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Abstract

A line search method that uses directions of negative curvature for the optimization of ground and excited state

multiconfigurational self-consistent field (MCSCF) wavefunctions is suggested. The method is applicable to general

MCSCF wavefunctions and not restricted to specific classes of model spaces, such as CASSCF functions. It is shown

that the approach can be implemented with Newton or quasi-Newton methods for determination of descent directions.

Thus, the method is particularly promising for cases in which it is inconvenient or costly to calculate exact curvature

matrices. We demonstrate the viability of the approach by numerical example on the difficult BeO problem. � 2002

Published by Elsevier Science B.V.

1. Introduction

The Multiconfigurational Self-Consistent Field
(MCSCF) approximation to nondynamical corre-
lation is well established in molecular electronic
structure theory (see, for example, Reviews [1–5]).
Nonetheless, the issue of convergence cannot be
considered wholly solved. There are at least two
classes of convergence problems that continue to
be investigated actively: first, those characterized
as topologically simple but of very large dimension

parameter space, and second, those characterized
as of more moderate parameter space but topo-
logically challenging. The ground electronic states
of many moderate to large molecules fit into the
first category; we are not interested in these in this
Letter. We consider problems of the type gener-
ated from moderate-sized one-electron active
spaces and substantial multiconfigurational char-
acter. Convergence is particularly challenging for
excited electronic states, especially in the proximity
of other states.

On discussion of optimization of MCSCF ex-
cited states, the issue of ‘best’ representation of an
excited state is necessarily relevant. The question
of the ‘best’ representation of the Nth exact state
by an MCSCF wavefunction is a subtle question.
One possibility is the Nth state of a CI calculation
using the converged MCSCF orbitals. As was
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demonstrated in [6,7], a set of parameters based on
other criteria may be more advantageous in some
cases. The method we discuss can be applied in
principle to a variety of definitions of ‘best’. It is
most straightforwardly applied to the situation
where the Nth state of the MCSCF CI, guarded
against uncontrolled deterioration of low-lying
surfaces, is the ‘best’ representation and it is in this
context that the method is described.

The topological problem is that of a nonlinear
equality-constrained problem (NEP) (see e.g., [8]):
we seek the lowest value of an energy-like function
in the parameter space of orbital rotations subject
to the energy-like function adequately representing
the Nth excited state. In this Letter, we explore the
ability of a step-length algorithm, which actively
uses directions of negative curvature, in the context
of the MCSCF minimization problem on a mani-
fold. To the best of our knowledge, such investi-
gations have not been previously described in the
literature. However, it is interesting to note that the
issue of directionality along modes of curvature
contrary to the desired motion has been addressed
in molecular geometry optimization (see, e.g., [9–
11]). Although, the specific approach we discuss
herein has not been considered in such context. The
remainder of this Letter is divided into six addi-
tional sections. The issue of search direction is de-
scribed in the following section. Section 3 discusses
step length. Section 4 contains a description of the
computational details of our algorithm. Section 5
introduces a model problem that illustrates a pos-
sible nondifferentiability and a modification of the
optimality function. Section 6 provides illustrative
calculations on the three lowest 1Rþ states of BeO,
which have been considered by other methods.
These states are known to be difficult problems for
MCSCF description and provide a severe test. A
final section summarizes this work.

2. Search direction

Let us choose as a basis for describing varia-
tions of the molecular orbitals used to construct
the wavefunction the set of nonredundant orbital
rotations [12–15]. More specifically, if we have a
set of molecular orbitals, fj/ð0Þig, which are re-

lated to a set of atomic orbitals by a coefficient
matrix, Cð0Þ, then all sets of molecular orbitals can
be described as

CðkÞ ¼ Cð0ÞeNðkÞ
; ð1aÞ

where NðkÞ is an anti-hermitian real matrix,
½NðkÞ
T ¼ �NðkÞ. Alternatively, we can represent the
orbitals in terms of the orbitals of the preceding
iterations,

CðkÞ ¼ Cðk�1ÞeX
ðkÞ
; ð1bÞ

where the NðkÞ of Eq. (1a) and the XðkÞ of Eq. (1b)
are related. We choose the latter representation.
We are cognizant of the issue of changing refer-
ence frames and take it into account in our up-
dating procedure (vide infra). A direction
expressed in this basis is a vector, x, whose coef-
ficients are the components of the lower triangle of
X arranged as a vector. Throughout this Letter,
the iteration number is suppressed when there is
no ambiguity.

