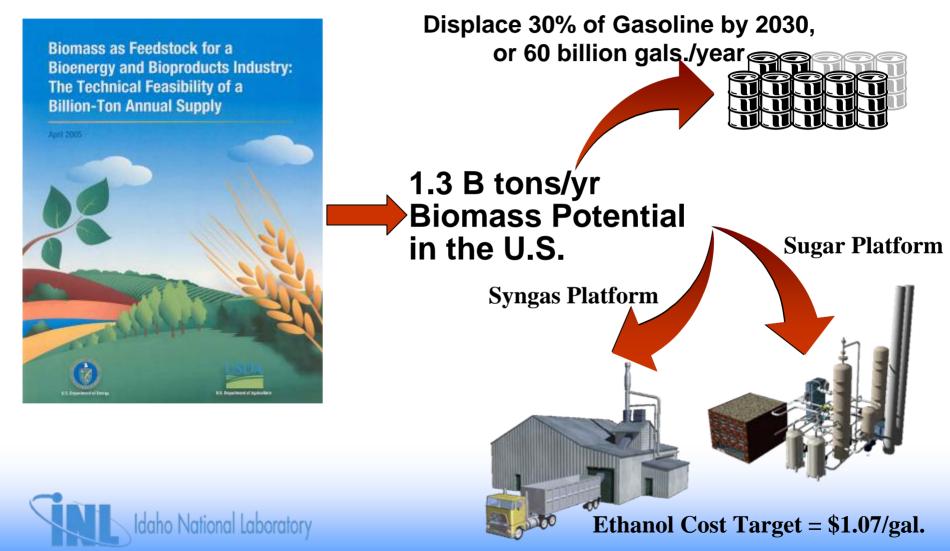
Biomass Resource Feedstock Supply

J. Richard Hess Kevin L. Kenney Patrick Laney David J. Muth Peter Pryfogle Corey Radtke Christopher T. Wright

Idaho National Laboratory

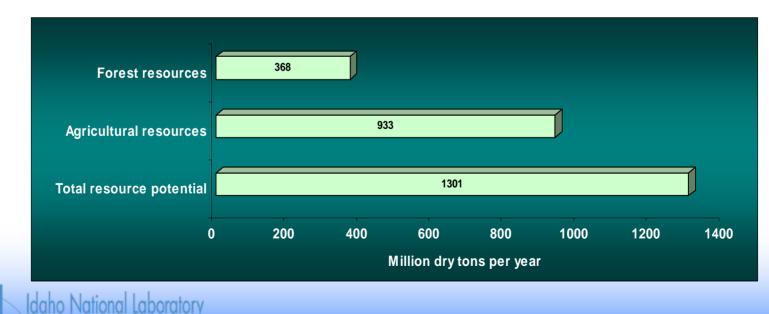

Duane Grant

Grant 4-D Farms

September 2006

Biorefining Industry Goals

http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf



Enough Biomass for the US ?

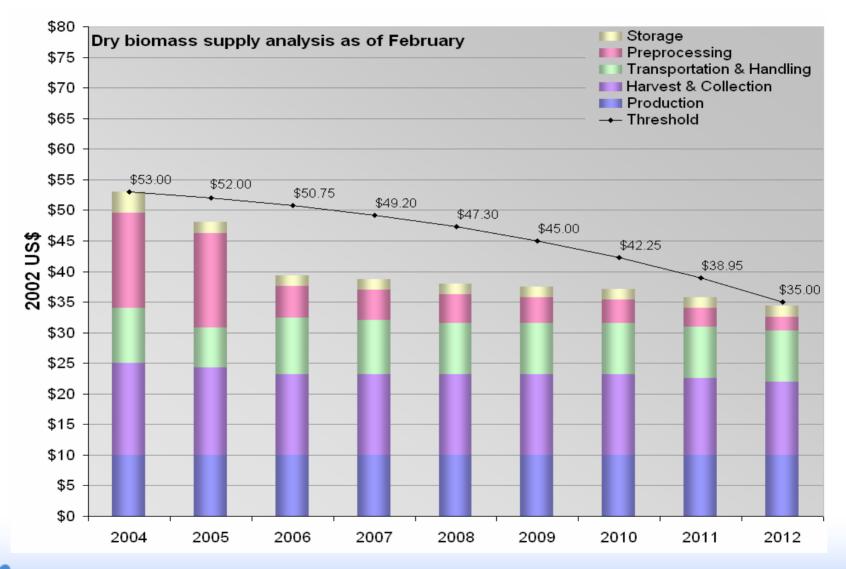
Are there sufficient resources to meet 30% of the

