne, Steven E. Eskridge, John E. Hurtado and Elizabeth L. Savage

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2003-2643
Unlimited Release
Printed July 2003

ALGORITHMS AND ANALYSIS FOR
UNDERWATER VEHICLE PLUME TRACING

Raymond H. Byrne and Steven E. Eskridge
Sandia National Laboratories
MS 0501, PO Box 5800

Albuquerque, NM 87185-0501
email: rhbyrne@sandia.gov

John E. Hurtado and Elizabeth L. Savage
Department of Aerospace Engineering

Texas A&M University
College Station, TX 77843-3141
email: hurtado@aero.tamu.edu

Abstract

The goal of this research was to develop and demonstrate cooperative 3-D plume
tracing algorithms for miniature autonomous underwater vehicles. Applications for this
technology include Lost Asset and Survivor Location Systems (L-SALS) and Ship-in-
Port Patrol and Protection (SP3). This research was a joint effort that included Nekton
Research, LLC, Sandia National Laboratories, and Texas A&M University. Nekton
Research developed the miniature autonomous underwater vehicles while Sandia and
Texas A&M developed the 3-D plume tracing algorithms. This report describes the
plume tracing algorithm and presents test results from successful underwater testing
with pseudo-plume sources.

This work was funded by the Defense Advanced Research
Projects Agency (DARPA) under contract DE-AC04-94AL85000

3

Contents

List of Figures 6

1 Introduction 8

2 3-D Plume Tracing Algorithm 8

2.1 Determining the Unknown Coefficients for Ill-Conditioned Cases - Method
I . 11

2.2 Determining the Unknown Coefficients for Ill-Conditioned Cases - Method
II . 12

3 Modeling of Light Data 12

4 Standard MATLAB Simulation Code 13

5 Sensor Measurement Dependence on Vehicle Orientation 13

6 Sensor Measurement Noise 16

7 Robot Position Error 22

8 Navigational Error 22

9 Software Implementation 26

10 Test Results 27

11 Summary 29

12 Acknowledgments 34

4

A MATLAB M-FILES 36

A.1 batchsimu.m . 36

A.2 getneighbors.m . 36

A.3 getnewpos.m . 36

A.4 getupdate.m . 37

A.5 input r2.m . 38

A.6 input r2depend.m . 39

A.7 local3D.m . 40

A.8 Local3DSN.m . 43

A.9 plotcompare.m . 46

A.10 r2depend.m . 48

A.11 r2.m . 48

5

List of Figures

1 Miniature Robotic Vehicle . 9

2 Nekton Research, LLC Miniature Autonomous Underwater Vehicle . . . 9

3 Typical result from Local3D.m. The source is located at (xs, ys, zs) =
(0, 0, 0). Ten robots cooperate to localize the source. Six of the ten robots
have converged upon the source after 25 update steps. 14

4 This illustration shows the dependence of a light sensor measurement on
vehicle orientation. 15

5 Position updates of ten robots. Black traces correspond to sensor read-
ings and algorithm based on G = k/R2. The red traces correspond to
sensor readings based on G = k| sin γ|/R2, but an algorithm based on
G = k/R2. This essentially removes (ignores) the dependence on vehicle
orientation. 17

6 Two initial position configurations of ten robots for sensor noise study
(Surround Configuration Left and Corner Configuration right). The ini-
tial positions are marked with the x. The initial depth (not shown) was
set at -2 meters from the surface, or 8 meters from the bottom. 18

7 Typical position updates of ten robots in Surround Configuration. (±5%
sensor noise added to the true readings.) 20

8 Typical position updates of ten robots in Corner Configuration. (±5%
sensor noise added to the true readings.) 21

9 Typical position updates of ten robots in Surround Configuration. (±0.25
meters error added to the true position readings.) 23

10 Typical position updates of ten robots in Corner Configuration. (±0.25
meters error added to the true position readings.) 24

11 Typical position updates for robots in Surround Configuration with 10◦

heading error. 25

12 Typical position updates for robots in Surround Configuration with 20◦

heading error. 26

6

13 Typical position updates for robots in Surround Configuration with 30◦

heading error. 27

14 Typical position updates for robots in Corner Configuration with 10◦

heading error. 28

15 Typical position updates for robots in Corner Configuration with 20◦

heading error. 28

16 Typical position updates for robots in Corner Configuration with 30◦

heading error. 29

17 Test Results - Two Vehicles, Pseudo-Plume 30

18 Test Results - Pseudo-plume at depth of 1 meter 31

19 Test Results - Pseudo-plume at depth of 3 meters 32

20 Test Results - Pseudo-plume at depth of 5 meters 33

7

1 Introduction

The goal of this research was to develop and demonstrate cooperative 3-D plume tracing
algorithms for miniature autonomous underwater vehicles. Applications for this tech-
nology include Lost Asset and Survivor Location Systems (L-SALS) and Ship-in-Port
Patrol and Protection (SP3). This research was a joint effort that included Nekton
Research, LLC, Sandia National Laboratories, and Texas A&M University. Nekton
Research developed the miniature autonomous underwater vehicles while Sandia devel-
oped the 3-D plume tracing algorithms. The 3-D plume tracing algorithms are based on
a 2-D plume tracing algorithm developed at Sandia for miniature mobile robots [1, 2].
Johnny Hurtado at Texas A&M was involved with the original 2-D work while at Sandia
and helped with the 3-D algorithm development. Additional papers describing various
aspects of the algorithm have been submitted to several journals [3, 4, 5].

The 2-D plume tracing algorithm was originally designed for locating chemical,
nuclear, or biological plumes using teams of miniature mobile robots. The algorithms
were successfully demonstrated in 1999 on teams of miniature mobile robots. The robots
employed temperature sensors to seek out a temperature source generated with dry ice.
A picture of the mobile robots appears in Figure 1. The goal of this project was to
develop a 3-D plume tracing algorithm based on the successful 2-D algorithm and then
demonstrate the 3-D algorithm on Nekton’s autonomous underwater vehicle. A picture
of Nekton’s autonomous underwater vehicle appears in Figure 2. The 3-D plume tracing
algorithms were successfully demonstrated in the Spring of 2003 using pseudo-plume
sources. The pseudo-plume was a quadratic function F (x, y, z) ≈ K1/(x2+y2+z2+K2)
that realistically models many 1/r2 plume sources.

The plume tracing algorithm is based on a quadratic estimation of the plume data.
The robots then use this approximation to calculate a search direction. Each robot,
or agent, has a table of plume data which consists of (x, y, z, f) data, where f is the
plume amplitude sampled at (x, y, z). The table consists of data gathered by the robot
as well as information received from other robots. Each agent may have a drastically
different table of data depending on the type of communications (local or global) and
the location of the agent. There is no centralized control. Each robot independently
calculates a search direction based on its table of sensor data.

A description of the 3-D plume tracing algorithm appears in the next section.

2 3-D Plume Tracing Algorithm

The central idea behind our cooperative localization method is to represent the true
function with a local quadratic approximation. The control law for the ith robot is then

8

Figure 1: Miniature Robotic Vehicle

Figure 2: Nekton Research, LLC Miniature Autonomous Underwater Vehicle

9

based on the quadratic approximation.

In 3-dimensional space, a local quadratic approximation to the true function for the
ith robot reads

F (x, y, z) ≈ a0 + a1(x− xi) + a2(y − yi) + a3(z − zi)
+ a4(x− xi)(y − yi) + a5(x− xi)(z − zi) + a6(y − yi)(z − zi)
+
1

2
a7(x− xi)2 + 1

2
a8(y − yi)2 + 1

2
a9(z − zi)2.