Imposing our constraint to the manifold defined
by the Nth MCSCF CI root, the energy function
can be written as,

EðxÞ ¼ EnðxÞ ¼
hwnðxÞjHðxÞjwnðxÞi

hwnðxÞjwnðxÞi
: ð2Þ

A more general energy-like function can be con-
structed by use of a weighting vector,

EðxÞ ¼
X
i

wiEiðxÞ; ð3Þ

where each of the energies are defined as in Eq. (2).
Eq. (3) is to be recognized as the energy function
of a state-averaged MCSCF approach [15–18]. It is
at this stage that our suggested methodology dif-
fers from existing approaches. A Newton ap-
proach expands Eq. (2) or (3) to second order,
truncates, differentiates and obtains a set of linear
equations. The pitfalls of simplistic application of
this procedure are well known and well docu-
mented. Jørgensen et al. [19] introduced successful
trust-region implementations of the Newton ap-
proach. In such approaches, the problem of un-
constrained minimization is replaced by a
constrained subproblem [8]:

minimize gTk pk þ
1

2
pTkGkpk; ð4aÞ
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subject to kpkk2 6D; ð4bÞ
where gk � gðxkÞ is the gradient after the kth step,
Gk � GðxkÞ is the hessian, pk is the step, i.e.,
xkþ1 ¼ xk þ pk, and k � k2 is the Euclidean norm. If
necessary, trust-region methods (see, e.g., [8]) solve
first for a level shift, lk,

/ðlkÞ � kðGk þ lkIÞ
�1
gkk2 ¼ D; ð5Þ

whence the set of linear equations

ðGk þ lkIÞpk ¼ �gk ð6Þ
is solved.

Alternatives to trust-region methods, which are
widely used in the optimization literature, are step-
length-based methods (see, e.g., [8,20]). To define
the problem, let sk designate a nonascent direction,
i.e.,

sTk gðxkÞ6 0 ð1fÞ
and let dk designate a direction of nonpositive
curvature,

dTkGðxkÞdk 6 0 ð1gÞ
so that ðsk; dkÞ is a descent pair. The search is along
a curve of the form [21]

C ¼ fxkðaÞ : xkðaÞ
¼ xk þ /1ðaÞsk þ /2ðaÞdk; a P 0g: ð7Þ

Though there is active debate on the specific
functions /1ðaÞ and /2ðaÞ (cf. [21–23] and [8,20,24]
vis-�aa-vis modified Cholesky decomposition), it
appears that the general idea of utilizing descent
pairs in regions of indefiniteness has been firmly
established. In this work, we have adopted the
suggestion of Goldfarb [23] and take /1ðaÞ ¼ a
and /2ðaÞ ¼ a2. In particular, such algorithms
address two issues of central importance to
MCSCF optimization. Firstly, under very mild
conditions, they guarantee convergence to a mini-
mum, as opposed to other critical points (e.g.,
saddle points). The frequent neglect of proper
characterization of MCSCF wavefunctions has
been commented on repeatedly in the literature.
Secondly, whereas many optimization techniques
are useful in regions that are described well by
(local) quadratic approximation to the surface, the
issue of convergence far from a stationary point is

more problematic. It is then the primary task of
the optimization method to expeditiously search
towards the correct region.

