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Abstract

The purpose of our paper is to discuss the choice of basis selection for Knyazev’s lo-
cally optimal block preconditioned conjugate gradient (LOBPCG) method. An inap-
propriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh-
Ritz analysis that can delay the convergence or produce inaccurate eigenpairs. We
demonstrate that the choice of basis is not merely related to computing in finite
precision arithmetic. We propose a representation that maintains orthogonality of
the basis vectors and so has excellent numerical properties.
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1 Introduction

Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG)
method [7] is a recent approach for the numerical solution of the large-scale
generalized symmetric positive definite eigenvalue problem

Au = Muλ,
(
A,M ∈ Rn×n

)
, (1)

where A and M are symmetric positive definite matrices. In combination
with a symmetric positive definite preconditioner, recent papers [2,9] showed
that LOBPCG is a powerful algorithm for computing approximations to the
smallest eigenvalues and eigenvectors.

Email addresses: ulhetma@sandia.gov (U. Hetmaniuk), rblehou@sandia.gov
(R. Lehoucq).
1 Sandia National Laboratories is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Preprint submitted to Journal of Computational Physics 21 October 2005



LOBPCG minimizes the Rayleigh quotient of (1) by performing a Rayleigh-
Ritz analysis with the subspace S spanned by X and X−, the block of cur-
rent and previous iterates, and H, the block of preconditioned residuals. The
Rayleigh-Ritz analysis computes the new block of iterates X+ whose span
provides approximation to the smallest eigenvectors of (1).

The choice of basis for S is important numerically. Early versions of LOBPCG
used the representation [X,H,X−]. This basis often led to ill-conditioned
Gram matrices in the Rayleigh-Ritz analysis that produced, according to
Knyazev [7], spurious eigenpairs. This ill-conditioning stems from the con-
vergence of X and X− towards the same eigenvectors of (A,M). The goal
of our paper is to discuss the impact of basis selection. We demonstrate that
the choice is not merely related to computing in finite precision arithmetic.
We also propose a representation that appears to have excellent numerical
properties.

Our paper is organized as follows. In section 2, we review the LOBPCG al-
gorithm and we justify why, through the Rayleigh-Ritz analysis, the choice of
basis for S is important. Then section 3 presents examples that require special
care in the basis selection. Finally, section 4 proposes a representation and we
illustre its efficiency on a numerical problem.

2 Overview of LOBPCG

First we introduce some notation.

• N is a symmetric positive definite preconditioner for the matrix A.
• nev denotes the number of eigenpairs to compute.
• (Y, Θ) = RR(S, b) performs a Rayleigh-Ritz analysis where the pencil

(STAS,STMS) has eigenvectors Y and eigenvalues Θ, i.e.

STASY = STMSYΘ and YTSTMSY = Ib×b,

where Ib×b is the identity matrix of size b× b. The first b pairs with smallest
Ritz values are returned in Y and in the diagonal matrix Θ in a non-
decreasing order.

2.1 Algorithmic description

Algorithm 1 provides a pseudocode for LOBPCG. For an efficient implemen-
tation of LOBPCG, we refer the reader to [9]. In particular, the matrices A,
M, and N can be accessed only once per iteration by storing the blocks of
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vectors: Xk, AXk, MXk, HI , AHI , MHI , PI , API , MPI , and RI . For a ver-
sion where the blocksize of Xk is independent from nev, we refer the reader
to [2].

Algorithm 1 LOBPCG

1: Select an initial guess X̃ ∈ Rn×nev.
2: X0 = X̃Y where (Y, Θ0) = RR(X̃, nev).
3: RI = KX0 −MX0Θ0.
4: PI = [].
5: For k = 0, 1, 2, · · · do
6: Solve the preconditioned linear system NHI = RI .
7: Let S = [Xk,HI ,PI ] and compute (Y, Θk+1) = RR(S, nev).
8: Xk+1 = [Xk,HI ,PI ]Y.
9: R = KXk+1 −MXk+1Θk+1.

10: Set RI with the unconverged columns of R.
11: Set YI with the columns of Y associated with the unconverged columns

of R.
12: PI = [0,HI ,PI ]YI .
13: end For.