In this equation, F (x, y, z) is the true function value as a function of (x, y, z), the triple
(xi, yi, zi) represents the location of the ith robot, and aj are unknown coefficients that
define the quadratic approximation. Notice that the unknown coefficients aj appear
linearly in the quadratic approximation. This allows us to write an equation of the
above type for every neighboring robot and assemble the equations as a linear system
of equations of the form

Da = f

Here, D is the coefficient matrix, a is a vector of unknown coefficients, and f is the
data vector. More specifically, considering the jth neighboring robot, we have

Fj = F (xj , yj , zj) ≈ a0 + a1(xj − xi) + a2(yj − yi) + a3(zj − zi)
+ a4(xj − xi)(yj − yi) + a5(xj − xi)(zj − zi) + a6(yj − yi)(zj − zi)
+
1

2
a7(xj − xi)2 + 1

2
a8(yj − yi)2 + 1

2
a9(zj − zi)2.

So f becomes a column vector with entries {F1, F2, . . . , Fp}, where p is the number of
neighboring robots. The vector a is a column vector with entries {a0, a1, . . . , a9}. And
the matrix D, dimensioned p × 10, has the relative robot positions as coefficients for
each of the p equations. That is, the jth row of the matrix D reads

D(j, :) = {1, (xj − xi), (yj − yi), (zj − zi), (xj − xi)(yj − yi),
(xj − xi)(zj − zi), (yj − yi)(zj − zi), (xj − xi)2, (yj − yi)2, (zj − zi)2}.

Notice that because there are ten unknown coefficients we require at least ten neigh-
boring robots, or ten valid sensor readings which may come from a single robot provided
the robot is able to utilize memory to store previous readings. The unknown coefficients
a are determined from the linear system of equations Da = f using the principle of least
squares, which a robot’s micro controller can perform using QR factorization. This will
be discussed further subsequently.

Once the coefficients that define the quadratic model are computed, the update for
the ith robot is determined from equating the gradient of the function approximation

10

to zero. This leads to the position update equation

xi,new yi,new zi,new
T
= xi,old yi,old zi,old

T

+
1

∆

 a8a9 − a26 −a4a9 + a5a6 a4a6 − a5a8
−a4a9 + a5a6 a7a9 − a25 −a7a6 + a4a5
a4a6 − a5a8 −a7a6 + a4a5 a7a8 − a24

a1
a2
a3

 ,
where

∆ = a7a8a9 − a7a26 − a24a9 + 2a4a5a6 − a25a8.

2.1 Determining the Unknown Coefficients for Ill-Conditioned Cases
- Method I

In the previous section we arrived at the linear equation Da = f which must be solved
to determine the unknown coefficients a. The coefficients a define the local quadratic
approximation of the true function for the ith robot. A straightforward QR factorization
can be used if the matrix D is well-conditioned, which will happen provided that the
jth positions are sufficiently separated from the ith positions. Unfortunately, the matrix
D can become ill-conditioned under innocent situations. For example, if the jth and
ith positions all occur in a constant z plane, then there is no z dependence in the data
and the matrix D will have a rank less than 10. This situation should be identified
before the coefficients a are determined from Da = f . One method to identified this
situation is to perform a singular value decomposition on the matrix D. Indeed, the
Total Least Squares (TLS) method can be used to clearly identify which columns of D
are dependent.

The TLS method considers errors in a model (matrix D) as well as errors in the
data vector f . Traditional least squares (LS) only considers errors in the data vector
f . The basic TLS solution is given by

aTLS = (D
TD − σ211I)−1DT f (1)

where σ11 is the 11th singular value of the augmented matrix [D; f], which has dimension
p× 11. When D is rank-deficient, the nonzero entries of v11, which represents the 11th

right singular vector (or the 11th column of the right singular matrix) determine which
columns of D are dependent. These columns of D, and appropriate coefficients in a,
can be discarded to produce a reduce model of the plume. For example, if the jth and
ith positions all occur in a constant z plane, then the 10th entry in v11 is nonzero, which
corresponds to the z2 coefficient a9. Consequently, there is no quadratic z dependence
and columns [4,6,7,10] from D are removed, whereas columns [1,2,3,5,8,9] are retained.
The reduced plume model is then a quadratic function of x and y only.

The reduced problem is written as Drar = f . This system of linear equations can
now be solved for the unknown coefficients ar using a QR factorization, or a singular

11

value decomposition (SVD) method, or a TLS method on a robot’s micro controller.
The unknown coefficients ar are then used to compute the position update for the ith

robot.

2.2 Determining the Unknown Coefficients for Ill-Conditioned Cases
- Method II

Another approach to handling ill-conditioned data is to check the condition of the D
matrix when solving the matrix equation

Da = f (2)

where D is the coefficient matrix, a is the vector of unkown coefficients, and f is the
data vector. If the solution is calculated using a singular value decomposition, which
is the most robust numerical approach, the condition number C(D) is easily calculated
and defined by

C(D) =
σ1
σN

(3)

where σ1 is the largest singular value and σN is the smallest singular value. As the
condition number grows larger, the quality of the solution becomes questionable. The
most common numerical problem encountered during field testing was a lack of diver-
sity in depth data for the 3-D case. Rather than looking at the depth data, the 3-D
algorithm was modified to return the condition number as well as the search direction.
By monitoring the condition number, the robot can switch to the 2-D algorithm if the
data does not have sufficent depth diversity. Another advantage of monitoring the con-
dition number is that it will also catch other numerical problems (e.g. 3-D data in a
plane). The condition number was also returned for the 2-D algorithm to catch poten-
tial numerical problems in the 2-D case (e.g. data in a straight line). This approach
was implemented on the vehicles to handle numerical problems that can be encountered
with typical sensor data.

The next section describes the light plume model.

3 Modeling of Light Data

In our work, we specifically considered underwater vehicles tasked with localizing a
light source. We assumed that the light intensity varies from a source as the function
G(x, y, z) = k/R2, where R2 = (x−xs)2+(y−ys)2+(z−zs)2, k is some constant, and the
triple (xs, ys, zs) is the unknown source location. G(x, y, z) is the value that a vehicle
sensor oriented directly toward the source would measure. Because the cooperative

12

localization method is based on a local quadratic approximation, we inverted the sensor
reading F (x, y, z) = 1/G(x, y, z) and approximated the inverted reading F by a local
quadratic approximation. The steps to determining a robot position update, as outlined
in the previous section, were carried out using the inverted sensor reading F .

4 Standard MATLAB Simulation Code

The 3-D localization algorithm was programmed in MATLAB. All MATLAB m-files
developed for this project appear in Appendix A. The main simulation filename is
Local3D.m. Figure 3 shows a typical result from this simulation code. In this example,
ten robots were placed in a volume. The source was located at the position (xs, ys, zs) =
(0, 0, 0). The upper left plot shows the movement of the ten robots in 3-dimensional
space; the upper right plot shows movement in the (x, y) plane; and the bottom plots
show movement in the (y, z) and (x, z) planes. The plot shows that after 25 update
steps, six of the ten robots have converged upon the source. The simulation was halted
after 25 steps because, if not, then all ten robots would converge to the solution and the
leading matrix D would become singular. In practice, this type of singularity condition
is avoided because two robots can not physically occupy the same location.

Simulation Comments:

1. The results are obtained by typing [x,y,z]=Local3D(’r2’,25) at the MATLAB
command prompt.

2. The output vectors of this function are the new x, y, z positions of all ten robots.
3. The first input of this function ’r2’ is the filename that provides a robot’s sensor
reading depending on its position.

