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The eigenvalue equations describing a cylindrical ideal magnetohydrodynamics plasma interacting
with a thin resistive wall are presented in the standard mathematical form, 4-x = AB-x, without
discretizing the vacuum regions surrounding the plasma. This is accomplished by using a finite
element basis for the plasma perturbations, and by coupling the plasma surface perturbations to
the perturbed electrical current in the wall using a Green’s function approach. The perturbed wall
current introduces a single additional degree of freedom into the system, which, together with an
auxiliary variable, u = wg, allows the system to take the standard linear form. The standard form
allows the use of linear eigenvalue solvers, without additional iterations, to compute the complete
spectrum of plasma modes in the presence of a surrounding resistive wall at arbitrary separation.
Standard results are recovered in the limits of (1) an infinitely resistive wall (no wall), and (2) a

zero resistance wall (ideal wall).

A common model used to investigate plasma stabil-
ity is that of an ideal magnetohydrodynamics (MHD)
plasma configuration surrounded by a nearby conduct-
ing wall. It is well known that the location and electrical
conductivity of the wall can have a profound effect upon
the eigenmodes and eigenvalues of the system. While
the complete mode spectrum of a configuration having
no wall or a perfectly conducting wall has been obtained
in previous numerical studies', the calculation of the
complete mode spectrum has not been extended to the
case where the surrounding wall has non-zero but finite
conductivity (a resistive wall).

Several approaches have been presented to calculate
the most unstable eigenvalue in the presence of a resis-
tive wall in which a Green’s function method is used to
represent the solution in the vacuum region. In these,
the eigenvalue appears nonlinearly and the most unsta-
ble mode is found by iteration."® While this is a valid
technique, it is inherently not as efficient as a linear eigen-
value problem and is not a practical approach for find-
ing the complete spectrum of modes. Another approach,
which maintains the linear nature of the eigenvalue prob-
lem, is to enlarge the computational domain by discretiz-
ing the vacuum regions surrounding the plasma.”

In the present paper, we show how the Galerkin
method can be used to convert the stability problem of
an ideal MHD plasma surrounded by a thin resistive wall
into a linear eigenvalue problem of the standard mathe-
matical form, without discretizing the vacuum regions.
This is achieved by introducing an auxiliary variable,
u = w§, and by adding an additional degree-of-freedom
(DOF) to the finite-element expansion of the plasma.
This additional DOF corresponds to the perturbed cur-
rent in the thin resistive wall, which is coupled to the
plasma, surface perturbation using a Green’s function ap-
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proach. The additional row in the eigenvalue matrix
equation is the equation for the jump condition across
the resistive wall of the perturbed magnetic field. The
present, paper deals only with a cylindrical plasma con-
figuration, but the approach could readily be extended
to non-circular and toroidal geometries.

The MHD equilibrium equation for a circular cylindri-
cal, (r,6,z), plasma is

pop' + (B%)' /2+ B} /r =0, (1)

where {}' = £ {} and all equilibrium quantities are only
a function of r. The linearized stability equations can be
expressed as

pu = wpk, (2a)
wpu=—-J x B—J x B + Vp. (2b)

Here B=V x (6 xB),J =V x B/ug, p = —¢ - Vp—
pV - €, € is the usual Lagrangian displacement, u has
been introduced so that the eigenvalue, w, only appears
linearly and the components of £ and u are allowed to
vary as ei(m@+kz—wt) The dependence on w is such that
a mode with Im(w) > 0 is an instability.

An appropriate set of projections must be chosen to ob-
tain accurate numerical results. The formulation here fol-
lows from using the set of projections that Appert et al.?
introduced, namely

G =&, &= (& +imé)/r,

with a similar set of projections for u.
Each of the unknown eigenfunctions, & (r) ... us(r), is
expanded as a sum of N expansion functions,

Q) =268(r), &) =26x;(r), 4
&(r) =D &s5x;(r), etc.

Using these expansions, the set of projections in Eq. (3)
has the property that

V- £ = Elj‘;zs; +£2ij + £3ija (5)
Vou=uy;¢) + uz;x; + usjx;

53 = /Lké-z ) (3)



which suggests that, in order for the compression to be
arbitrarily small over a given grid interval, ¢;(r) should
be a polynomial of one order higher than x;(r). One
choice is to use a linear (tent) element for ¢;(r) and a
constant (hat) element for x;(r).® However, we have used
a cubic B-spline for ¢;(r) and the derivative of a cubic
B-spline for x;(r).

