
Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007) 
Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) 
 

 A SEQUENTIAL LEAST-SQUARES ALGORITHM FOR NEUTRON 
SPECTRUM UNFOLDING FROM PULSE-HEIGHT DISTRIBUTIONS 

MEASURED WITH LIQUID SCINTILLATORS  
 

Yunlin Xu  
School of Nuclear Engineering, Purdue University 

 West Lafayette, Indiana 47907-1290 
yunlin@purdue.edu  

 
Marek Flaska, Sara Pozzi, and Vladimir Protopopescu 

Oak Ridge National Laboratory 
PO Box 2008 MS 6010 Oak Ridge, Tennessee 37831-6010 

flaskam@ornl.gov; pozzisa@ornl.gov; protopopesva@ornl.gov
 

Thomas Downar 
Department of Nuclear Engineering 

University of California 
Berkeley, California 

downar@nuc.berkeley.edu
 
 

ABSTRACT 
 

In this paper, we present a neutron spectrum unfolding technique based on a modification of the 
least-squares method. The main innovation is the use of a Krylov subspace iteration method to 
solve the least-squares normal equations. This method was employed because it performs better on 
ill-conditioned systems of linear equations as compared with standard direct-solution methods.  
Three different least-squares solution techniques are compared and evaluated in terms of (i) 
accuracy in the prediction of the energy spectrum, (ii) computational efficiency, and (iii) 
robustness to noise. The unfolding is performed on measured pulse-height distributions as well as 
pulse height distributions generated with the Monte Carlo code MCNP-PoliMi. Using this code, 
neutron energy depositions on the constituents of the scintillator are individually tracked, and the 
light output generated at each interaction is suitably accounted for. This procedure allows for a 
very accurate simulation of the liquid scintillator detector response. The precise knowledge of the 
neutron energy spectrum provides information not only about the presence or absence of fissile 
material, but also about the characteristics of the material. We show that the proposed technique 
performs well in the unfolding of neutron pulse-height distributions from Monte Carlo 
simulations, and fairly well for a measured distribution from a Cf-252 neutron source. 
 
Key Words: neutron spectrum unfolding, least squares method, sequential quadratic program, 
CGNR, Krylov subspace 

 
 

1. INTRODUCTION 
 
Nuclear nonproliferation and nuclear safeguards applications require robust and efficient 
methods to identify and/or unfold the incident neutron-energy spectrum from shielded or 
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unshielded (mixtures of) fissile materials. Thus, timely development of methods that allow fast 
and robust identification of neutron sources, as well as unfolding of neutron spectra, is urgently 
needed. In particular, for safeguards applications it is important to identify specific neutron 
sources, such as Pu-240, Cf-252, or Am/Be. In addition, the accurate unfolding of neutron 
spectra increases the sensitivity of assays performed on nuclear materials [1]. 
  
Liquid scintillators are widely used in nonproliferation applications because they have excellent 
neutron/gamma pulse-shape discrimination properties. Radiation detectors for neutron 
measurements typically include neutron thermalization and capture as the primary mechanisms 
for detection. On the contrary, liquid scintillators detect fast neutrons via scattering interactions 
with hydrogen and carbon, which are the principal constituents of the scintillator. The pulse-
height distribution measured with this type of detector includes information on the energy 
spectrum of the incident neutrons. Indeed, the relationship between the pulse height distribution 
and the energy spectrum is uniquely characterized by the detector “response matrix”, which 
relates pulse height to incident neutron energy. However, uncovering this relationship is difficult 
because the unfolding problem is ill-posed. Thus, small variations in the measurement of the 
pulse height distribution or the detector response matrix can lead to large variations in the 
unfolded energy spectrum. This limitation therefore requires the development of robust 
unfolding procedures and accurate analyses of the effect of noise on these procedures.   
 
In general, unfolding with these types of detectors can be seen as a mapping from the n-
dimensional space of the detector response to the m-dimensional space of the neutron energy flux 
[2]. To carry out the unfolding, several mathematical methods have been proposed, such as least-
squares (LSM), iterative, and Monte Carlo methods. 
 