At the k-th iteration, LOBPCG minimizes the Rayleigh quotient on the sub-
space S spanned by [Xk,HI ,Xk−1]. Knyazev [7] noticed that the span of
[Xk,HI ,PI ] is mathematically equal to the span of [Xk,HI ,Xk−1]. The co-
lumns of the former matrix are better conditioned than the columns of the
latter matrix. So, in Algorithm 1, the subspace S uses the representation
[Xk,HI ,PI ].

Through the function RR, the Rayleigh-Ritz analysis computes approxima-
tions to the eigenvalues of (A,M). This analysis also guarantees the M-
orthonormality of the block Xk+1. Indeed, we have

XT
k+1MXk+1 = YTSTMSY = Ib×b

by definition of the function RR. So the Rayleigh-Ritz analysis is important
for LOBPCG. In the next section, we will show that the choice of basis for S
is important for the Rayleigh-Ritz analysis.

2.2 Comments on the Rayleigh-Ritz analysis

When the basis for S is ill-conditioned, inaccurate eigenpairs originate in the
Rayleigh-Ritz step. We give two explanations for the origin of this inaccuracy.

The first one is theoretical. For any full-column rank matrix S, we can pair any
Ritz value θj for the pencil (STAS,STMS) with an eigenvalue λj′ of (A,M)
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such that

|λj′ − θj| ≤
‖AS−MSL−1(STAS)L−T‖M−1√

λmin(STMS)
(2)

where L is the Cholesky factor of STMS and λmin(S
TMS) is the smallest eigen-

value of STMS. This result is proved in Parlett [11] (see Theorem 11.10.1). In
other words, the bound (2) shows that the accuracy of a Ritz value degrades
as the columns of S depart from M-orthonormality.

The second reason is numerical. In practice, the generic function RR calls the
LAPACK routine DSYGV [1]. This routine computes a Cholesky factorization,

STMS = LLT ,

and the eigenpairs (zj, θj) of the transformed matrix L−1(STAS)L−T . This
algorithm is known to be numerically unstable when STMS is ill-conditioned.
The computed eigenvalues θj can differ from the true eigenvalues θ̂j by at most

|θ̂j − θj| ≤ Cε‖(STMS)−1‖2

(
‖STAS‖2 + |θ̂j|‖STMS‖2

)
(3)

(see [1] for further details) and the Ritz vectors yj,

yj = L−Tzj,

may not be orthogonal to machine precision. Indeed, even if the eigenvectors
zj are orthonormal up to machine precision,

zT
i zj = O(ε), (i 6= j),

the vectors yj satisfy

yT
i STMSyj = O

(
εκ(STMS)

)
, (i 6= j), (4)

where κ(STMS) is the condition number of the Gram matrix STMS.

To illustrate the sharpness of (4), we consider the pencil (In×n,Hilb(n)), where
Hilb(n) is the Hilbert matrix of size n. We compute the associated eigenpairs
(yj, θj) with the routine eig of Matlab [10], using the Cholesky factorization of
the Hilbert matrix. In Figure 1, we plot the maximum error in orthogonality,

max
i6=j

|yT
i Hilb(n)yj|,

and this maximal error scaled by the condition number of the Hilbert matrix,

maxi6=j |yT
i Hilb(n)yj|

κ(Hilb(n))
,

when the size n increases. We note that the maximal error scaled by the
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Fig. 1. Orthogonality error of eigenvectors for the pencil (In×n,Hilb(n))

condition number remains bounded when the size n increases.

So ill-conditioning in the matrix S can produce, through the routine DSYGV,
inaccurate eigenpairs. One solution would be to selectively discard columns
of S to improve the conditioning of the basis. Unfortunately, when doing so,
the convergence of LOBPCG is delayed because the Rayleigh quotient is not
minimized on the largest available subspace. Furthermore, the criterion for
selectively discarding is empirical—there exists no theoretical justification. In
[9], the authors suggest discarding the search directions PI . However, the block
of vectors [Xk,HI ] can remain ill-conditioned.