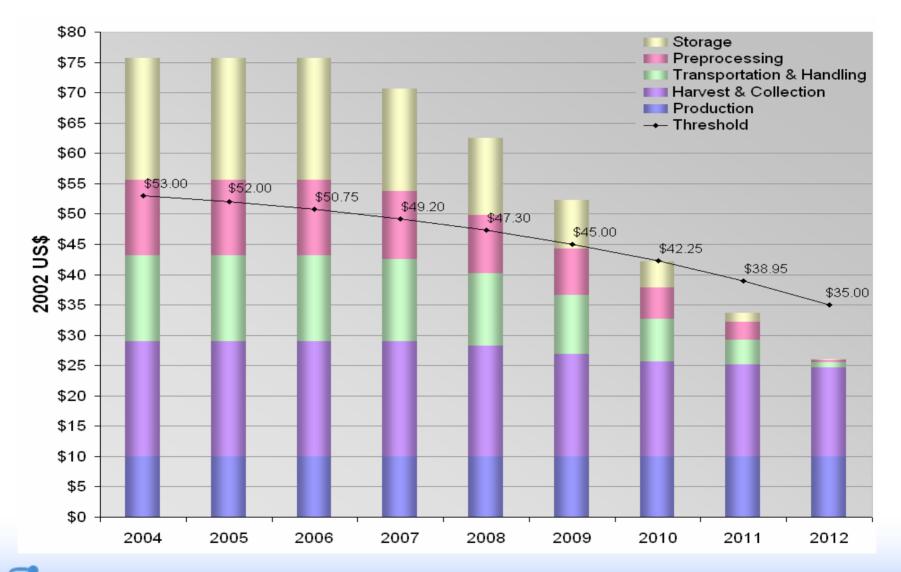
Country's petroleum requirements ?

- Land resources of the U.S. could sustainably supply more than 1.3 billion dry tons/yr and still continue to meet food, feed, and export demands – based on the scenarios
- Realizing this potential will require R&D, policy change, stakeholder involvement
- Required changes seem reasonable given current trends

Lignocellulosic Feedstock Supply Types

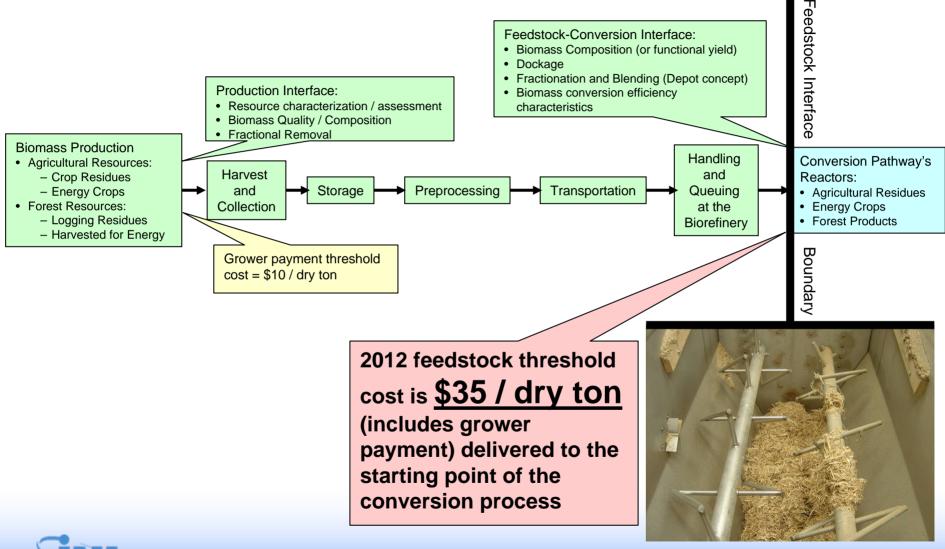
- Dry Agriculture Residues/Crops at less than 15% moisture
- Wet Agriculture Residues/Crops greater than about 50% moisture
- Energy Crops Wet and Dry
- Woody Forest resources


