Simple measurements with GREAT impact : Nuclear Modification Factors

Camelia Mironov

Is A+A just a 'bunch' of 'p+p'?

Au+Au vs. p+p

Au+Au : initial +final state effects

pp : 'simple'

We NEED ALSO A collision system to disentangle the initial-final states effects

 \rightarrow p (d) + Au – 'no final state effects'

Quantify deviations of A+A from p+p?

!!! Simplest: divide AA spectra to pp spectra!!!! →

NUCLEAR MODIFICATION FACTORS

Quantify deviations of A+A from p+p

NUCLEAR MODIFICATION FACTORS

$$R_{AA}(p_{T}) = \frac{\frac{d^{2}N^{AA}}{dp_{T}dy}}{\sigma_{in}^{pp}T_{AA}(b)^{*}d^{2}N^{pp}}/dp_{T}dy} R_{CP}(p_{T}) = \frac{\frac{N_{coll}^{peripheral}}{N_{coll}^{central}}}{\frac{dN_{central}^{2}}{dp_{T}dy}} \frac{\frac{dN_{central}^{2}}{dp_{T}dy}}{\frac{dN_{peripheral}^{2}}{dp_{T}dy}}$$

$$\Rightarrow \text{ Need one collision system}$$

$$\Rightarrow \text{ systematic errors cancel out}$$

ASSUMPTION: both ratios exhibit the same behavior because of the same underlying physics

Information via R_{XX}

 \rightarrow R ~1 -- no nuclear effects:A+B = C * (p+p)

➔ deviation from 1 indicate presence of nuclear effects:

 \rightarrow R>1 \rightarrow enhancement (usual explanation: soft scatters before hard collision)

Nuclear modification factors for

h+-

 R_{AA}/R_{CP} : h[±]

Charged Hadrons:

 \rightarrow Au + Au : R_{CP} and R_{AA} ~ suppression

→ d + Au : R_{CP} and R_{dA} ~ enhancement (Cronin effect – experimental observation and not the explanation) → initial effects 'not responsible' for AuAu suppression

12

→ pQCD+final (energy loss) + initial (Cronin+shadowing) describes data → dense medium created in central AuAu !!!!!

STAR

Final state hadronic rescattering?

→ Final hadrons with moderate pT could be fully established inside the late stage of the hadronic fireball → interaction with the bulk hadronic matter→ suppression

NOT (entirely)!

Conclusions from h+-

→ R_{AA} , R_{dA} and R_{CP} give same information

→ Au+Au suppression can NOT be explained entirely by ..:
 → hadronic rescattering
 → initial state effects

∧(uds) 1116 (MeV/c²)

K(us) 494(MeV/c²)

p + p d + Au Au + Au

E(dss) 1321 (MeV/c²)

K⁰_s(ds) 498(MeV/c²)

Do all these particles have anything extra to add to what

unidentified charged hadrons revealed already?

 $\phi(ss)$ 1020(MeV/c²)

Nuclear Modification Factors for K, Φ , π , Λ , Ξ , p ...

R_{CP}: identified hadrons

→ Baryons suppressed ~ 2.5GeV/c

→ Mesons suppressed ~ 1.5GeV/c

Au + Au: Theory explain R_{CP} ...

Topor-Pop, Gyulassy, Barrette, Gale, Wang, Xu nucl-th/0407095

1 + 2 - 6

→HIJING/BBv2.0: HIJING + jet quenching + shadowing +

baryon junction + strong color field effects

→ additional production mechanism for baryons (junctions)

Fries, Müller, Bass, Nonaka Phys. Rev. C 68 (2003) 044902

→ ReCombination

amelia mironov

-assumes the recombination of two and three low pT partons to form hadrons from an exponential parton pT spectrum.

 \Rightarrow R_{xx} different for mesons and baryons (fragmentation dominates later for baryons than for messons) !!

R_{CP} Theory

Fries et al nucl-th/0306027

Recombination describes fairly well the baryon – mesons differences

Reco for K0s and Λ + Λ bar

Central(b=3fm) / Peripheral (b=12fm)

Topor-Pop et al (nucl-th/0407095)

... same Hijing/BBbar v2.0

Hijing/BBbar v2 0-10% / 60-90%

For K⁻ + K⁺ and Λ+Λbar

amelia mironov

R_{AuAu}: identified hadrons

R_{AuAu}Theory ...

Topor-Pop (private comunication and nucl-th/0407095)

d+Au: identified hadrons

→ both ratio present enhancement compared to binary scaling
 → similar to AA, there seem to be a difference between mesons and baryons
 → also R_{dA} (baryons) > R_{CP} (baryons) (error bars)

23

To explain...

- 1. Kopeliovich, Nemchik, Schafer, Tarasov Phys. Rev. Lett. 88(2002) 232303
- 2. Vitev, Gyulassy Phys. Rev. Lett. 89 (2002) 252301
- <u>3. X.N. Wang Phys. Rev. C 61(2000) 064910</u>
- 4. Accardi, Trelani Phys. Rev. D 64(2001) 116004
- 5. Zhang, Fai, Papp, Bernafoldi, Levai Phys. Rev. C 65(2002) 034903

~2-4 GeV/c

рт

Rescatterings (projectile hadron or its partons) PRIOR to the hard collision cause a broadening of the p_T spectrum

1.Hwa, Yang nucl-th/0404066 Recombination model (Oregon)

FINAL STATE recombination of partons determine the enhancement of the nuclear modification factor

$R_{dA}/R_{CP}(d+Au)$: theory and experiment

Kopeliovich, Nemchik, Schafer, Tarasov - Phys. Rev. Lett. 88(2002) 232303

Do we understand the baseline anyway?

- \rightarrow 2 different hadronization describe data
- \rightarrow R_{CP} suppression BUT when ratio to p+p (R_{AA}) enhancement for strange baryons
- DO WE UNDERSTAND THE BASELINE (p+p)?

Conclusions from identified hadrons

- → R_{AB}/R_{CP} HAS TO BE TREATED SEPARATELLY (at least until an explanation/scaling for the R_{AB} strangeness ordering is found)
- →Au+Au, d+Au: difference between mesons and baryons in the intermediate pT region
- ➔ models assuming different hadronization scenarios, qualitatively describe data ➔ need other probes

Other probes to answer the questions

DO JET ANALYSIS with identified particles

- \rightarrow in p+p, d+A and A+A
- \rightarrow trigger on mesons and baryons
- \rightarrow trigger on strange and non-strange baryons and meson

- \rightarrow Looking at near side - \rightarrow hadronization mechanisms
- \rightarrow Looking at the away side \rightarrow medium properties.

And the scene is set for the next (experimental) talks!

Just_in_Case plots

Hadronization ReCo(Oregon)...

Fqq(p1,p2) = TT + TS + S2 + SS

Quark-antiQuark distribution

🔨 camelia mironov