Although in principle any descent pair can be
used in a line search algorithm with negative cur-
vature, some pairs will be better than others. On
the other hand, determination of the best descent
pair must be considered in light of computational
cost. In Section 4, we describe details of the hes-
sian or approximate hessian that we use; here we
describe aspects independent of the specific hes-
sian. The algorithm is straightforwardly described
in terms of spectral decomposition, and so it is
implemented in our pilot computer code, but it
must be emphasized that an efficient alternative
starting from a modified Cholesky factorization is
possible [20].

Suppose that

GU ¼ Uk; ð8Þ

where k is the diagonal matrix of eigenvalues of
the hessian matrix G. Then a step that minimizes
the local quadratic approximation (N.B. (Eqs.
(4a)–(6)) is

~ssi ¼
�1

ki þ li
~ggi; ð9Þ

where ~ggi ¼
P

j U
T
ij gj and si ¼

P
j Uij~ssj. In principle,

the level shifts, li, could vary, e.g., Gill-Murray
modified Cholesky decomposition [8], but there is
good theoretical reason [20] not to do so and we
adopt a constant shift. However, the step from Eq.
(9) is not completely satisfactory in all cases. Let us
suppose that we are cognizant that steps based on
negative denominators in Eq. (9) correspond to
directions of increasing function value, e.g., to-
wards a saddle point, and that we would choose a
sufficiently positive level shift to prevent such oc-
currence. Consequently, even though the direc-
tions relative to an undesirable stationary point
are acceptable, the curvatures may be severely in-
accurate. Consider that if the level shift is chosen
such that k1 þ lP e, e a small positive number,
then l may in fact be relatively large, so that ‘soft
modes’, i.e., k2; k3; . . . ki small (either positive or
negative), which should have large responses to
gradients, will not. In a step-length method that
uses directions of negative curvature, if there is at
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least one negative eigenvalue then the eigenvector
of lowest eigenvalue is taken to be d, the negative
curvature direction. The phase of d is chosen such
that ðg; dÞ6 0. Of course, if all the eigenvalues are
positive, then d � 0. Having eliminated the largest
negative curvature direction, the requirement on
the level shift is that k2 þ lP e, which will intro-
duce less perturbation than the other scheme (un-
less k1 ¼ k2, in which case the perturbation is the
same). With this specification, Eq. (9) is used for
obtaining the descent direction; except that, in the
event of a negative curvature direction, s1 ¼ 0, and
in the event that there is a null space of nonzero
dimension (i.e., there exist ‘redundant variables’),
sj ¼ 0, for jkjj < e0, with e0 � 10�6.

3. Linesearch

Once a search direction is obtained, as discussed
in the preceding section, a univariate minimization
is to be performed,

min f ðxkðaÞÞ; ð10Þ
where xkðaÞ is the curve specified in Eq. (7), with
the descent pair ðsk; dkÞ discussed above. However,
there is a tradeoff between the amount of effort
expended to find ak and the amount the function is
lowered. It is now generally accepted that an in-
exact minimization is preferable [8,20]. The subject
of criteria for line searches is discussed extensively
in the optimization literature and, herein, we limit
consideration to necessities. At the most basic le-
vel, one wishes to guarantee monotonic decreases,
i.e.,

f ðxkþ1Þ < f ðxkÞ; ð11Þ

although such a straightforward criterion is not
sufficient. Specifically, one must safeguard that the
decreases are sufficiently large [21]:

UðaÞ6Uð0Þ þ e1 aiU0ð0Þ
�

þ 1

2
a2iU00ð0Þ

�
; ð12Þ

and, secondly, that the step sizes are not too small.
In Eq. (12), UðaÞ represents the univariate function
f ðxkðaÞÞ; explicit expressions for required deriva-
tives can be found in [21]. These conditions are of
Armijo and Goldstein type. It can be shown [20]

that any method that generates a sequence
fxkg satisfying Eqs. (12) and (13), and
gðxkÞTðxkþ1 � xkÞ < 0 at each iteration is essen-
tially globally convergent to a minimum.