Another solution would be to replace the LAPACK routine DSYGV with an
efficient and backward stable algorithm for the Rayleigh-Ritz analysis. Unfor-
tunately to the best of our knowledge, such an algorithm, which would also
exploit the symmetry of symmetric generalized eigenproblems, has yet to be
implemented. Chandrasekaran [3] and Davies et al. [4] have proposed potential
solutions but without proving the optimality of their algorithm. Consequently,
for the remainder of this paper, we assume that the function RR calls the LA-
PACK routine DSYGV.

In the next section, we present simple examples where the representation
[Xk,HI ,PI ] is singular or ill-conditioned.
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3 Examples of problematic [Xk,HI ,PI ]

3.1 Initial guess from a Krylov space

We assume that the preconditioner is the identity matrix. Let U be a full-
column rank block of b vectors such that U and A−1MU are linearly inde-
pendent. Using the notation of Algorithm 1, we define the following block of
vectors

X̃= [U,A−1MU],

X0 = X̃Y, where (Y, Θ0) = RR(X̃, 2b),

RI =AX0 −MX0Θ0.

The rank of X0 is in general 2b. On the other hand, we can prove that the
rank of RI is at most b. We rewrite the residual as follows

RI =
(
AX̃−MX̃YΘ0Y

−1
)
Y,

RI =
(
AX̃−MX̃(X̃TMX̃)−1(X̃TAX̃)

)
Y.

With the definition of X̃, we have

(X̃TMX̃)−1(X̃TAX̃) =

 ? Ib×b

? 0b×b


where 0b×b is the zero matrix of size b× b. And so we obtain

RI = [R̃,0n×b]Y,

which proves that the rank of RI is at most b. Therefore, the representation
[X0,RI ] is not of full-column rank and the routine DSYGV will fail because
of this rank deficiency.

We note that a similar rank deficiency appears for the initial guess [U,M−1AU].
On the other hand, when the initial guess is set to [U,A−1MU+ εV] , where
ε is a small parameter, the representation [X0,RI ] will be ill-conditioned.

3.2 Rank deficient HI

We assume that the matrices A and M arise from the finite element discretiza-
tion of the Laplace equation with homogeneous Dirichlet boundary condition
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on the unit square. We use piecewise bilinear finite elements on an uniform
orthogonal grid. In each coordinate direction, we define m interior grid points.
The resulting matrices are of size n = m2 and, with a lexicographical ordering
of the grid points, have a bandwidth of m.

Let In×b be the first b columns of the identity matrix. Using the notation of
Algorithm 1, we define the initial guess

X̃ = In×b.

The rank of X0 is b, while the rank of HI is at most min(b, m) because
of the lexicographical ordering of the grid points. Therefore, the represen-
tation [X0,HI ] is not of full-column rank. For the Rayleigh-Ritz analysis, the
Cholesky factorization in the routine DSYGV will fail.

We note that the following initial guess

In×b +

 0b×b

εV

 ,

where ε is a small parameter, results in an ill-conditioned [X0,HI ].

3.3 Rank deficient [Xk+1,PI ]

From Algorithm 1, we remark that the new iterates Xk+1 and the updated
search directions PI are related. If we assume no convergence (Y = YI) and
we partition Y as follows

Y = [YX, YH, YP]T ,

then the updated search directions PI satisfy

PI = Xk+1 −XkYX.

Consequently, the block [Xk+1,PI ] is ill-conditioned when the update matrix
YX has columns with small norm.

We can generate such an example with a random initial guess X̃ (nev = 1)
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and the following matrices

A =



1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 5


, N =



108 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 5


, (5)

and the matrix M is equal to the identity matrix. For this particular case, the
smallest singular value of [X1,PI ] will be of order 10−8 and the conditioning
of

[X1,HI ,PI ]
TM[X1,HI ,PI ]

of order 1016.

3.4 An eigensolver as preconditioner

Let us drop the requirement that N is symmetric positive definite for this
subsection only. A general approach to solve a linear system iteratively is to
use the conjugate gradient algorithm preconditioned by a few iterations of
Jacobi or Gauss-Seidel method. Therefore we propose in this subsection to
use as a preconditioner a simple eigensolver.

This simple eigensolver will consist of one step of a Rayleigh-Ritz analysis on
the subspace spanned by [Xk,RI ], i.e. we set the block HI to

HI = [Xk,RI ]Ψ, where (Ψ, Φ) = RR([Xk,RI ], nev).