4. The second input of this function 25 indicates the number of update steps to be
performed.

5. There are MATLAB files that support Local3D.m. These include getneighbors.m,
getnewpos.m, and getupdate.m.

6. The files to run this simulation are found in the folder SimuA

5 Sensor Measurement Dependence on Vehicle Orienta-
tion

The measurement that a light sensor records is truly dependent on a vehicle’s orienta-
tion. This was ignored in the previous discussion and simulation. If the vehicle pitch

13

-50
0

50

-50
0

50
-10

0

10

x

Robot movement is x to o

y

z

-50 0 50
-60

-40

-20

0

20

40
Robot movement is x to o

x

y

-50 0 50
-2

0

2

4

6
Robot movement is x to o

y

z

-50 0 50
-2

0

2

4

6
Robot movement is x to o

x

z

Figure 3: Typical result from Local3D.m. The source is located at (xs, ys, zs) = (0, 0, 0).
Ten robots cooperate to localize the source. Six of the ten robots have converged upon
the source after 25 update steps.

14

sensor

pitch 0
yaw anything

β
α

=
=

(), ,x y z

()2 2arctan ,z x yγ = +
source

Figure 4: This illustration shows the dependence of a light sensor measurement on
vehicle orientation.

angle β is held to equal zero, then the sensor reading is given by G(x, y, z) = k| sin γ|/R2
(see Figure 4). This means that the sensor reading is truly a vector quantity, which
is different from our previous temperature localization studies that focused on scalar
quantities only.

To modify the sensor reading so that it appears as a scalar quantity, we note that if
a vehicle is close to the source, then sin γ ≈ 1. This motivated us to perform simulations
to study the following:

Suppose the dependence on vehicle orientation was ignored and the sensor
reading was treated as G = k/R2 even though the true sensor reading is
given by G = k| sin γ|/R2. Then, how far away can a vehicle be from
the source so that the algorithm is not too affected by this modification?
Restated, how far away can a vehicle be from an unknown source location
such that the localization method based on F (x, y, z) = 1/G(x, y, z), where
G = k/R2, still works well even though the true readings are expressed by
G = k| sin γ|/R2?

Our simulations showed that the vehicles could be up to 30 to 40 meters away and
the localization method still works well. The consequence is that the number of update
steps that the robots need to localize the source increases because of the modification.

An example is shown in Figure 5. The first plot shows the initial positions of the

15

ten robots in the (x, y) plane. Some of the vehicles begin more than 30 meters away
from the source. In the other three plots, the black traces are the simulation results
using G = k/R2 as the sensor readings (i.e., not accounting for vehicle orientation)
and using the algorithm based on this. The red traces are the simulation results using
G = k| sin γ|/R2 as the sensor readings (i.e., accounting for vehicle orientation) but
using the algorithm based onG = k/R2. The black traces show the vehicles immediately
heading directly toward the unknown source location; The red traces do not show this.
The red traces do show, however, that after the first few position updates, the vehicles
indeed begin heading toward the unknown source location. The black traces are shown
for 12 position updates, whereas the red traces are shown for 20 position updates. As
previously mentioned, the primary consequence of the modification is that the number
of update steps that the robots need to localize the source increases.

Simulation Comments:

1. The modified results, wherein the dependence on vehicle orientation is accounted
for in the sensor reading but ignored in the localization algorithm, are obtained by
typing [x,y,z]=Local3D(’r2depend’,20) at the MATLAB command prompt.
Notice that the algorithm is the same (Local3D.m).

2. The input file, however, has changed to ’r2depend’. This input file accounts for
the sensor dependence on vehicle orientation.

3. The file ’r2depend.m’ is in the folder SimuA

6 Sensor Measurement Noise

We performed numerical experiments to determine the influence of sensor noise on the
localization method. We considered a pool measuring 50× 50× 10 meters and a team
of ten robots. We considered two different robot initial position configurations. In the
first configuration, the robots essentially surround the unknown source location. This
configuration is referred to as the Surround Configuration. In the second configuration,
the robots begin in one corner of an area. This configuration is referred to as the Corner
Configuration. The two different initial position configurations are shown in Figure 6.

For the numerical simulations, the robots were given initial conditions like those
above but with an additional random initial position perturbation of up to one meter.
The sensor noise level was set to equal a percent of the true value. As an example, for
a 1 percent noise level, a sensor reading would fall between (100 ± 1)% of the actual
(true) value. The cooperative algorithm was set to run for 50 position updates, with a
maximum distance per update of 0.5 meters in the x, y, or z directions.

16

0
20

40

0
20

40
0

5

10

x

Robots 1 and 2

y

z

0
20

40

0
20

40
0

5

10

x

Robots 5 and 6

y

z

-50
0

50

-20
0

20
0

5

10

x

Robots 9 and 10

y

z

0 10 20 30
0

10

20

30

40

50
Robot initial positions in the (x,y) plane

x

y

Figure 5: Position updates of ten robots. Black traces correspond to sensor readings
and algorithm based on G = k/R2. The red traces correspond to sensor readings based
on G = k| sin γ|/R2, but an algorithm based on G = k/R2. This essentially removes
(ignores) the dependence on vehicle orientation.

17

-20 0 20

-10

0

10

Robot movement is x to o

x

y

0 10 20
0

5

10

15

Robot movement is x to o

x

y

Figure 6: Two initial position configurations of ten robots for sensor noise study (Sur-
round Configuration Left and Corner Configuration right). The initial positions are
marked with the x. The initial depth (not shown) was set at -2 meters from the surface,
or 8 meters from the bottom.

18

The source was located at the (x, y, z) position (0, 0, 0). To study the results, we
calculated and recorded the distance of the center-of-mass (CM) of the robot team from
the light source. We calculated this for many simulations for each initial robot position
configuration. The position of the CM from the source location represents the mean
distance from the source. We also recorded the closest and furthest robot distances
from the source.

The results for the Surround Configuration are listed in Table 1 and a typical result
is shown in Figure 7. Incidentally, the robots quit updating their positions after ap-
proximately 48 update steps. The reason is that the robots were not allowed to collide
with one another, consequently, the robots would get “locked” in a configuration after
a robot found the source. A locked configuration is then the final configuration, like
that shown in Figure 7. The table indicates that the results (CM distance, closest robot
distance, and furthest robot distance) did not depend on sensor noise: the robots found
the source and ended in very similar final “locked” configurations.

The results for the Corner Configuration are listed in Table 2 and a typical result
is shown in Figure 8. For this case, the robots quit updating their positions after
approximately 35 update steps because they achieved a “locked” configuration. The
table indicates that the results (CM distance, closest robot distance, and furthest robot
distance) are only slightly dependent on sensor noise: the robots found the source and
the average distance of the furthest robot is slightly more as more sensor noise is added.

Sensor Avg Distance of CM Avg Distance of Avg Distance of
Noise from source closest robot furthest robot
(%) (m) (m) (m)

0 0.9744 0.1714 1.7439
5 0.9655 0.0934 1.7365
10 0.9643 0.1028 1.7457

Table 1: Effects of sensor noise with initial Surround Configuration. These are average
values of the simulations.

Sensor Avg Distance of CM Avg Distance of Avg Distance of
Noise from source closest robot furthest robot
(%) (m) (m) (m)

0 1.7435 0.2141 3.0771
5 1.8330 0.0500 3.2518
10 1.8974 0.0361 3.5291

Table 2: Effects of sensor noise with initial Corner Configuration. These are average
values of the simulations.

Overall, the results indicate that sensor noise does not greatly influence the ability of

19

-50
0

50

-20
0

20
-10

0

10

x

Robot movement is x to o

y

z

-40 -20 0 20
-20

-10

0

10

20
Robot movement is x to o

x

y

-20 0 20
-5

0

5

10
Robot movement is x to o

y

z

-40 -20 0 20
-5

0

5

10
Robot movement is x to o

x

z

Figure 7: Typical position updates of ten robots in Surround Configuration. (±5%
sensor noise added to the true readings.)