Efficiency considerations mandate that the
number of steps in a line search be minimized,
while still obeying the global optimization re-
quirements. To that end, we take a ¼ ð

ffiffiffi
5

p
� 1Þ=2

and begin the search at the (modified) Newton (or
quasi-Newton) length, i.e, i ¼ 0. If Eq. (12) is not
obeyed, we backtrack, i.e., take i ¼ 1; 2; . . . until it
is satisfied. Systematic backtracking, with an initial
step that attempts to take the full (quasi-)Newton
step, is currently accepted as the best general
strategy for line searching [20].

4. Algorithm

The step-length algorithm for MCSCF that we
implemented uses directly the level-shifted Newton
(or quasi-Newton) direction vector and Goldstein–
Armijo principle line search described in the pre-
ceding sections. In this section, we discuss specific
details of our implementation.

The most critical issue that has not yet been
addressed in this Letter is the specific hessian
matrix used. In principle, any approximation to
the hessian matrix at iteration k, Gk, could be used
in a minimization algorithm. We adopted the fol-
lowing scheme. Far from the minimum, i.e., in
early iterations, we compute the orbital hessian for
a specific set of orbitals, Gk � GooðxkÞ. Once the
minimization is proceeding in a well-behaved
manner, we begin Broyden–Fletcher–Goldfarb–
Shanno (BFGS) update,

Gkþ1 � Gk þ
cTk ck

akp
T
k ck

� ðGkpkÞ
TðGkpkÞ

pTkGkpk
; ð13Þ

where ck ¼ gkþ1 � gk, pk ¼ xkþ1 � xk, and other
symbols have been defined earlier. Note that the
kth iteration hessian, Gk, is used in Eq. (13) (and
not the level-shifted hessian) so that the product
Gkpk is not necessarily expressible in terms of the
gradient.

The choice of the hessian can be understood
as follows. Far from convergence, the orbitals
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are changing rapidly and the orbital hessian
from the preceding iteration is not necessarily a
good approximation to that of the current iter-
ation. Moreover, attempting to correct such
differences using updates may take a large
number of iterations. However, near conver-
gence, when the orbital hessian is no longer
changing (much), it is not the orbital hessian that
is required for second-order convergence, but
rather the effective, or partitioned, orbital hes-
sian,

Geff � Goo þGocðGccÞ�1Gco; ð14Þ
where Goc and Gcc are the orbital–state coupling
and state blocks of the hessian. Our suggestion
then is to approximate this effective orbital hessian
starting from a nearly converged orbital hessian.
The algorithm is given in Fig. 1. Indeed, it is this
idea that potentially gives our method second-or-
der convergence in the final steps. Formally, far
from convergence our method is a Newton meth-
od, actually a modified Newton method, but close
to convergence it is a (modified) quasi-Newton
method.

5. Objective function for excited state surfaces: a

model problem

The difficulties of finding the ‘best’ MCSCF
function for an excited state can be illustrated by a
simple one-dimensional model problem, which
embodies many of the essential features of an
MCSCF calculation. Let us suggest a two-state,
one-parameter, problem, as shown in Fig. 2a. The
wavefunctions are the diabatic states of this model
problem and correspond to the MCSCF adiabatic
states. The recent work of Hoffmann and Schatz
[25] discusses a similar identification of diabatic
states in the context of reactive scattering. Let us
assume that a small constant coupling connects the
functions; the corresponding adiabatic energies are
graphed in Fig. 2b. Here, the coupling corresponds
to the effect of dynamic electron correlation, which
is neglected in the MCSCF optimization. The ar-
gument of Golab et al. [6,7] concerning ‘best’
representation can be stated in the context of this
model problem: It is not at all clear that the lowest
point on the upper curve, i.e., A, is a better rep-
resentation of the true wavefunction (which in-

Fig. 1. Suggested algorithm for MCSCF energy optimization.
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cludes more than just two states) than a point such
as D. If the point A is deemed to be a ‘better’
representation, then our approach, as outlined in
the preceding sections, can be used more-or-less
straightforwards. On the other hand, if a D-like
point is best, our algorithm can be applied with
modification. Specifically, a manifold can be con-
structed e.g., by applying a level shift, static or
dynamic, to the Nth root surface. This situation
can arise in practice when one ‘knows’ the nature
of the excited state from a larger MCSCF calcu-
lation, or from symmetry considerations. One may
wish to obtain the smaller MCSCF antecedent to a
post-MCSCF calculation.