The resulting representation [Xk,HI ,PI ] will quickly become ill-conditioned
because the blocks Xk and HI will converge to the same eigenvectors of the
pencil (A,M).

All these examples demonstrate that the potential linear dependencies are not
merely related to computing in finite precision arithmetic. Knyazev [7] notes
also that when M is ill-conditioned and a high accuracy is required (i.e. small
residual norm), the Rayleigh-Ritz analysis may generate an ill-conditioned
Gram matrix STMS. Consequently, the representation [Xk,HI ,PI ] is not ro-
bust. In the next section, we propose a solution that defines an M-orthonormal
basis.
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4 A robust representation

4.1 Algorithmic modifications

First we introduce the orthonormalization function ORTHO such that, for
any symmetric positive definite matrix M, any input matrix W of size n× b,
and any input matrix Q of size n× q, the output matrix V

V = ORTHO(M,W,Q)

is of size n× b and satisfies

VTMV = Ib×b,

VTMQ= 0b×q,

Range(V)⊃Range(W).

We emphasize that the matrix V is of full-column rank and that its range con-
tains the range of the input matrix W. For an efficient block implementation
of ORTHO, we refer the reader to Stathopoulos and Wu [12], where they use
exclusively level 3 BLAS [5] and LAPACK [1] routines.

The modifications to build an M-orthonormal basis in LOBPCG are described
in Algorithm 2. They consist in adding two calls to the function ORTHO.

Algorithm 2 LOBPCG with an M-orthonormal basis

1: Select an initial guess X̃ ∈ Rn×nev.
2: X0 = X̃Y where (Y, Θ0) = RR(X̃, nev).
3: RI = KX0 −MX0Θ0.
4: PI = [].
5: For k = 0, 1, 2, · · · do
6: Solve the preconditioned linear system NH̃ = RI .
7: HI = ORTHO(M, H̃, [Xk,PI ]).
8: Let S = [Xk,HI ,PI ] and compute (Y, Θk+1) = RR(S, nev).
9: Xk+1 = [Xk,HI ,PI ]Y.

10: R = KXk+1 −MXk+1Θk+1.
11: Set RI with the unconverged columns of R.
12: Set Ỹ = [ỸX, ỸH, ỸP]T with the columns of Y associated with the

unconverged columns of R.
13: YI = ORTHO(STMS, [0, ỸH, ỸP]T ,Y).
14: PI = [Xk,HI ,PI ]YI .
15: end For.

The first call to ORTHO explicitly orthonormalizes the block HI against the
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current iterate Xk and the search directions PI . This functions requires a
minimum of one application of the matrix M and floating point operations
are of order O(n · nev2) + O(nev3). In comparison to Algorithm 1, the M-
orthonormalization is an additional cost. However, Algorithm 2 can replace
the matrix STMS with the identity matrix and so avoid computing STMS
(which is also O(n · nev2)).

The second call to ORTHO implicitly orthonormalizes the block PI against
the current iterate Xk+1. Indeed, we have

XT
k+1MPI =YTSTMSYI = 0nev×nev

PT
I MPI =YT

I STMSYI = Inev×nev

by definition of the function ORTHO. This second call to ORTHO does not
involve the matrix M nor the block of vectors Xk+1 and PI . The number of
floating operations performed is O(nev3). For large matrices, where n � nev,
this additional cost is negligible in comparison, for instance, to the update
step,

PI = [Xk,HI ,PI ]YI ,

which require O(n · nev2) operations.

These modifications do not modify the subspace S where the Rayleigh quo-
tient is minimized. Consequently, when the matrix S is well-conditioned, con-
vergence properties remain unchanged. Algorithm 2 does not depend on a
heuristic criterion but only upon a robust and stable procedure for orthogo-
nalizing blocks of vectors. With an M-orthonormal basis, the Rayleigh-Ritz
analysis is now performed on a subspace of maximal size because the repre-
sentation [Xk,HI ,PI ] is always of full-column rank.