20

0
10

20

-20
0

20
-10

0

10

x

Robot movement is x to o

y

z

0 10 20
-5

0

5

10

15

20
Robot movement is x to o

x

y

-10 0 10 20
-5

0

5

10
Robot movement is x to o

y

z

0 10 20
-5

0

5

10
Robot movement is x to o

x

z

Figure 8: Typical position updates of ten robots in Corner Configuration. (±5% sensor
noise added to the true readings.)

21

the localization method to find the source. The robots did take longer to converge to the
source when they started in the Surround Configuration (48 update steps) than when
they started in the Corner Configuration (35 update steps). This can be witnessed by
the robot trajectories. In the initial Surround Configuration the robots first move in an
almost horizontal plane before they begin to dive. In the initial Corner Configuration,
the robots begin to dive as they move toward the source.

7 Robot Position Error

We performed numerical experiments to determine the influence of robot position er-
ror on the localization method. We considered the same two robot initial position
configurations (Surround and Corner).

The robot position error was added to the x and y position only because the z
(depth) measurements are typically very accurate. We considered errors ranging from
0 meters in x and y to 1 meter in x and y. The cooperative algorithm was set to run
for 80 position updates, with a maximum distance per update of 0.5 meters in the x,
y, or z directions.

As before, the source was located at the (x, y, z) position (0, 0, 0) and we calculated
and recorded the distance of the center-of-mass (CM) from the source, and the closest
and furthest robot distances from the source.

The results for the Surround Configuration are listed in Table 3 and a typical result
is shown in Figure 9. The results for the Corner Configuration are listed in Table 4 and a
typical result is shown in Figure 10. Overall, the results indicate that the performance
of the localization method is dependent on robot position error. This is especially
apparent at the 1 meter position error level. We emphasize that it is the performance
of the localization method that suffers. That is, from 0 meter error to 0.5 meter error,
the average distance of the closest robot indicates that the source has been nearly
localized, but the distance of the furthest robot is significant indicating that a robot
(or two) is still far away.

8 Navigational Error

We performed numerical experiments to determine the influence of robot navigation
error on the localization method. We considered the same two robot initial position

22

Position Avg Distance of CM Avg Distance of Avg Distance of
Error from source closest robot furthest robot
(m) (m) (m) (m)

0.0 1.0743 0.0705 2.1043
0.25 2.4574 1.3136 4.1251
0.5 3.5261 1.4422 6.6741
1.0 12.2822 6.1496 20.1739

Table 3: Effects of position noise with initial Surround Configuration. These are average
values of the simulations.

-50
0

50

-20
0

20
-10

0

10

x

Robot movement is x to o

y

z

-50 0 50
-20

-10

0

10

20
Robot movement is x to o

x

y

-20 0 20
-5

0

5

10
Robot movement is x to o

y

z

-50 0 50
-5

0

5

10
Robot movement is x to o

x

z

Figure 9: Typical position updates of ten robots in Surround Configuration. (±0.25
meters error added to the true position readings.)

23

Position Avg Distance of CM Avg Distance of Avg Distance of
Error from source closest robot furthest robot
(m) (m) (m) (m)

0.0 1.7470 0.0193 3.0423
0.25 2.0529 0.7228 4.0736
0.5 4.5930 1.8751 8.8456
1.0 13.3710 6.2784 25.3038

Table 4: Effects of position error with initial Corner Configuration. These are average
values of the simulations.

-20
0

20

-20
0

20
-10

0

10

x

Robot movement is x to o

y

z

-10 0 10 20
-5

0

5

10

15

20
Robot movement is x to o

x

y

-10 0 10 20
-5

0

5

10
Robot movement is x to o

y

z

-10 0 10 20
-5

0

5

10
Robot movement is x to o

x

z

Figure 10: Typical position updates of ten robots in Corner Configuration. (±0.25
meters error added to the true position readings.)

24

configurations (Surround and Corner).

Heading error can be best visualized by considering a robot commanded to travel in
a straight line. The error introduced will cause the robot to deviate from its intended
path. The further the robot travels the greater the deviation. A larger error will mean
that the robot deviates faster from the path. We have assumed that the system can
identify the position of each robot exactly. Because of this assumption, the heading
error is harmless. Although the robot will not arrive at the exact location specified by
the algorithm update, the position sensors will be able to locate the new (deviated)
position and calculate the next update using this information. The path a robot will
take to get to the source will be slightly longer than without navigation error.

Figures 11 through 13 show typical robot updates with heading errors ranging from
10◦ to 30◦. The robots begin in a Surround Configuration. The heading error cause
the robots to deviate from their intended path, but because the the robots can identify
their true positions the robots are still able to locate the source.

−20 −15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15
Overhead View, Robot movement is x to o

x

y

−20 −15 −10 −5 0 5 10 15
0

1

2

3

4

5

6

7
Side View, Robot movement is x to o

y

z

Figure 11: Typical position updates for robots in Surround Configuration with 10◦

heading error.

Figures 14 through 16 show typical robot updates with heading errors ranging from
10◦ to 30◦ when the robots begin in a Corner Configuration. As with the Surround
Configuration, the heading error cause the robots to deviate from their intended path,
but because the the robots can identify their true positions the robots are still able to
locate the source.

25

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15
Overhead View, Robot movement is x to o

x
y

−15 −10 −5 0 5 10 15
0

1

2

3

4

5

6

7
Side View, Robot movement is x to o

y

z

Figure 12: Typical position updates for robots in Surround Configuration with 20◦

heading error.

9 Software Implementation

The 3-D and 2-D plume tracing algorithms were incorporated as functions in a c-callable
libray, library.lib, for the Texas Instruments 671x digital signal processor (DSP) family.
The robot stores sensor data in a sorted linked list that is sorted by sensor value. This
list includes local sensor data as well as sensor data received from other robots. Every
time the algorithm is called, the “best” 20 sensor data points are loaded into a global
array that contains (x, y, z, sensor) data. The search algorithm is invoked by calling
one of the library functions listed below:

double xpUpdate_3D() //3-D search algorithm

double xpUpdate_2D() //2-D search algorithm

Both the 2D and 3D algorithms return the condition of the D matrix to check for
numerical problems and provide a measure of confidence in the result. The 3D algorithm
is usually called first. If the condition number is unacceptable, then the 2D algorithm
is called. The 2D algorithm is inherently more robust because the determinant of the
2D system is much larger than the determinant of the 3D system (det = λi where λi
are the eigenvalues - the eigenvalues of the plume are usually small and a function of
the plume shape so for the same plume the 3D determinant is smaller).

26

−15 −10 −5 0 5 10 15 20
−20

−10

0

10

20
Overhead View, Robot movement is x to o

x

y

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

5

6

7
Side View, Robot movement is x to o

y

z

Figure 13: Typical position updates for robots in Surround Configuration with 30◦

heading error.

The search algorithm returns the search direction via three global variables:

xpos_new //desired x-pos

ypos_new //desired y-pos

zpos_new // desired z-pos (depth)

The desired search vector is fed into the vehicle control system which steers the vehicle
in the proper direction.

10 Test Results

Robot testing was performed by Nekton. All tests were performed with a pseudo plume
of the form F (x, y, z) ≈ K1/(x2 + y2 + z2 +K2). Test data is shown in Figure 17 for
a test run with two vehicles in the water. Test results for three vehicles are shown in
Figures 18 - 20. For both test cases the robots successfully located the plume source.
These results are representative of the test results obtained on numerous test runs. The
periodic rise to the surface is intentional - this allows the robots to periodically obtain a
GPS position fix and to communicate with the base station. This capability was added
to replace the acoustic communications and position location system that Woods Hole
Oceanographic Institute was unable to successfully develop. In many respects, the

27

−30 −25 −20 −15 −10 −5 0 5
−30

−25

−20

−15

−10

−5

0

5
Overhead View, Robot movement is x to o

x

y

−30 −25 −20 −15 −10 −5 0 5
0

1

2

3

4

5

6

7
Side View, Robot movement is x to o

y

z

Figure 14: Typical position updates for robots in Corner Configuration with 10◦ heading
error.