On the other hand, if, as we choose, the criteria
of lowest point on a manifold is of paramount
importance, the issue of the nondifferentiability at
the point of crossing of the diabatic curves must
be addressed. Recall that Newton, or quasi-New-
ton, methods are only appropriate for surfaces
with continuous derivatives. As is common prac-
tice in optimization, optimization of a nondiffer-
entiable function is accomplished by optimization
of a differentiable function that is known, or be-
lieved, to have common minima with the nondif-
ferentiable function [8]. One such possibility is to
add a small amount of the function value from the
lower curve to the function of interest (and,
thereby, approximate, albeit crudely, the cou-
pling). In fact, this produces the well-established
state-average MCSCF procedure, with unequal
state weighting, to produce a manifold with the
desired topological stationary point. Specific use

of this technique is discussed below in a concrete
context.

6. Numerical example

The three lowest 1Rþ states of BeO were first
identified as challenging problems for an MCSCF
description by Bauschlicher and Yarkony (BY)
[26], and have served as a severe test for optimi-
zation since, as in the extensive studies by Golab,
Yeager and Jørgensen (GYJ) [6]. At issue is the
fact that the different states are optimized with
substantially different orbitals. Consequently, op-
timization of an excited state degrades the lower
lying states to the point of variational collapse or
‘root flipping’. Although this was recognized and a
solution found (by expanding the active set of
orbitals) [27], obtaining a reasonable MCSCF so-
lution within the original active space remains a
classic problem. We performed three sets of cal-
culations on this system. The first set duplicates
the earlier four configuration state function (CSF)
studies of BY and GYJ, except that our restriction
to Abelian point groups required us to span the
1p32p1 configuration with an additional function.
The four 1Rþ states and the one component of the
1D were noninteracting and easily identifiable. The
second set consists of all spin- and space-adapted
CSFs that can be generated from single- and
double-excitations from the SCF reference; i.e., a
so-called MCSCF(SD); this results in 19 functions.
The third set is a CASSCF in the same orbital

(a) (b)

Fig. 2. (a) Diabatic and (b) adiabatic energies of model problem as functions of parameter.
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space; this gives 55 CSF. The one-electron basis
functions used in all calculations are identical to
that of the earlier BY and GYJ studies, to all
published digits, and can be found in the literature.

The first study investigates some general con-
vergence properties, but is otherwise unchalleng-
ing: we investigate the ground state using CASSCF
and using MCSCF(SD) starting from the Natural
Orbitals of an MP2 calculation [28]. A step-length
restriction of 1=

ffiffiffi
2

p
was used in this study. Exam-

ination of Table 1 shows that while the first-order
convergence proved adequate for the initial de-
scent, the final convergence is essentially linear.
Finally, consider the results from our update
method, with a maximum rotation generator of 0.1
as the criterion for switching from first order to
update. Starting from the third iteration, in this
case, the BFGS update was applied. We see con-
vergence in a total of 8 iterations. While conver-
gence is not truly quadratic, it is unmistakably
superlinear.

A slightly more difficult task, and more useful
for assessment purposes, is provided by the opti-
mization of the MCSCF(SD) wavefunction for the
lowest 1Rþ state, again starting from the Natural
Orbitals of an MP2 calculation. The problem re-
mains topologically simple as there are no negative
eigenvalues in the orbital (and, eventually, effective
orbital) hessian at any iteration. The convergence

rate of the second-order procedure is essentially
unchanged from the CASSCF. Although we are
able to converge this wavefunction using a purely
first-order procedure, it requires an astounding
115 iterations, which is a substantial increase from
the 9 required for converging the CASSCF wave-
function. The behavior of the updated partitioned
orbital hessian is intermediate: 14 iterations are
now required rather than 8. Evidently, superlinear
convergence is maintained for incomplete model
spaces, and it appears that convergence is sub-
stantially more like second order than like first
order.