 

2. DETECTOR RESPONSE MATRIX 
 
The detector response, the count rates, and the neutron spectrum are related through the 
Fredholm integral equation of the first kind:  
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n ( ) ( ,  ) ( )n nN L R E L E dE= Φ∫ , (1) 
 
where En is the neutron energy, L is the measured light output (or pulse height), N(L) is the count 
rate density corresponding to L, and R(En, L) is the detector response matrix. Obtaining the 
energy distribution of the incident neutrons, Φ(En), from the measured detector pulse height 
distribution amounts to solving an ill-posed inverse problem, for which (i) the solution is not 
unique and (ii) the solution(s) do(es) not depend continuously on the data.  The problem (1) can 
be reduced to the discrete form of the continuous equation  
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where  is the binned count rate corresponding to a certain interval  of the measured light 
output (pulse height) in the i-th channel, 

iN

jx  is the incident neutron fluence in the j-th energy 
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group, and ijR  is the corresponding element of the response matrix. In the response matrix, each 
row corresponds to a given neutron energy and each column corresponds to a given pulse height.  
The following matrix and vectors notation will be used hereafter: 
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3. MONTE CARLO SIMULATIONS 
 
Monte Carlo simulations were used to generate the response matrix Rij. Previous work has shown 
that the MCNP-PoliMi code [4] can be used to accurately calculate the detector response matrix. 
This method is faster and more practical than measuring the detector response to neutrons at 
many different energies. 
 

 
Figure 1.  Response matrix from MCNP-PoliMi simulation 

 
We used the MCNP-PoliMi code for detailed Monte Carlo simulations of neutron interactions 
occurring in the detector. We considered monoenergetic neutrons from a surface source emitting 
neutrons perpendicularly to one side of a cubic scintillator material. We also used a post-

Joint International Topical Meeting on Mathematics & Computation and  3/12 
Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, 2007 

 



Y. Xu , T. Downar, M. Flaska,  et al. 
 

processing Matlab code for the analysis of the interactions occurring in the scintillator material. 
This analysis takes into account neutron scattering on hydrogen, neutron scattering on carbon, 
and secondary photons that may be generated on carbon when the energy of the incident neutron 
is above 4.4 MeV. The light output from secondary charged particles produced by neutron 
reactions within the scintillator is computed using experimentally determined parameters that 
relate the energy deposited to the scintillator light output. The cumulative effect of multiple 
scatterings on light output is also taken into account. Further details on this simulation 
methodology can be found in [5–8]. A response matrix obtained from MCNP-PoliMi simulation 
is shown in Figure 1. This response matrix was used for neutron spectra unfolding. The 
resolution of pulse-height bins is 0.05 MeVee and neutron energy group width is 0.1 MeV. 
 
 

4. UNFOLDING BY LEAST-SQUARES METHOD 
 
If the number of light output channels is the same as the number of neutron energy groups and 
the matrix R is non-singular, the neutron spectrum can be obtained by solving the linear system 
 
 1x R N−=  (3) 
 
More often the number of light output channels is larger than the number of neutron energy 
groups. In this case the linear system Eq. (3) becomes an over-determined system that can be 
solved by a LSM. Upon LSM, we look for 
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where jx  is an approximated solution for the j-th group flux,  are suitable weights. Here they 
were chosen to be the square roots of the counts, which are inversely proportional to the 
uncertainties of the counts. The solution to Eq. (4) can be found by a generalized matrix 
inversion, 

iw
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5. LINEAR SYSTEM SOLVERS FOR LEAST-SQUARES METHOD 
 
The matrices occurring in LSM are often ill-conditioned and their direct inversion can lead to 
large errors in the solution. There has been considerable research into the solution of ill-
conditioned systems of linear equation with iterative solvers [9-15]. The main approach has been 
to seek a deflated solution of the ill-conditioned system. 
 
Consider the system of linear equations 
 
 Ax b= , (6) 
 
where x and b are n dimensional vectors and A is an n x n real matrix. Let the singular value 
decomposition (SVD) for A be 
 
 TA U V= Σ ,  
 
where  and  are orthogonal matrices and 1 ,..., nU u u⎡ ⎤= ⎣ ⎦ 1 ,..., nV v v⎡= ⎣ ⎤⎦ 1 ,..., ndiag σ σ⎡ ⎤Σ = ⎣ ⎦  such 
that 
 
 1 2 ... 0nσ σ σ≥ ≥ ≥ ≥ . 
  