−30 −25 −20 −15 −10 −5 0 5
−30

−25

−20

−15

−10

−5

0

5
Overhead View, Robot movement is x to o

x

y

−30 −25 −20 −15 −10 −5 0 5
0

1

2

3

4

5

6

7
Side View, Robot movement is x to o

y

z

Figure 15: Typical position updates for robots in Corner Configuration with 20◦ heading
error.

28

−30 −25 −20 −15 −10 −5 0 5
−30

−25

−20

−15

−10

−5

0

5
Overhead View, Robot movement is x to o

x

y

−30 −25 −20 −15 −10 −5 0 5
0

1

2

3

4

5

6

7
Side View, Robot movement is x to o

y

z

Figure 16: Typical position updates for robots in Corner Configuration with 30◦ heading
error.

GPS-based system is superior to the underwater acoustic system - the GPS system is
much more portable and does not required surveyed buoys.

11 Summary

In summary, we successfully developed and demonstrated 3D plume tracing algorithms
on a miniature autonomous underwater vehicle. The algorithms were verified with field
testing using a pseudo-plume source that represents many 1/r2 plumes found in nature.
The algorithms were incorporated into a set of c-callable library functions for the Texas
Instruments 671x digital signal processor (DSP) family used on the Nekton Ranger
vehicle. In addition, we verified the expected performance of the 3D plume tracing
algorithm through analysis and simulation.

Using numerical simulations, we found that the source localization algorithms were
slightly dependent on sensor noise. The robots were able to locate the source for varying
levels of sensor noise, although convergence to the source generally took longer because
of the presence of the noise.

Regarding robot position error, the numerical simulations indicate that the per-
formance of the localization method is dependent on robot position error. This was
especially apparent for a robot position level of 1 meter. Indeed, it is the performance

29

Figure 17: Test Results - Two Vehicles, Pseudo-Plume

30

Figure 18: Test Results - Pseudo-plume at depth of 1 meter

31

Figure 19: Test Results - Pseudo-plume at depth of 3 meters

32

Figure 20: Test Results - Pseudo-plume at depth of 5 meters

33

of the localization method that suffers, in that the average distance of the closest robot
for a typical simulation indicates that the source has been nearly localized, but the
distance of the furthest robot is significant indicating that a robot (or two) is still far
away.

From numerical simulation, the algorithm was found to be robust with regard to
navigation or heading error. Heading error will cause the robot to deviate from its
intended path. As long as a robot could correctly identify its position, however, this
type of error was not found a problem. The robots were able to localize the source
although the eventual path was found to deviate from the original intended path.

12 Acknowledgments

Many people were instrumental in making this project a success. Johnny Hurtado
with assistance from Elizabeth Savage developed the 3-D algorithm and performed the
simulation studies. Steven Eskridge coded the algorithm for the 671x DSP. Ray Byrne
made minor modifications to the algorithm (applied different numerical techniques),
completed the DSP coding, and served as project leader and principal investigator.
Heather Pinnix and Bryan Schulz at Nekton integrated the Sandia code with the Nekton
vehicle and performed the field testing. The Nekton team also included: Brett Hobson,
Mathieu Kemp, Jim Meyer, Ryan Moody, Mathew St. Clair, Jeff Bourn, Gordon
Caudle, Harriet Crisp, Rick Vosburgh, and Jason Janet. Dr. Elana Ethridge served as
the DARPA program manager for this effort.

References

[1] J. E. Hurtado, R. H. Byrne, S. E. Eskridge, and J. J. Harrington, “Miniature mobile
robots for plume tracking and source localization research.” Workshop on Mobile
Micro-Robots, 2000 IEEE International Conference on Robotics and Automation,
April 28, 2000.

[2] R. H. Byrne, D. R. Adkins, S. E. Eskridge, J. J. Harrington, E. J. Heller, and
J. E. Hurtado, “Miniature mobile robots for plume tracking and source localization
research,” Journal of Micromechatronics, vol. 1, no. 3, pp. 253—261, 2002.

[3] J. E. Hurtado and R. D. Robinett, “Convergence of newton’s method via lyapunov
analysis.” Submitted to the Journal of Guidance, Control, and Dynamics (October
2002).

[4] J. E. Hurtado and R. D. Robinett, “Control design, stability and performance for
robotic collectives.” Submitted to the Journal of Intelligent and Robotic Systems:
Theory and Applications (October 2002).

34

[5] J. E. Hurtado, R. D. Robinett, C. R. Dohrmann, and S. Y. Goldsmith, “Decentral-
ized control for a swarm of vehicles performing source localization.” Submitted to
the Journal of Intelligent and Robotic Systems: Theory and Applications (October
2002).

35

A MATLAB M-FILES

A.1 batchsimu.m

N=80;

for indx=1:5,

[x,y,z]=local3DSN(’r2depend’,N);

R=x(N+1,:).^2+y(N+1,:).^2+z(N+1,:).^2;

R=sqrt(R);

CM(indx) = mean(R);

Sm(indx) = min(R);

Lg(indx) = max(R);

[CM;Sm;Lg]

end

A.2 getneighbors.m

function [iflag,ii]=getneighbors(i,xa,ya,za,scrmin,scrmax)

% find the neighbors near robot i

iflag=1;

xd=xa-xa(i); yd=ya-ya(i); zd=za-za(i);

r=sqrt(xd.*xd + yd.*yd + zd.*zd);

rcurr=scrmin;

ii=find(r<scrmin);

if length(ii)<10

iflag=0; rcurr=scrmin;

while iflag==0,

rcurr=1.5*rcurr;

ii=find(r<rcurr);

if length(ii)>=10

iflag=1;

end

if rcurr>scrmax,

iflag=2;

end

end

end

A.3 getnewpos.m

function [delx,dely,delz]=getnewpos(i,p,dxmax,dymax,dzmax,xa,ya,za,nxy)

dx=p(1); dy=p(2); dz=p(3);

36

sf=max([abs(dx)/dxmax(i),abs(dy)/dymax(i),abs(dz)/dzmax(i)]);

alpha=min(1,1/sf);

mx=1;

delx=alpha*dx;

dely=alpha*dy;

delz=alpha*dz;

% return % turn off the "collision check"

% collision avoidance to remove simulation singularity

mx=1;

tooclose=1;

while tooclose==1;

tooclose=0;

delxnew=mx*alpha*dx;

delynew=mx*alpha*dy;

delznew=mx*alpha*dz;

xnew=xa(i)+delxnew;

ynew=ya(i)+delynew;

znew=za(i)+delznew;

xd=xnew-xa; yd=ynew-ya; zd=znew-za;

r=sqrt(xd.*xd + yd.*yd + zd.*zd);

ro=.5;

% ro=.5;

for L=1:nxy,

if L~=i

if r(L)<ro,

tooclose=1;

mx=mx-.1;;

end

end

end

end

delx=delxnew;

dely=delynew;

delz=delznew;

A.4 getupdate.m

function p=getupdate(ii,i,xa,ya,za,b,nxy)

% flag==1, solve the LS problem

% flag==2, solve the TLS problem

% xc=(xa(ii) + rangenoise(ii)’)’;

xc=(xa(ii))’;

yc=(ya(ii))’;

zc=(za(ii))’;

xcnoise=xc;

37

ycnoise=yc;

zcnoise=zc;

xcn=xcnoise-xa(i); ycn=ycnoise-ya(i); zcn=zcnoise-za(i);

A=zeros(length(ii),10);

