

Using GPUs for Rapid Electromagnetic Modeling

Peter Messmer*, Travis Austin, John R. Cary, Paul J. Mullowney, Mike Galloy, Keegan Amyx, Nate Sizemore, Brian Granger, Dan Karipides, David Fillmore

*messmer@txcorp.com

Tech-X Corporation 5621 Arapahoe Ave., Boulder, CO 80303 www.txcorp.com

This work is partially supported by NASA SBIR Phase-II Grant #NNG06CA13C

SciDAC ComPASS All Hands Meeting, UCLA, December 3, 2008

Motivation

- Need fast turnaround for FDTD simulations
 - E.g. Frequency extraction (see Travis' talk), cavity optimizations
- Parallelization of FDTD has limits
 - Some problems too small: N > ($\tau_{latency} / \tau_{cell}$)/N+ $\tau_{comm} / \tau_{cell}$
 - "Time does not parallelize"
 - Access to large systems can be painful
- FDTD highly memory bandwidth limited
 - Almost no data reuse -> caches useless
 - Multi-core CPU makes it even worse
- \Rightarrow Need high memory bandwidth accelerator

Outline

- GPU architecture, programming
- GPULib: Simplification of GPU development
- Implementation of FDTD on GPUs
- Conclusion

GPUs are Massively Parallel Floating-Point Co-Processors

- Silicon used for ALUs, rather than large caches
 - Up to 240 (!) processing elements ("thread processors", TP)
 - running at 1.3 GHz, statically scheduled, 2 instructions / cycle
 - Small software managed caches ("shared memory", Shrd Mem)
- Organized as 'Multi-processors' (~ SIMD processors)
 - Software managed caches shared within one multi-processor
 - Synchronization within MP, no light-weight global synchronization
- Active thread management
 - Work on next thread-set while waiting for a memory request

Another Advantage of GPUs: High Memory Bandwidth

TECH

The Flipside: GPUs like (=need!) regular "patterns"

• Collection of SIMD processors

- Thread divergence handled by masked execution
 - E.g. two-way conditional takes sum of both branches
- Needs large number of threads
 - Keep all TP busy
 - Hide memory access latency with work
- TPs need to access successive memory locations
 - Results in a single memory request
 - "Memory coalescence"
- Double precision FP currently slow
- ⇒ Want large number of (almost) identical floating point operations on contiguous block of memory
- \Rightarrow Redundant computation is ok, if it optimizes memory access
- \Rightarrow Avoid CPU/GPU transfers

CUDA: Code development environment for (NVIDIA) GPUs

- Early GPGPU efforts heroic
 - Graphics API (OpenGL, DirectX) no natural fit for scientific computing
- Compute Unified Device Architecture (http://www.nvidia.com/cuda)
 - Supported on all modern NVIDIA GPUs (notebook GPUs, high-end GPUs, mobile devices)

TECH

- Future: Co-Existence with OpenCL

• Single Source for CPU and GPU

- Host code C or C++
- GPU code C(++) with extensions
 - "Kernel" describes on thread
 - Host invokes a collection of threads
- nvcc: NVIDIA cuda compiler

Runtime libraries

- Data transfer, kernel launch, ..
- BLAS, FFT libraries

• Simplified GPU development, but still "close to the metal"!

GPULib: One way to simplify GPU development

• Provide access to GPUs in Very High-Level Languages

- IDL, MATLAB, (Python)
- Seamless integration into host language
- Data objects on GPU represented as structure/object on CPU
 - Contains size information, dimensionality and pointer to GPU memory

• GPULib provides a large set of vector operations

- Data transfer GPU/CPU, memory management
- Arithmetic, transcendental, logical functions
- Support for different types (float, double, complex, dcomplex)
- Data parallel primitives, reduction, masking (total, where)
- Array operations (reshaping, interpolation, range selection, **type casting**)
- NVIDIA's cuBLAS, cuFFT
- => Reduces need for CPU/GPU transfers

Download from http://gpulib.txcorp.com

(free for non-commercial use)

Messmer, Mullowney, Granger, "GPULib: GPU computing in High-Level Languages", Computers in Science and Engineering, 10(5), 80, 2008.