If A is nonsingular, then the solution to Eq. (6) can be written in terms of the SVD as follows: 
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In this paper, we are interested in the case where the matrix A is nearly singular, which occurs 
when one or more of the singular values of the matrix are very small. If there are k singular 
values that are small then the solution can be split into two components 
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Eq. (7) is referred to as the deflated decomposition and the vector dx  is the deflated solution to 
(6). The components that are excluded from the deflated solution correspond to the small 
singular values which can cause large numerical errors in the solution. The objective of the 
deflation method is to stabilize the solution by excluding these components with minimal impact 
on the residual error. 
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A Krylov subspace iterative method, namely the conjugate gradient method for normal equation 
to minimize residual (CGNR) [16], is a well proven stable solver for ill-conditioned, over-
determined linear systems. For the application presented here, we modified the CGNR to 
terminate when the residual reduction is smaller than the change in the solution in order to avoid 
large numerical errors in the solution. The solution of Eq. (4) is found by applying CGNR to 
solve the over determined linear system: 
 

 
1

, , 1,..,
m

i ij j i i
j

w R x w N for i
=

=∑ n=  (9) 

 
In the following analysis, we will compare the effectiveness of CGNR to direct matrix inversion 
and SVD methods for a simple neutron spectrum consisting of two equally probable neutron 
beams of energies of 4 MeV and 6 MeV. The detector response used for unfolding is shown in 
Figure 2. The first distribution is the product of the response matrix and the neutron flux vector, 
which will be used as an exact solution for comparison. The second distribution is from a 
MCNP-PoliMi simulation and shows a 0.88% difference from the first distribution. This 
simulation will provide a mean for testing the robustness of the solutions to noise.   
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Figure 2.  Detector readings for two neutron beams at energies of 4 MeV and 6 MeV 
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             a) from matrix vector product               b)from MCNP-PoLiMi simulation 
 

Figure 3.  Unfolded spectra of two neutron beams at energies of 4 MeV and 6 MeV using 
three linear solvers 

 
Unfolded spectra determined using the three different solvers are shown in Figure 3 and the L2-
norms of the residuals and errors are listed in Table I. The solutions from the SVD method 
determined the solutions with minimal error from the deflated solution with different numbers of 
components. The numbers of components that are included in the deflated solutions are also 
shown in Table I. The CGNR iterations were terminated because the reduction of the residual L2-
norm is a factor of 5E-4 times smaller than the L2-norm change in the solution. The number of 
CGNR iterations is also listed in Table I as well as the number of components.   
 
The results show that the solutions obtained upon applying the direct solver have large numerical 
errors, whereas the solutions from the SVD method and CGNR are both accurate and stable. 
Since the quality of the CGNR solutions are comparable with those from the SVD method, the 
CGNR method was used as the linear system solver in both LSM and the sequential least squares 
method (SLSM). 
 
Table I. L2-norms of residual and errors and number of components for unfolding spectral 

of two neutron beams of energies 4 MeV and 6 MeV by 3 Solvers 
 

Detector 
Vector 

Solver 
L2-norm 
of residual 

L2-norm 
of error 

Number of  
Components 

Direct 2.2272e-08 12.2081 - 
SVD 7.1320e-16 0.2887 134 

Matrix 
vector 
product CGNR 1.1012e-04 0.3187 83 

Direct 8.0010e-08 90.6371 - 
SVD 8.4016e-04 0.4616 45 

MCNP 
Simulation 

CGNR 6.9424e-04 0.3103 52 
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6. UNFOLDING BY THE SEQUENTIAL LEAST-SQUARES METHOD 
 
For the practical unfolding problem, errors exist both in the response matrix R, and in the 
detector response N, which may result in significant errors in the solution vector x. The direct 
application of LSM to Eq. (5) may result in nonphysical negative fluxes, therefore a constrained 
optimization method is necessary to achieve a physical solution to the unfolding problem. 
 
The constrained optimization problem is defined as 
 

 

2

1 1

1min ( )
2

subject to   0 {1,2,... }

n m

i i ij j
i j

i B

f x w N R x

x for i S m
= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
≥ ∈ ≡

∑ ∑     , (10) 

where SB refers to the set of indices for the lower bounds, which ensures that fluxes remain non-
negative.   

B

 
This type of constrained optimization problem is most often solved with sequential quadratic 
programming (SQP) using an active set strategy [10].  At each step of the SQP, a QP subproblem 
is solved: 
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The constraints are said to be active at x' if x' lies on the boundary of the feasible region. This 
boundary is formed by the constraints whose indices are members of set SA, which is referred to 
as the active set. The set containing members of set  SB that are not in active set SB A is referred to 
as the inactive set SBB \ SA. During the search process, an index may move back and forth between 
an active and an inactive set. 
 