laho National Laboratory

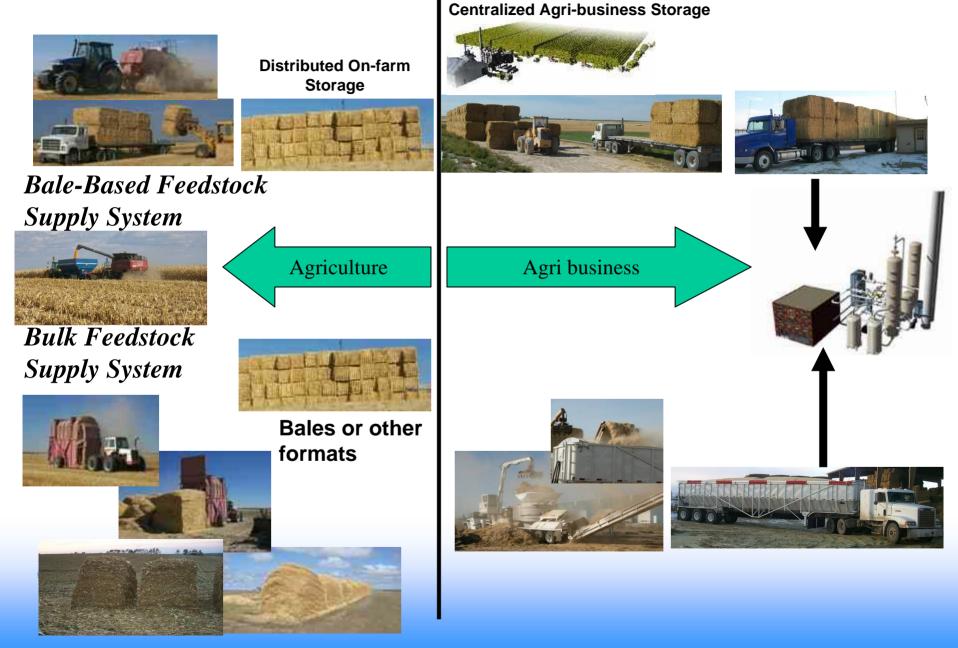

Feedstock Cost Reduction by Cost Elements (Dry)

Idaho National Laboratory

Note: Cost reductions assume efficiency and cost improvements only


Feedstock Cost Reduction by Cost Elements (Wet)

Idaho National Laboratory


Note: Cost reductions assume efficiency/cost improvements and feedstock quality improvement credits

Feedstock Cost Target and Interface Point

Supply System Models and Business Elements

Supply System Case Study: Idaho

- Resource Assessment:
 - Feedstock: Cereal Straw
 - Moisture: 15.0%
- Feedstock Demand: 800,000 ton/yr biorefinery
- Location:
 - No residue removal constraints
 - Road Limits: 115 ft., 105,500 GVW
- Bottom Line Delivered Feedstock Cost: \$45.22/dry ton (2006 \$), includes \$10.00 payment to grower

Supply System Design: Bulk System

Bulk Operations Field Equipment

- Deere 3280 Tractor
- Hesston 4910 Bailer
- Stinger Stacker 6500
- Caterpillar TH220B Telehandler
- Daimond Z 1460B Grinder
- Kenworth T800 Series Tractor
- Trinity Eagle 42' Trailers
- Various 1/2, 3/4 and 1 ton trucks

daho National Laboratory

Baling

Installed Capital Costs	Capital Costs per Year	Operating Costs per Year	Labor Costs per Year	Total Costs per Year	Feedstock Costs (\$/dry ton)
\$28,495,508	\$3,679,047	\$3,321,665	\$555,944	\$7,556,656	\$11.11*

Notable Parameters:

- 4'x4'x8' bales
- Six string
- 1000 lbs per bale
- 7.8 lbs/ft³
- No bale accumulator
- 1.88 tons/acre

*Cost per ton estimates can vary based on yield, feedstock type and operational size assumptions.

