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ABSTRACT 

We present a fast technique for determining the plasma electron temperature T, 
automatically from the small signal application of the asymmetric double Langmuir 

probe when it is operated in the region where -1 < eVa/Te < 1. The method 

described here is based on simple time and rms averages of the probe current that 

results from a sinusoidally varying applied voltage V,. 
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I. INTRODUCTION 

As discussed in Ref. 1, the asymmetric double Langmuir probe (ADLP) can be 

used to measure plasma electron temperature T, and density pt when it is operated 

in the region of small signal response. The area of one of the ADLP collectors is 

considerably larger than the other. In this probe application, the applied voltage 

is relatively low, eVa/Te < 1, since there is no need for direct measurement of the 

ion saturation current in order to unfold the plasma T, and n. As a result, the 

requirements on the probe power supply are considerably eased.' 

In this work, we present a fast technique for automatically determining the 

plasma T' from the small signal application of the ADLP when it is operated in 

the region where -1 < eVa/Te < 1. The method is based on simple time and rms 

averages of the probe current that results from a sinusoidally varying applied voltage 

V,. We then present an application of the method, followed by a brief discussion of 

its implement at ion. 

11. PRINCIPLE OF THE METHOD 

The basic parameters of the ADLP and its operation are not revisited here, 

since they are widely available in the literature.'l2 Therefore, we start our discus- 

sions on the principle of this probe method by recalling' the current-voltage ( I ,  Va) 

characteristic of an ADLP in which the ratio of collector areas A1/A2 << 1: 

I = I+ [l - exp( eVa/Te)l , (1) 

where I+ is the ion saturation current, given by 

1, = 0.5enAl[(T, + q) /m; ]0 .5  . (2) 

Here Al and A2 are the areas of the small and the large collectors, respectively; e is 

the electronic charge; and Ti and mi are the ion temperature and ion mass, respec- 

tively. We should note that Eq. (1) differs significantly from the functional form of 

a single-ended Langmuir probee3 For example, this equation carries no information 

about the plasma space potential or about the electron saturation current. If we 

apply a sinusoidal voltage Va(t)  = V sinwt, where V i s  the amplitude and f = w/%r 

1 
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is the frequency of the signal, to the ADLP, then the corresponding probe current 

is 

I ( t )  = I+[I - exp(a sinwt)] (3) 

with CY G eV/T,. We now calculate the simple time and rms averages of this current: 

I(dc) z ( 1 / ~ )  IT dt  I ( t )  = I+[1 - 10(a)] , (4) 

12(rms) ( 1 / ~ )  dt 12(t)  = I:[l - 2Io(a) + Io(2a)l , IT ( 5 )  

where T = l /f  and Io is the zero-order modified Bessel function. 

The ratio of these currents is 

In Fig. 1, R( a) is displayed for 0 < a 5 1. We observe, that if R is measured 

from the experiment of interest, the plasma T, can readily be obtained from the 

figure. Then for f i  M Te, the plasma density follows directly from Eqs. (2) and (4) 

with the value of I(dc). 
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111. APPLICATION 

As a demonstration of this technique, we carried out an experiment on a test 

plasma with the ADLP, as described in Ref. 1. The amplitude of the applied signal 

used was 5 V with a period of T = 10 ms. The measured asymmetry in the probe 

current was II(t = ~ / 4 ) / I ( t  = 3 ~ / 4 ) 1  = 2. In fact, this characteristic current 

asymmetry was used in determining the electron temperature of the test plasma in 

previous work' in which T, =: 7.2 eV was found, corresponding to (Y = eV/T, = 

0.69. For these parameters, in Fig. 2(a), we show Va(t) and the resulting probe 

current I(  t ) / I + ,  which i s  given by Eq. (3). We also display I(i) measured from the 

experiment in Fig. 2(b). Comparison of the results shown in these figures indicates 

that the model of the probe current, Eq. (3), predicts the behavior of the ADLP 

very well. 

The need for independent calculations of i(dc) and I(rms) can be met numer- 

ically simply by taking small time intervals At = T / N  in their integral functional 

forms, Eqs. (4) and ( 5 ) ,  and then performing the resulting summations: 

~ ( d c )  ( 1 / ~ )  l ( t j >  7 (7) 

P(rms)  x (I/N) ~ ' ( ( t j )  , (8) 

j 

j 

where t j  = j A t  and j = 1, . . . , N .  Choosing N = 20 as an example, we obtain 

i (dc) / I+ = -0.1243 and I(rms)/I+ = 0.543. The absolute value of the current 

ratio is R = 4.3685. For this R d u e ,  using Fig. 1, we find a! = 0.685, which 

differs by about 0.8% from the value we started with. Knowing the amplitude of 

the applied voltage, we find that the plasma temperature is simply T,/e = V/a .  

For convenience, the curve in Fig. 1 may be approximated by fitting a function 

to it. We find, for example, that 

which is also displayed in Fig. 1, gives a good fit to $qa (6). Bf we use the previous 

R value in Eq. (9), we find a x 0.7, with an error of about 1.5%. 
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Fig. 2. (a) Typical current response of the ADLP, I ( t ) / I + ,  resulting from an 

applied voltage Va(t)  = Vsin (%r t /~ ) ,  where, for this example, V = 5 V and T = 

SO Ins. (b) Probe current I ( t )  voltage drop measured over a 400-0 resistor during 

a test plasma experiment when this Va(t> is applied to the ADLP, as described in 

Ref. 1. 



IV. DISCUSSION 

Let us assume that the (I, Va) characteristic of the ADLP can be obtained with 

the help of a fast computer data acquisition system. In this case, the routine time- 

averaging operatioris defined by Eqs. (4) and (5) can be performed very rapidly and 

efficiently. Thus, the ratio R that we need is found relatively quickly. Furthermore, 

including Eq. (9) in this process makes the temperature measurements very simple 

and relatively quicker than the usual probe applications. 

The technique is applicable without computer-oriented calculations as long as 

I(dc) and I(rms) are obtained by some means. For example, this may be a set 

of commercially available analog devices4 that do not require computer-asssisted 

computation but nevertheless provide the needed information directly and relatively 

quickly. We believe that the flexibility of this method makes its application a simple 

and efficient one. Our plan is to implement the technique with analog devices. 

The frequency of the probe applied voltage should be determined so that the 

circuit and the probe stray capacities will have a minimal affect on and contribution 

to  the measured current. We also note that, if analog devices are used, the ADLP 

operating frequency will be affected by their performance characteristics. 
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