A=[ones(length(ii),1) xcn ycn zcn xcn.*xcn/2 ycn.*ycn/2 zcn.*zcn/2

xcn.*ycn xcn.*zcn ycn.*zcn];

bpart=zeros(length(ii),1);

bpart(:,1)=b(ii(:),1);

a=A\bpart(:,1);

tol=.01;

H=[a(5) a(8) a(9);

a(8) a(6) a(10);

a(9) a(10) a(7)];

if(min(eig(H)))<tol,

[v,d]=eig(H);

H=v*abs(d)*inv(v);

end

bp=-[a(2);a(3);a(4)];

p=H\bp;

A.5 input r2.m

% input file

nx=2; ny=5; nz=1; % total number of bugs

nxy=nx*ny*nz;

% close

boun=[-20,20,-20,20,0,10];

bounp=boun;

% far

%boun=[-50,50,-50,50,0,10];

%bounp=boun;

%boun=1.3*[28,22,28,22,1,9];

%bounp=1.3*[-30,30,-30,30,0,10];

aleft=boun(1); aright=boun(2); % left/right boundaries

bleft=boun(3); bright=boun(4); % left/right boundaries

cleft=boun(5); cright=boun(6); % left/right boundaries

apl=bounp(1); apr=bounp(2); % left/right boundaries for plotting

bpl=bounp(3); bpr=bounp(4);

cpl=bounp(5); cpr=bounp(6);

dx=(aright-aleft)/nx; % partition up the grid

dy=(bright-bleft)/ny;

38

dz=(cright-cleft)/nz;

dxmax=1; dymax=1; dzmax=1; % max allowable dx,dy step for optimization

dxmax=dxmax*ones(1,nxy);

dymax=dymax*ones(1,nxy);

dzmax=dzmax*ones(1,nxy);

sensornoise=0 * 1/500*(rand(nxy,1)-0.5);

rangenoise= 0 * 1/10*(rand(nxy,1)-0.5);

percentSN = 0;

scrmin = 100;

scrmax = 100;

A.6 input r2depend.m

% input file

nx=2; ny=5; nz=1; % total number of bugs

nxy=nx*ny*nz;

% close

boun=[-20,20,-20,20,0,10];

bounp=boun;

% far

%boun=[-50,50,-50,50,0,10];

%bounp=boun;

%boun=1.3*[28,22,28,22,1,9];

%bounp=1.3*[-30,30,-30,30,0,10];

aleft=boun(1); aright=boun(2); % left/right boundaries

bleft=boun(3); bright=boun(4); % left/right boundaries

cleft=boun(5); cright=boun(6); % left/right boundaries

apl=bounp(1); apr=bounp(2); % left/right boundaries for plotting

bpl=bounp(3); bpr=bounp(4);

cpl=bounp(5); cpr=bounp(6);

dx=(aright-aleft)/nx; % partition up the grid

dy=(bright-bleft)/ny;

dz=(cright-cleft)/nz;

dxmax=.5; dymax=.5; dzmax=.5; % max allowable dx,dy step for optimization

dxmax=dxmax*ones(1,nxy);

dymax=dymax*ones(1,nxy);

dzmax=dzmax*ones(1,nxy);

39

sensornoise=0 * 1/500*(rand(nxy,1)-0.5); % not used but keep at zero

rangenoise= 0 * 1/10*(rand(nxy,1)-0.5); % not used but keep at zero

percentSN = 0; % sensor noise percent

percentPN = 1; % position noise in meters

scrmin = 100;

scrmax = 100;

A.7 local3D.m

function [xLS,yLS,zLS]=dscc3D(fcn,nstep)

% function [xLS,yLS,xTLS,yTLS]=dscc(fcn,cflag,nstep,xa,ya,za)

%

% fcn: character string of function (must also have input fcn name)

% nstep: number of steps (updates) to perform

% xa, ya: if cflag=’onn’, then starting positions for continuation

% if cflag=’off’, then this will be reset

%

%

%--

% 1. Finds which bugs are close.

% 2. Fixes Hessian if not positive definite.

% 3. Robot Avoidance: Takes step length of alpha along search direction.

% If too close to another robot then backs off until not too close.

% 4. Each updates when ready. Do not wait.

eval([’input_’ fcn]);

cflag=’off’;

if cflag==’off’,

x=aleft+dx/2:dx:aright-dx/2;

y=bleft+dy/2:dy:bright-dy/2;

z=cleft+dz/2:dz:cright-dz/2;

xa=zeros(1,nxy);

ya=zeros(1,nxy);

za=zeros(1,nxy);

for i=1:ny

ibeg=(i-1)*nx+1;

iend=i*nx;

xa(ibeg:iend)=x;

ya(ibeg:iend)=y(i)*ones(1,nx);

za(ibeg:iend)=z(1)*ones(1,nx);

end

sp=1/2*.0001;

xa=xa+2*sp*dx*(rand(1,nxy)-0.5);

ya=ya+2*sp*dy*(rand(1,nxy)-0.5);

40

za=za+2*sp*dz*(rand(1,nxy)-0.5);

end

% specified initial positions ... useful for comparison purposes.

xa = [34.3148 56.2963 11.8889 16.9021 27.8895 55.6815

48.5589 9.5222 23.1921 47.8658]*.5;

ya = [14.4320 65.1551 12.4608 81.5887 9.3024 30.9941

26.8817 53.6451 16.3278 21.0988]*.5;

za = [0.6828 1.2523 1.6615 9.1142 1.3626 6.1700

2.6898 2.2066 7.1290 5.4900];

xLS(1,:)=xa;

yLS(1,:)=ya;

zLS(1,:)=za;

figure(1), clf

subplot(221), plot3(xa,ya,za,’kx’,’markersize’,10,’linewidth’,2); hold on,

subplot(222), plot3(xa,ya,za,’kx’,’markersize’,10,’linewidth’,2); hold on,

subplot(223), plot3(xa,ya,za,’kx’,’markersize’,10,’linewidth’,2); hold on,

subplot(224), plot3(xa,ya,za,’kx’,’markersize’,10,’linewidth’,2); hold on,

for k=1:nstep

eval([’bLS=’ fcn ’(xa,ya,za);’]);

for i=1:nxy

% eval([’bLS=’ fcn ’(xa,ya,za);’]);

[iflagLS,iiLS]=getneighbors(i,xa,ya,za,scrmin,scrmax);

if iflagLS==1,

pLS=getupdate(iiLS,i,xa,ya,za,bLS,nxy);

[delxLS(i),delyLS(i),delzLS(i)]=getnewpos(i,pLS,dxmax,dymax,dzmax,xa,ya,za,nxy);

elseif iflagLS==2,

delxLS(i)=0; delyLS(i)=0; delzLS(i)=0;

end

% update when ready

% xa(i)=xa(i)+delxLS(i);

% ya(i)=ya(i)+delyLS(i);

% za(i)=za(i)+delzLS(i);

% if za(i)<0, za(i)=0; end

end

% everyone update at once

for i=1:nxy

xa(i)=xa(i)+delxLS(i);

ya(i)=ya(i)+delyLS(i);

za(i)=za(i)+delzLS(i);

end

41

xLS(k+1,:)=xa;

yLS(k+1,:)=ya;

zLS(k+1,:)=za;

end

figure(1),

subplot(221),

plot3(xa,ya,za,’ko’,’markersize’,6,’linewidth’,2);

%plot(xb,yb,’ro’,’markersize’,6,’linewidth’,2);

for i=1:nxy, plot3(xLS(:,i),yLS(:,i),zLS(:,i),’k:’,’linewidth’,1); end

%for i=1:nxy, plot(xTLS(:,i),yTLS(:,i),’r’,’linewidth’,1); end

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’),

ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robot movement is x to o’,’fontsize’,14,’fontweight’,’bold’);