Field side Stacking (Roadsiding)

Installed Capital Costs	Capital Costs per Year	Operating Costs per Year	Labor Costs per Year	Total Costs per Year	Feedstock Costs (\$/dry ton)
\$7,413,024	\$565,560	\$585,703	\$237,339	\$1,388,603	\$2.04*

Notable Parameters:

- Stinger collects from field and stacks fieldside
- Stack 1-wide, 4-high
- 1 stack for each quarter-section
- Stack size: 300 tons

Idaho National Laboratory

*Cost per ton estimates can vary based on yield, feedstock type and operational size assumptions.

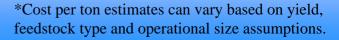
Storage

Installed Capital Costs	Capital Costs per Year	Operating Costs per Year	Labor Costs per Year	Total Costs per Year	Feedstock Costs (\$/dry ton)
\$0	\$0	\$1,449,760	\$0	\$1,449,760	\$2.13*

Notable Parameters:

- No payroll labor costs
- Operating costs include 5.0% shrinkage for arid climate
- Cost includes insurance and land rent

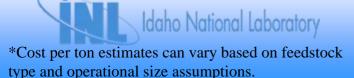
*Cost per ton estimates can vary based on yield, feedstock type and operational size assumptions.


Preprocessing (Field-side Grinding)

Installed Capital Costs	Capital Costs per Year	Operating Costs per Year	Labor Costs per Year	Total Costs per Year	Feedstock Costs (\$/dry ton)
\$6,848,009	\$996,468	\$2,778,419	\$1,338,388	\$5,113,276	\$7.52*

Notable Parameters:

- Twine ground with bales
- Bulk density = 11.50 lbs/ft^3
- Capacity = 26 tons/hr


Bulk Biomass Transportation

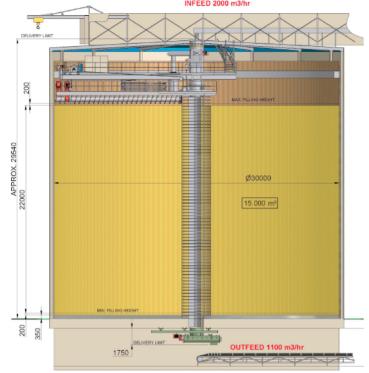
Installed Capital Costs	Capital Costs per Year	Operating Costs per Year	Labor Costs per Year	Total Costs per Year	Feedstock Costs (\$/dry ton)
\$11,965,758	\$1,288,639	\$3,054,188	\$2,368,213	\$6,711,040	\$9.87*

Notable Parameters:

- Double 42' trailers with 4' side extensions
- Truck volume = $5,022 \text{ ft}^3$
- Truck net wt. = 57,753 lbs
- Loads always tarped

Bulk Receiving and Handling

Installed Capital Costs	Capital Costs per Year	Operating Costs per Year	Labor Costs per Year	Total Costs per Year	Feedstock Costs (\$/dry ton)
\$11,201,472	\$836,808	\$247,488	\$247,555	\$1,726,313	\$2.54*



Notable Assumptions:

daho National Laboratory

- 72-hr. inventory 973,000 ft³
- Conveyor density 5.2 lb/ft³, bin density 14.1 lb/ft³
- Simultaneous fill and discharge during receiving hours

Bulk Biomass Queuing

 Storage in commercial bins will not work due to arching, ratholing, consolidation

Idaho National Laboratory

- Alternatives:
 - Queing pile
 - Eurosilo

Eurosilo Advantages

- Fully enclosed (dust, moisture)
- Material flowabilty not an issue
- Fully automated
- Simultaneous fill/discharge
- Blending capability

Management Structure (Overhead)

Start up Capital Costs	Start up Equipment Costs	Total First Year non- Labor Costs	First Year Labor Costs	Total First Year Costs	First Year Feedstock Costs (\$/dry ton)
\$1,080,200	\$457,940	\$1,538,140	\$1,560,726	\$3,098,866	\$3.87*