The second study uses the updated effective
hessian for the five CSF MCSCF wavefunction of
BY and GYJ for the ground and first two excited
states of BeO. We calculate first the ground state
starting from canonical SCF orbitals(!). The initial
orbital hessian has a concave subspace of dimen-
sion 8 and a null space ðjkj6 1:� 10�6Þ of di-
mension 5. A region of positive semi-definiteness is
reached after the 4th iteration, and BFGS updat-
ing is started after the 5th iteration. The updating
is unstable [by ðc; xÞ < 0.] and is cancelled imme-
diately. Curvature and step-length criteria are met
again at the end of the 12th iteration and up-
dating is begun again. Convergence is to
)89.507164393764 a.u. in 29 iterations, and agrees
exactly to the lh level reported by BY and to the
value reported by GYJ to within 137 nh.

In the basis of the ground state MCSCF orbi-
tals, the first excited state of 1A1 symmetry is one
component of the lowest 1D state. So, the next
calculation we performed is a state-averaged (SA)
MCSCF, with equal weighting, on the lowest three
states of 1A1 symmetry (cf. Table 2). The initial
orbital hessian has a concave subspace of dimen-
sion 7, but no null space. A region of positive
curvature is reached immediately after the first
step, but the step lengths are too large to meet our
criterion for updating until after the 3rd iteration.
Convergence to 10�12 required 9 iterations. Initial
roots 2 and 3 flipped, which is not of consequence
since both roots were weighted equally in the op-
timization. We optimize for 2 1Rþ by starting from
the 3-state SA-MCSCF and performing a calcu-
lation with unnormalized weights of 0.01 and 1 for
the lowest and second roots, respectively. Varia-

Table 1

Energy errors (a.u.) of 1 1Rþ BeO as a function of iteration

number for different MCSCF calculations

Iteration Second order First order Update

0 5.2363 (-03) 5.2363 (-03) . . .

1 1.0731 (-03) 3.9877 (-04) . . .

2 2.1553 (-05) 4.5687 (-06) . . .

3 3.2031 (-08) 7.2492 (-07) 7.0424 (-07)

4 1.2790 (-13) 2.7935 (-07) 1.6986 (-07)

5 1.1404 (-07) 2.2733 (-08)

6 4.6922 (-08) 8.5896 (-10)

7 1.9353 (-08) 2.3761 (-11)

8 7.9881 (-09) 1.2079 (-12)

9 3.2963 (-09)

10 1.3582 (-09)

11 5.5736 (-10)

12 2.2635 (-10)

13 8.9571 (-11)

14 3.3026 (-11)

15 9.6634 (-12)
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tional collapse or root-flipping does not occur.
This calculation begins with a positive definite
orbital hessian and updating commences with the
second iteration. Updating is cancelled in the 10th
iteration because of a ðc; xÞ < 0. It is reinitialized
in the 11th iteration. The calculation converges to
less than 1� 10�12 in a total of 28 iterations. Our
obtained value (cf. Table 2) is very close ð1� 10�4Þ
to the Fletcher algorithm result of GYJ
()89.40006310) and within 2 mh of the mode
controlled result of these authors ()89.39863110)
and of BY ()89.398552). The substantial deterio-
ration of the ground state is worth noting. Explicit
calculation of the partitioned orbital hessian for
state 2 at the final orbitals showed no negative
eigenvalues.