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

set(h,’fontsize’,14);

grid on

hold off

subplot(222),

plot3(xa,ya,za,’ko’,’markersize’,6,’linewidth’,2);

for i=1:nxy, plot3(xLS(:,i),yLS(:,i),zLS(:,i),’k:’,’linewidth’,1); end

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’),

ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robot movement is x to o’,’fontsize’,14,’fontweight’,’bold’);

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

set(h,’fontsize’,14);

grid on

hold off

view(2)

subplot(223),

plot3(xa,ya,za,’ko’,’markersize’,6,’linewidth’,2);

for i=1:nxy, plot3(xLS(:,i),yLS(:,i),zLS(:,i),’k:’,’linewidth’,1); end

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’),

ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robot movement is x to o’,’fontsize’,14,’fontweight’,’bold’);

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

set(h,’fontsize’,14);

grid on

hold off

view(90,0)

subplot(224),

plot3(xa,ya,za,’ko’,’markersize’,6,’linewidth’,2);

for i=1:nxy, plot3(xLS(:,i),yLS(:,i),zLS(:,i),’k:’,’linewidth’,1); end

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’),

42

ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robot movement is x to o’,’fontsize’,14,’fontweight’,’bold’);

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

set(h,’fontsize’,14);

grid on

hold off

view(0,0)

% XTRAS

%xcm=zeros(nstep+1,1); ycm=zeros(nstep+1,1);

%xcm(1,1)=sum(xa)/nxy; ycm(1,1)=sum(ya)/nxy;

%plot(xa,ya,’bx’,xcm(1,1),ycm(1,1),’mx’); hold on,

%plot(xcm(:,1),ycm(:,1),’m’)

%plot(xcm(nstep+1,1),ycm(nstep+1,1),’mo’)

A.8 Local3DSN.m

function [xLS,yLS,zLS]=dscc3D(fcn,nstep)

% function [xLS,yLS,xTLS,yTLS]=dscc(fcn,cflag,nstep,xa,ya,za)

%

% fcn: character string of function (must also have input fcn name)

% nstep: number of steps (updates) to perform

% xa, ya: if cflag=’onn’, then starting positions for continuation

% if cflag=’off’, then this will be reset

%

%

%--

% 1. Finds which bugs are close.

% 2. Fixes Hessian if not positive definite.

% 3. Robot Avoidance: Takes step length of alpha along search direction.

% If too close to another robot then backs off until not too close.

% 4. Each updates when ready. Do not wait.

eval([’input_’ fcn]);

cflag=’off’;

if cflag==’off’,

x=aleft+dx/2:dx:aright-dx/2;

y=bleft+dy/2:dy:bright-dy/2;

z=cleft+dz/2:dz:cright-dz/2;

xa=zeros(1,nxy);

ya=zeros(1,nxy);

za=zeros(1,nxy);

for i=1:ny

ibeg=(i-1)*nx+1;

43

iend=i*nx;

xa(ibeg:iend)=x;

ya(ibeg:iend)=y(i)*ones(1,nx);

za(ibeg:iend)=z(1)*ones(1,nx);

end

sp=1/2*.0001;

xa=xa+2*sp*dx*(rand(1,nxy)-0.5);

ya=ya+2*sp*dy*(rand(1,nxy)-0.5);

za=za+2*sp*dz*(rand(1,nxy)-0.5);

end

% specified initial positions ... useful for comparison purposes.

%xa = [34.3148 56.2963 11.8889 16.9021 27.8895

% 55.6815 48.5589 9.5222 23.1921 47.8658]*.5;

%ya = [14.4320 65.1551 12.4608 81.5887 9.3024

% 30.9941 26.8817 53.6451 16.3278 21.0988]*.5;

%za = [0.6828 1.2523 1.6615 9.1142 1.3626

% 6.1700 2.6898 2.2066 7.1290 5.4900];

percentRN = .1;

R = 20*(1 + percentRN/100 * 2*(rand(1,nxy)-0.5));

theta = linspace(0,324,10)*pi/180; % surround

%theta = linspace(25,65,10)*pi/180; % corner arc

xa = R.*cos(theta);

ya = R.*sin(theta);

za = 8 * (1 + 10/100 * (rand(1,nxy)-1));

xLS(1,:)=xa;

yLS(1,:)=ya;

zLS(1,:)=za;

figure(1), clf

subplot(221), plot3(xa,ya,za,’kx’,’markersize’,10,’linewidth’,2); hold on,

subplot(222), plot3(xa,ya,za,’kx’,’markersize’,10,’linewidth’,2); hold on,

subplot(223), plot3(xa,ya,za,’kx’,’markersize’,10,’linewidth’,2); hold on,

subplot(224), plot3(xa,ya,za,’kx’,’markersize’,10,’linewidth’,2); hold on,

for k=1:nstep

% for update at once

% eval([’bLS=’ fcn ’(xa,ya,za);’]);

% bLS = bLS*(1 + percentSN/100 * 2*(rand(1,nxy)-0.5));

for i=1:nxy

% for update when ready

eval([’bLS=’ fcn ’(xa,ya,za);’]);

bLS = bLS*(1 + percentSN/100 * 2*(rand(1,nxy)-0.5));

xa = xa + percentPN * 2*(rand(1,nxy)-0.5);

ya = ya + percentPN * 2*(rand(1,nxy)-0.5);

[iflagLS,iiLS]=getneighbors(i,xa,ya,za,scrmin,scrmax);

44

if iflagLS==1,

pLS=getupdate(iiLS,i,xa,ya,za,bLS,nxy);

[delxLS(i),delyLS(i),delzLS(i)]=getnewpos(i,pLS,dxmax,dymax,dzmax,xa,ya,za,nxy);

elseif iflagLS==2,

delxLS(i)=0; delyLS(i)=0; delzLS(i)=0;

end

% update when ready

xa(i)=xa(i)+delxLS(i);

ya(i)=ya(i)+delyLS(i);

za(i)=za(i)+delzLS(i);

% if za(i)<0, za(i)=0; end

end

% everyone update at once

% for i=1:nxy

% xa(i)=xa(i)+delxLS(i);

% ya(i)=ya(i)+delyLS(i);

% za(i)=za(i)+delzLS(i);

% end

xLS(k+1,:)=xa;

yLS(k+1,:)=ya;

zLS(k+1,:)=za;

end

figure(1),

subplot(221),

plot3(xa,ya,za,’ko’,’markersize’,6,’linewidth’,2);

%plot(xb,yb,’ro’,’markersize’,6,’linewidth’,2);

for i=1:nxy, plot3(xLS(:,i),yLS(:,i),zLS(:,i),’k:’,’linewidth’,1); end

%for i=1:nxy, plot(xTLS(:,i),yTLS(:,i),’r’,’linewidth’,1); end

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’),

ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robot movement is x to o’,’fontsize’,14,’fontweight’,’bold’);

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

set(h,’fontsize’,14);

grid on

hold off

subplot(222),

plot3(xa,ya,za,’ko’,’markersize’,6,’linewidth’,2);

for i=1:nxy, plot3(xLS(:,i),yLS(:,i),zLS(:,i),’k:’,’linewidth’,1); end

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’),

ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robot movement is x to o’,’fontsize’,14,’fontweight’,’bold’);

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

45

set(h,’fontsize’,14);

grid on

hold off

view(2)

subplot(223),

plot3(xa,ya,za,’ko’,’markersize’,6,’linewidth’,2);

for i=1:nxy, plot3(xLS(:,i),yLS(:,i),zLS(:,i),’k:’,’linewidth’,1); end

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’),

ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robot movement is x to o’,’fontsize’,14,’fontweight’,’bold’);

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

set(h,’fontsize’,14);

grid on

hold off

view(90,0)

subplot(224),

plot3(xa,ya,za,’ko’,’markersize’,6,’linewidth’,2);

for i=1:nxy, plot3(xLS(:,i),yLS(:,i),zLS(:,i),’k:’,’linewidth’,1); end

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’),

ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robot movement is x to o’,’fontsize’,14,’fontweight’,’bold’);