Overhead Capital:

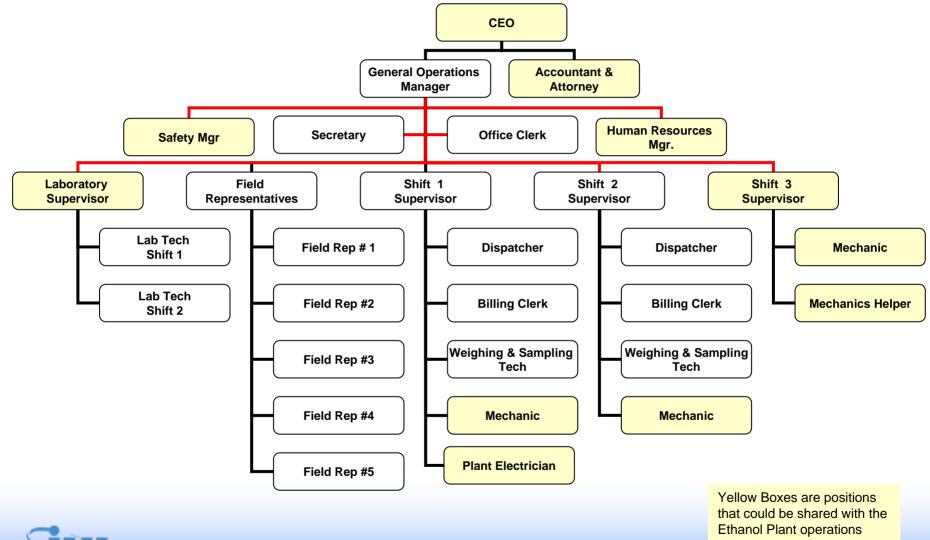
- Office Buildings
- Laboratory Building
- Shop
- Vehicles

Overhead Equipment:

- Office
- Laboratory Analysis
- Tools

Cost Data Presented Does Not Include Profit Estimates nor Profit/Equity Sharing Assumptions

*Estimated out year overhead = 2.45 / dry ton


*Estimated out year overnead =

Overhead Personnel (Labor):

- Chief Executive
- General Operations Manager
- Field Rep's Biomass Buyers
- Secretary
- Office Clerk
- HR Person
- Safety Engineer
- Accountant (1/2 Time)
- Attorney (1/4 Time)
- Billing Clerks (1/shift)
- Dispatchers (1/shift)
- Shift Supervisors (1/shift)
- Weighing & Sampling Techs (1/shift)
- Mechanics (1/shift)
- Electrician
- Mechanic's Helper (3rd Shift Only)
- Laboratory Manager
- Laboratory Technicians (1/shift)

*Cost per ton estimates can vary based on operational size assumptions.

Management and Overhead Organization

QA/QC Analysis (Overhead)

Purpose

- Prioritize and Schedule Grinding Operations
- Feedstock blending throughout the year

Sample Rate

- Field Samples 5 individual (1 Composite) per 200 ton stack
- Receiving Samples 1 per truck

Facilities, Equipment and Staffing

- Facilities: \$198K 20' X 30' @ \$400/sqft + Office and Storage 20' X 30' @ \$150/sqft
- Equipment: \$310K (startup) NIR Spectrometers, Balances, Vacuum Rifle Splitter, Grinding Mill, Drying Oven, Ro-Tap Shaker, Coring Tools
- Staffing: 1 Lab Manager and 2 Lab Technicians

Analysis


- Moisture Content
- Buffering Titrations
- Near Infrared Spectroscopy for Complete Compositional Determination

Feedstock Fractions Quality

Wet Storage Dry Storage Selective Harvest Preprocessing Feedstock value for \$1.07/gal cost target:

- Wet storage conditions affecting composition changes created a <u>\$28*</u> range in feedstock value
- Dry storage conditions affecting composition changes created a <u>\$22*</u> range in feedstock value
- Selective harvest composition changes created a <u>\$10*</u> range in feedstock value
- Mechanical Preprocessing and fractionation composition changes created a <u>\$12*</u> range in feedstock value

Biorefining Depends on Feedstock