In [9], the authors discard the search directions PI to handle ill-conditioned
STMS matrices. This choice appears helpful for their particular experiments
but, as pointed out in section 2.2, no theoretical justification exists. Moreover,
the block of vectors [Xk,HI ] can still remain ill-conditioned (see section 3).
Finally, discarding search directions can delay the convergence of LOBPCG
because the Rayleigh-Ritz analysis is not performed with all available infor-
mation.

Algorithm 2 does not fail on the examples described in section 3. Next, we
illustrate the numerical performance of this modified algorithm on a practical
engineering problem.
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4.2 Numerical experiment

The example stems from an homogeneous linear elastic problem. The pencil
(A,M) is of order n = 48, 000. These matrices result from the finite element
discretization of an elastic tube. The mesh has 16,080 vertices and is depicted
in Figure 2. Homogeneous Dirichlet boundary conditions are enforced on the

Fig. 2. Mesh for the elastic tube model

outer left radial face. The matrix A has 3,218,400 non-zero entries and so does
the matrix M.

The codes are implemented in C++, using the Trilinos [6] project. This project
provides, through a collection of classes, the algebraic operations and several
preconditioners.

A strength of LOBPCG is the ability to use black-box multigrid precondition-
ing of the matrix A (black-box means that the preconditioner N is available
only as a function performing N−1R—see [8] for further details). For our
experiments, we choose a smoothed aggregation algebraic multigrid (AMG)
preconditioner [13].

We compute the first 4 and the first 16 eigenpairs of the pencil (A,M), using
both algorithms. We use the same initial guess for both algorithms, which is
generated randomly. A pair (x, θ) is considered converged when the criterion

‖Kx−Mxθ‖2

‖x‖M
≤ θ · 10−6

is satisfied.

When computing the first 4 eigenpairs, the dimension of subspace S decreases
from 12 to 6 (by definition of RI and PI). Algorithms 1 and 2 converge with the
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same number of iterations. Algorithm 2 is more expensive because of the M-
orthonormalizations. For this particular example, the additional cost increased
the CPU time by 20% on a 1 GHz PowerPC G4 with 1GB of memory.

On the other hand, when computing the first 16 eigenpairs, the dimension of
subspace S decreases from 48 to 18. Algorithm 1 builds several ill-conditioned
STMS matrices during the iteration loop. In particular, the basis [X1,PI ] is
extremely ill-conditioned (κ([X1,PI ]) ≈ 1018). The number of iterations is
then much larger than when using Algorithm 2. For this particular example,
the number of iterations with Algorithm 1 is almost three-times larger (64
iterations versus 189 iterations). Because of this slower convergence, Algorithm
2 is much faster.

We repeated the experiments with several random initial guesses. The conclu-
sions remained unchanged. We varied also the number of eigenpairs requested.
When computing up to the first 12 eigenpairs, the two algorithms converge
with similar number of iterations. When computing more than the first 12
eigenpairs, Algorithm 1 builds several ill-conditioned STMS matrices during
the iteration loop and, consequently, requires more iterations.

When using black-box preconditioners for engineering problems, we can not
define relationships between Xk, HI , and PI that guarantee a well-conditioned
matrix S. Therefore we believe that Algorithm 2 is a robust solution that
guarantees a well-conditioned matrix S.

5 Conclusions

For LOBPCG, the choice of basis for S is important numerically. An inap-
propriate choice of basis can lead to ill-conditioned Gram matrices in the
Rayleigh-Ritz analysis that can delay the convergence or produce inaccurate
eigenpairs. Practical examples can generate rank-deficient or ill-conditioned
representations [Xk,HI ,PI ] for the subspace S.

In order to perform an accurate Rayleigh-Ritz analysis on the subspace S, we
propose computing an M-orthonormal basis. This solution depends only upon
a robust and stable procedure for orthogonalizing a block of vectors. Such an
M-orthonormal basis provides an accurate Rayleigh-Ritz analysis because the
matrix STMS is never singular nor ill-conditioned.

This orthonormalization has of course a cost, which can appear at first point-
less for simple problems. However, this M-orthonormal representation is ro-
bust and theoretically justified. For challenging engineering problems, this
solution results in a robust algorithm and can even reduce the total number
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of iterations.
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