In the basis of our SA-MCSCF for the lowest
three states, the third excited state was of 1Rþ

symmetry. We next started our optimization of
3 1Rþ by performing a 4-state SA-MCSCF starting
from the orbitals of our 3-state SA-MCSCF. The
initial orbital hessian is positive definite and up-
dating commenced with the 4th iteration. Con-
vergence to less than 10�12 was rapid: 6 iterations.
Root flipping relative to the 3-state SA-MCSCF
did not occur. The fourth state is qualitatively
described by 1p ! 2p; as expected. Following the
protocol described above, we seek the 31Rþ as the
fourth root of a state-averaged calculation with an
unnormalized weighting vector of f0:01; 0:01;
0:01; 1g. The initial orbital hessian has two nega-
tive eigenvalues. A positive definite orbital hessian
is obtained after the third iteration and updating
commences with the 7th iteration. Convergence to
10�12 is achieved in 17 iterations. This optimiza-
tion was less straightforward than the preceding
ones. Specifically, the line search algorithm re-
quired several backtracks.

The value for the fourth root (cf. Table 2) is to
be compared with the result of )89.188404 by BY
and the results of )89.19013440 and )89.19298010
by GYJ for Fletcher and mode control algorithms,
respectively. GYJ state that neither of their results
satisfies all of their criteria and do not favor one
result over the other. Likewise, when we calculated
the partitioned orbital hessian for the (pure) fourth
root at our converged orbitals, we obtain one
negative eigenvalue. A calculation for the 3 1Rþ
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state starting from the 4-state SA-MCSCF result
and with a weighting vector of (0.1, 0.1, 0.1, 1.)
produced noticeably better representations of the
ground and first excited states, but is qualitatively
similar to the 0.01 weighting results.

Since we favor MCSCF(SD) wavefunctions
when practicable, the third study performed the
analogous series of calculations with such wave-
functions. These calculations paralleled the 5-csf
study to great extent and are not described herein.
Energy results are given in Table 2.

7. Conclusion

A line search method that uses directions of
negative curvature actively has been suggested for
optimization of ground and excited states of
MCSCF wavefunctions. The method was imple-
mented using previously well-established concepts
in MCSCF optimization, such as level shifting the
hessian to produce reasonable descent directions,
were appropriate, together with the novel idea of
the negative curvature direction. This method has
addressed two of the most difficult problems in
MCSCF optimization: effective search directions
far from a stationary point and prevention of
convergence to a stationary point of incorrect
curvature. We showed, by numerical experiment,
that the proposed method performs well for the
difficult problem of optimization of the lowest
three states of 1Rþ symmetry of BeO. It was also
shown that the method performs well for various
MCSCF wavefunctions, including, not surpris-
ingly, CASSCF, but also for an MCSCF using a
very small number of selected CSF; additional
calculations of the MCSCF(SD)-type corroborate
the findings.

The suggested method can be implemented with
a variety of schemes for obtaining descent pairs. In
particular, first order, second order (Newton) and
updated (quasi-Newton) hessians were investi-
gated at some level in the scope of this work. We
found that a protocol that recomputes the orbital
hessian far from convergence, but uses an update
scheme to generate an approximate partitioned
orbital hessian, is quite effective and to be recom-
mended.

Our numerical experiments on the lowest three
states of 1Rþ symmetry of BeO agree well with the
earlier works of Golab, Yeager and Jørgensen [6]
(and of Bauschlicher and Yarkony [26]) concern-
ing both the quantitative and qualitative natures of
the wavefunctions. However, our suggested
scheme is based on a rigorous minimization with-
out consideration of auxillary conditions arising,
e.g., from post-MCSCF calculations. Most im-
portantly, the suggested approach contradicts, as
least for the system studied, the assertion that a so-
called MCSCF CI criterion for the wavefunction
leads to an unnecessarily constrained wavefunc-
tion and poor convergence. The emergence of a
robust minimization scheme for excited state
MCSCF wavefunctions appears to be the most
important theoretical result from the current ef-
fort.

As negative convergence results are rarely de-
scribed in the literature, we welcome workers to
bring such problems to our attention.
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