Making the substitutions of Eqs. (3) and (4) into Eq.
(2) then taking the projections

fo dr réi(r) (r - —0)

- . (6)
foa dr ry;(r) (%9) , fo dr rxi(r) 2,
yields a system of equations of the form
wA-x=B-x. (7

The matrices A and B are made up of N x N submatrices
of size 6 x 6 such that the 4, j*" submatrix involves the in-
ner product of the ! test function and the j*" expansion
function, and x is the vector of 6 N unknown coefficients,
x = [§11,621, €31, U115 U21,u31, 10 - -, UN]-

The key to coupling the plasma displacement to the
vacuum comes through the £ projection of Eq. (2b). One
term that comes from applying the first projection of Eq.
(6) to Eq. (2b) is

[ g

which is integrated by parts to yield

_ B-B «f B-B
<p+7> 7‘¢i(7")]rza—/0 <P+ m )7"—¢z()

(9)
The part at 7 = a can be replaced by the vacuum field
using the jump condition

[(7+B-B/uo) ] ar ®)

=[B-B/w] . (0

vac

[15 +B-B/ Mo]
plasma
where the vacuum side is calculated next.

Let a thin resistive wall be placed at » = b where b > a.
Assume there is a vacuum in the regions a < r < b, which
will be the inner region, and r > b, which will be the outer
region. The perturbed magnetic field, B= V&, in these
two regions will satisfy V- B = V2® = 0. The general
solutions in the two regions are

(k,r)]ei(me—}-kz—wt) (1 la)
(11b)

Qin = [Cle(k’l“) +Cz[m
D, = [CBKm(kT,)]ei(m9+szwt)’

where C1, Cs, C5 are constants, and K, and I,,, are mod-
ified Bessel functions. Note that the resistive wall is of
conductivity, o, and thickness, d, with d/b < 1, such
that 7, = poobd is the resistive wall diffusion time.

The boundary conditions at the plasma surface and
resistive wall, to lowest order in d/b, are®

n-Bi, = n-Vx(¢xB),_, (12a)
r=a
n-Bin| = n-Bouw (12b)
r=b r=b
TWTywh ~
q)out(r) - an(r)l —_p = _711111 -B; (12(})
r=b m2 + k22 in s

After substituting Equations (11) into these boundary
conditions we have a system of 3 equations that could be
solved for the three unknown coefficients, C;, in terms
of the boundary displacement & (a). However, solving
for all three has the consequence that w ends up in the

so that the standard form, Eq.

vac

(7), cannot be obtained.

Instead of solving for all of the unknown C’s, let
us only use Equations (12a) and (12b) to solve for C;
and C3 in terms of Cy and & (a). Cy can then be ex-
pressed in terms of the perturbed current in the wall,
Jrw = V(jselmothz—wt)) 5 & through the relation

denominator of [B . 1~3}

js = Cg (ijb — Ibkb) /Kb//l,o. (13)

If there is no perturbed current in the wall, then Cy = 0,
which is correct for having no wall. Using the C; in terms
of js and & (a) yields

wwaKb
(m? + k202K,

LKy—LK.|
LK, - LK, |
(14)

for the jump condition of the perturbed magnetic field
across the wall, Eq. (12c), and

[gl( ) — poJsik—

= .. ILK,—I,K, K K,
[B'B/uo} = jsia—— —b—€ (a)a® —=
vac I[,Kb Ibe p,()k‘Ka
(15)

for the vacuum perturbed pressure. The notation used
is @ = mBy(a)/a + kB,(a), K, = Kp(ka), K, =

[d(kr) (kr)] L etc.

To include the interaction of the plasma with the re-
sistive wall, the following modifications to Eq. (7) are
made. js is an additional unknown in the DOF vector,
x, which adds a single column to A and B. The addi-
tional equation (row) for these matrices is given by Eq.
(14). (The rank of the matrices is only changed from
6N to 6N + 1.) Finally, the vacuum perturbed pressure
given by Eq. (15), which includes j,, is substituted into
Eq. (9) using Eq. (10).

To recover the jump condition for an ideal wall [no
wall], solve Eq. (14) explicitly for j, in the limit 7, = oo
[T = 0] then substitute this j, into Eq. (15) which goes
into Eq. (9).