A GPULib example in IDL

GPULib layered architecture is easily extensible ECH

IDL, MATLAB, (Python)

GPUlib wrappers (language specific, includes software emulator)

GPU	

How to get performance?

 Kernels are very fast, GPU<->CPU data transfer is slow

Example: Image Deconvolution

• Image is convolved with detector point-spread function:

$$I_{obs}(x, y) = \int I_{true}(x - u, y - v)P(u, v)dudv$$

- Clean image by (complex) division in Fourier space: $I_{true}(x, y) = FFT^{-1}(FFT(I_{obs}) / FFT(P))$
- Large computational load per CPU-GPU data transfer
- Speedup ranging from 5x 28x for 256x256 3kx3k images

Example: Database search

- Find closest match in 500k words with 128 characters each
- Less than 10ms
- CPU: ~200 ms
- GPULib 1: 500k dot-products
 - Need test vector on GPU
 - Vectors short
 - Huge number of kernel invocations
 - => Bad idea
- GPULib 2: 128 accumulations
 - No need to transfer entire vector
 - Large vectors
 - Smaller number of kernel invocations
 - => ~27 ms
- Hand crafted implementation
 - Transfer data to GPU
 - Perform 128 dot products concurrently
 - => < 8 ms (old GeForce 8800 GTX)

FDTD fits well on GPUs

- Memory large enough for interesting problems
- For distributed memory use 1D/2D/3D memory
- Avoid operations on short vectors
 - Stencil picture may be misleading

- Treat 3D domain as large 1D vectors
 - Shifted vector operations 'cheap'
 - Pointer arithmetic possible on GPUs
 - Regular operation on large vector -> ideal for GPU
 - 'Dirt' at domain boundaries due to wrap-around
 - Removed by applying boundary conditions

(Canadian Company Acceleware sells GPU-based FDTD accelerators: www.acceleware.com)

GPULib enabled rapid development of FDTD on GPUS

- Cut-Cell (Dey-Mittra) and Stair-Stepped boundaries

Reads VORPAL geometry output

- Simulations should result in
- Entire computation on rectangular domain
 - Compute update outside of conformal boundaries for simplified memory access

LECH

• Entirely GPULib based

- Written in IDL -> integrated visualization, visual debugging
- Quickly demonstrate potential of GPU based FDTD
- Parallelization using mpIDL (http://www.txcorp.com/products/FastDL)

Custom Kernel

- Optimize for performance, reduce memory transfer

Preliminary performance results highly promising

• Performance (preliminary)

- Up to 470 Mcells/s on GPU including cut-cells boundaries
 - Currently at ~70% theoretical memory bandwidth, so still potential
- ~10 Mcells/s on CPU

\Rightarrow ~ 40-50x speedup compared to CPU based implementation

Comparable to ~48 Franklin cores

• Question: How bad is effect of single precision FP?

- Needs detailed evaluation
- Think about your units!
- Question: What about large problems?
 - Currently no huge GPU systems available, may change
 - 2.6x speedup on a 3GPU 'cluster' (PSC)

Summary/Conclusions

- GPUs offer large for accelerating scientific applications
- CUDA significantly simplifies code development
 - Still requires understanding of hardware
- GPULib enables GPU development from within VHLLs
 - Provides large set of vector operations with unified interface
 - Enables rapid development of GPU accelerated algorithms
 - No hardware knowledge required

• FDTD solver on GPU

- Loosely coupled to VORPAL (tighter integration planned)
- Both stair-stepped and cut-cell boundaries

• GPUs yields ~40x speedup compared to CPU

- Problems that take O(minutes) become O(seconds)
- Compute on your desktop, rather than at HPC center