The constrained optimization problem can then be reduced to the following unconstrained 
optimization problem: 
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This special SQP will be called SLS. The algorithm begins by choosing an active set and 
proceeding as follows:  
 
(a) A feasible initial solution x(1) is found, and set k = 1.  
 
(b) The following linear system is solved by using the CGNR method, which finds increment s(k) 
to the minimizer of  Eq. (12) within the Krylov subspace: 
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(c) Take a step in the direction of s(k)
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If 1α <  ,  and ( ) ( )k k

p px s α− = , then p is moved from the inactive set to the active set.  
 
(d) Compute  
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If there is any positive gq then move q from the active set to the inactive set. 
 
(e) If the active set was not changed during steps (c) and (d), terminate the algorithm. 
 
(f) Otherwise, set k = k+1 and go to (b). 
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             a) from matrix vector product               b) from MCNP-PoliMi simulation 

Figure 4.  Unfolding spectral of two neutron beams of energies 4 MeV and 6 MeV with 
LSM and SLSM 

 

Joint International Topical Meeting on Mathematics & Computation and  9/12 
Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, 2007 

 



Y. Xu , T. Downar, M. Flaska,  et al. 
 

7. UNFOLDING RESULTS 
 
LSM and SLSM were applied to the neutron spectrum shown previously, which consisted of two 
equally probable neutron beams at energies of 4 MeV and 6 MeV. 
 
The results displayed in Figure 4 show that LSM predicts sharp peaks at the correct neutron 
energies, but the unfolded spectrum contains some non-physical negative values. The SLSM 
eliminates the negative values while maintaining the correct location of the peaks.  
 
The SLSM was also applied to continuous neutron spectra. The measured and simulated pulse- 
height distributions from the Cf-252 neutron source are shown in Figure 5. In the first 
experiment, the neutrons emitted by a Cf-252 source were detected using a time-of-flight method 
(TOF), which permitted the accurate identification of the neutron pulses, with the exception of 
accidental coincidences, which result in the attribution of gamma-ray pulses as neutron pulses. In 
this experiment, the Cf-252 source was placed in the middle of an ionization chamber at a 
distance of 1 m from the detector. The ionization chamber served as a “start” detector to 
determine time “zero.” In the second experiment, a pulse-shape discrimination (PSD) method 
[18] was applied to “unknown” pulses. This optimized PSD method was used to discriminate the 
neutron pulses from the gamma-ray pulses originating from the Cf-252 source at a distance of 50 
cm from the detector. The measurement threshold was set to an electron equivalent of 0.094 
MeV. Two configurations were investigated: one with no shield between the source and the 
detector and another with 1 in. of lead shield. 
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Figure 5.  Measured and simulated pulse height from Cf-252 source. Error bars show 
statistical errors ( ±1σ) for the measurement results. The simulation errors are below 5% 

(not shown). 
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The unfolding results using SLSM are shown in Figures 6. The unfolding yielded fairly good 
spectra for the simulated data (Figure 6b). The neutron spectrum under 1 MeV could not be 
obtained due to lack of data for pulse heights lower than 0.2 MeVee. 
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Figure 6.  Unfolded Cf-252 source from both measured (a) and simulated data (b) using 
SLSM 

 
The unfolding result for the measured data shows significant oscillations about the reference 
spectrum. We are currently investigating the reasons for these oscillations. One approach is to 
achieve a higher accuracy in the measured data by analyzing a larger number of pulses than in 
the current measured data. A second approach involves measuring the detector response matrix 
in order to validate the simulated response matrix. 
 
 

8. CONCLUSIONS 
 
The results presented in this paper show the existing capabilities and future potential of the 
SLSM for neutron source identification by unfolding pulse height distributions measured by 
liquid scintillation detectors. We showed that SLSM can be used to efficiently unfold unknown 
spectra from monoenergetic or continuous neutron sources. This capability was illustrated on 
both simulated and experimental data obtained using a Cf-252 neutron source. In particular, we 
showed that the Cf-252 source can be identified within minutes, which is of paramount 
importance in nonproliferation applications. 
 
Future work will include an extensive analysis and assessment of the influence of statistical 
fluctuations, measurement time, measurement error, and shielding effects on the evaluated 
spectra data. Smoothing techniques will also be investigated to improve the quality of the 
continuous spectra unfolding. 
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