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

set(h,’fontsize’,14);

grid on

hold off

view(0,0)

% XTRAS

%xcm=zeros(nstep+1,1); ycm=zeros(nstep+1,1);

%xcm(1,1)=sum(xa)/nxy; ycm(1,1)=sum(ya)/nxy;

%plot(xa,ya,’bx’,xcm(1,1),ycm(1,1),’mx’); hold on,

%plot(xcm(:,1),ycm(:,1),’m’)

%plot(xcm(nstep+1,1),ycm(nstep+1,1),’mo’)

A.9 plotcompare.m

% a plot function for comparison

figure(2),

N=1:10;

subplot(221), plot3(xLS(1,N),yLS(1,N),zLS(1,N),’kx’,’markersize’,10,’linewidth’,2); hold on,

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’), ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robot initial positions in the (x,y) plane’,’fontsize’,14,’fontweight’,’bold’);

46

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

set(h,’fontsize’,14);

view(2),

grid on

hold off

N=1:2;

subplot(222), plot3(xLS(1,N),yLS(1,N),zLS(1,N),’kx’,’markersize’,10,’linewidth’,2); hold on,

subplot(222), plot3(xLSg(1,N),yLSg(1,N),zLSg(1,N),’kx’,’markersize’,10,’linewidth’,2);

subplot(222), plot3(xLS(13,N),yLS(13,N),zLS(13,N),’ko’,’markersize’,6,’linewidth’,2); hold on,

subplot(222), plot3(xLSg(21,N),yLSg(21,N),zLSg(21,N),’ro’,’markersize’,6,’linewidth’,2);

for i=N, plot3(xLS(:,i),yLS(:,i),zLS(:,i),’k:’,’linewidth’,1); end

for i=N, plot3(xLSg(:,i),yLSg(:,i),zLSg(:,i),’r:’,’linewidth’,1); end

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’), ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robots 1 and 2’,’fontsize’,14,’fontweight’,’bold’);

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

set(h,’fontsize’,14);

grid on

hold off

N=5:6;

subplot(223), plot3(xLS(1,N),yLS(1,N),zLS(1,N),’kx’,’markersize’,10,’linewidth’,2); hold on,

subplot(223), plot3(xLSg(1,N),yLSg(1,N),zLSg(1,N),’kx’,’markersize’,10,’linewidth’,2);

subplot(223), plot3(xLS(13,N),yLS(13,N),zLS(13,N),’ko’,’markersize’,6,’linewidth’,2); hold on,

subplot(223), plot3(xLSg(21,N),yLSg(21,N),zLSg(21,N),’ro’,’markersize’,6,’linewidth’,2);

for i=N, plot3(xLS(:,i),yLS(:,i),zLS(:,i),’k:’,’linewidth’,1); end

for i=N, plot3(xLSg(:,i),yLSg(:,i),zLSg(:,i),’r:’,’linewidth’,1); end

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’), ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robots 5 and 6’,’fontsize’,14,’fontweight’,’bold’);

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

set(h,’fontsize’,14);

grid on

hold off

N=9:10;

subplot(224), plot3(xLS(1,N),yLS(1,N),zLS(1,N),’kx’,’markersize’,10,’linewidth’,2); hold on,

subplot(224), plot3(xLSg(1,N),yLSg(1,N),zLSg(1,N),’kx’,’markersize’,10,’linewidth’,2);

subplot(224), plot3(xLS(13,N),yLS(13,N),zLS(13,N),’ko’,’markersize’,6,’linewidth’,2); hold on,

subplot(224), plot3(xLSg(21,N),yLSg(21,N),zLSg(21,N),’ro’,’markersize’,6,’linewidth’,2);

for i=N, plot3(xLS(:,i),yLS(:,i),zLS(:,i),’k:’,’linewidth’,1); end

for i=N, plot3(xLSg(:,i),yLSg(:,i),zLSg(:,i),’r:’,’linewidth’,1); end

47

xlabel(’x’,’fontsize’,14,’fontweight’,’bold’), ylabel(’y’,’fontsize’,14,’fontweight’,’bold’),

title(’Robots 9 and 10’,’fontsize’,14,’fontweight’,’bold’);

zlabel(’z’,’fontsize’,14,’fontweight’,’bold’),

h=gca;

set(h,’fontsize’,14);

grid on

hold off

A.10 r2depend.m

function f=r2(xc,yc,zc)

% Nekton 1/r^2 with sin(gamma)

nn=length(xc);

f=zeros(nn,1);

for j=1:nn,

gamma(j) = atan(zc(j)/sqrt(xc(j)^2+yc(j)^2));

% the sensor reading is orientation dependent

% gamma(j) = pi/2;

den = xc(j)^2 + yc(j)^2 + zc(j)^2;

% the sensor reading varies as 1/r^2

f(j,1)=abs(sin(gamma(j)))/den;

% what the sensor truly reads

f(j,1)=1.0/f(j,1);

% We invert the signal for optimization

end

A.11 r2.m

function f=r2(xc,yc,zc)

% Nekton 1/r^2 with sin(gamma)

nn=length(xc);

f=zeros(nn,1);

for j=1:nn,

% gamma(j) = atan(zc(j)/sqrt(xc(j)^2+yc(j)^2));

% the sensor reading is orientation dependent

gamma(j) = pi/2;

den = xc(j)^2 + yc(j)^2 + zc(j)^2;

% the sensor reading varies as 1/r^2

f(j,1)=abs(sin(gamma(j)))/den;

48

% what the sensor truly reads

f(j,1)=1.0/f(j,1);

% We invert the signal for optimization

end

49

SAND REPORT DISTRIBUTION

Internal:

MS 0501 (2338) Raymond Byrne (20)
MS 1003 (15211) John Feddema (5)
MS 1004 (15221) Raymond Harrigan (2)
MS 1002 (15200) Stephen Roehrig (2)
MS 9018 (8945-1) Central Technical Files
MS 0899 (9616) Technical Library (2)

External:

Johnny Hurtado, Ph.D. (2)
Assistant Professor
Texas A&M University
Department of Aerospace Engineering
727C H.R. Bright Bldg
3141 TAMU
College Station, TX 77843-3141

Steven Eskridge (2)
TEES Assistant Research Engineer
Commercial Space Center for Engineering
Texas A&M University
3118 TAMU
College Station, TX 77843-3118

Elana C. Ethridge, Ph.D. (2)
DARPA Program Manager
Microsystems Technology Office
3701 North Fairfax Drive
Arlington, Virginia 22203-1714

Bryan Schulz (5)
Senior Project Engineer
Nekton Research, LLC
4625 Industry Lane
Durham NC, 27713

50

	Abstract
	Contents
	List of Figures
	1 Introduction
	2 3-D Plume Tracing Algorithm
	2.1Determining the unknown Coefficients for Ill-Conditioned Cases Method I
	2.2 Determining the Unknown Coe.cients for Ill-Conditioned Cases - Method II

	3 Modeling of Light Data
	4 Standard MATLAB Simulation Code
	5 Sensor Measurement Dependence on Vehicle Orientation
	6 Sensor Measurement Noise
	7 Robot Position Error
	8 Navigational Error
	9 Software Implementation
	10 Test Results
	11 Summary
	12 Acknowledgments
	References
	A MATLABM-FILES
	A.1 batchsimu.m
	A.2 getneighbors.m
	A.3 getnewpos.m
	A.4 getupdate.m
	A.5 input r2.m
	A.6 input r2depend.m
	A.7 local3D.m
	A.8 Local3DSN.m
	A.9 plotcompare.m
	A.10 r2depend.m
	A.11 r2.m

	DISTRIBUTION