By including the resistive wall boundary condition as
an additional equation, the eigensystem takes the stan-
dard form of a generalized eigenvalue equation which can
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FIG. 1: The growth rate of the unstable free boundary kink
mode depends on the location and time constant of the re-
sistive wall. The plasma has a constant axial current density
with a =1, B;(a) =15, Bp(a) =1, p=1, m=2, k= —-0.1
and the discretization grid has 20 points.

be solved with any standard matrix eigensolver (we have
used the LAPACK routine ZGGEV).

One profile of interest for examining the effects of
wall resistivity is a constant current density, pressureless
plasma. Let us choose a = 1, B;(a) = 15, By(a) = 1,
p=1,m=2,k=-0.1, yo = 1. This configuration has
one unstable eigenvalue corresponding to the free bound-
ary kink mode. The instability growth rate, I'[= Im(w)],
as a function of wall location (b/a) and time constant
(Tw) is shown in Fig. 1 for the plasma discretized on 20
grid points. As predicted previously,? the ideal wall sta-
bilizes the kink mode for a region of locations, b < b,
where b, =~ 1.19 for this case. Note that for b < b, a
resistive wall reduces I" but never completely stabilizes
the kink mode, and thus the kink is called a resistive
wall mode (RWM). The relationship between the RWM
growth rate and 7, is best seen in Fig. 2, which shows
that for large enough values of 7,,, the growth rate varies
inversely with the wall time, I’ & 1/7,,.

Because the resistive wall makes the problem non-self-
adjoint, it is interesting to look at the spectrum of w in
the complex plane as shown in Fig. 3. The wall location
is b = 1.01, which is within the range that the ideal wall
stabilizes the kink mode. Thus as the wall time, 7, is
varied from oo (ideal wall) to 0 (no wall), the spectrum
varies from having a stabilized kink mode (label 1) to
having an unstable and damped (4 and 7) no wall mode
(NWM). In between oo and 0, the damped resistive wall
mode (dARWM) shows up as the damped kink mode?® (1 to

2) as long as 7, 2 I'L, where I'y,, is the NWM growth
rate. For 7, S T',;} the dRWMs collapse onto the AINWM
(2 to 3 to 4), and a super damped mode appears (2 to 3
to 5) which arises because of the extra degree of freedom
introduced by including j, as an additional unknown with
Eq. (14) as an additional equation. At the same time
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FIG. 2: The product of the wall time and the growth rate of
the RWM (i.e. I'ty,) as a function of 7, showing that T" o< 7, *
for large enough wall times. The plasma parameters are the
same as those of Fig. 1. The number labels indicate the wall
location (b/a) for that curve.

that the damped modes are transitioning from the ideal
wall regime to the no wall regime (1 to 3) the resistive
wall mode growth rate increases (from 6 to 7) until it
plateaus at I';,,. The modes at 8, while unexpected, are
only damped for intermediate values of 7,, such that the
correct results are approached for 7, — 0o, 7, — 0. Note
that as the ideal wall is moved farther from the plasma
(not shown explicitly), the stabilized kink modes decrease
in magnitude along the real axis until they destabilize and
move along the ' axis toward the NWMs (1 to 6 to 4,7).

We have shown that it is possible to obtain a matrix
eigenvalue equation in standard form to solve for the en-
tire spectrum of an ideal MHD plasma, including the
interaction with a resistive wall, without discretizing the
vacuum regions. Adding the resistive wall only increases
the rank of the matrices in Eq. (7) from 6N to 6N + 1.
The extra DOF is the current in the wall, j;, and the
extra equation is the wall jump condition, Eq. (14). As
Tw — 0 we recover the results of having no wall, and as
Tw — 00 we recover the results of having an ideal wall.
The method of including the jump condition at the re-
sistive wall as an additional equation can be generalized
to a non-circular, non-cylindrical geometry by having an
additional equation for each poloidal harmonic, m, the
details of which are shown elsewhere.!® An equilibrium
flow to stabilize the RWM'"!? can be added to Eq. (2)
very simply'®, and this stabilization will be shown later.
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FIG. 3: Ideal MHD spectrum in the complex plane for various values of 7, with the plasma parameters of Fig. 1 and b/a = 1.01.

The letter-labelled modes are: F) Fast; A) Alfvén; S) Sound.
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