
Using GPUs for Rapid
Electromagnetic Modeling

Tech-X Corporation

5621 Arapahoe Ave., Boulder, CO 80303

www.txcorp.com

Peter Messmer*, Travis Austin, John R. Cary, Paul J. Mullowney, Mike
Galloy, Keegan Amyx, Nate Sizemore, Brian Granger, Dan Karipides,

David Fillmore

*messmer@txcorp.com

SciDAC ComPASS All Hands Meeting, UCLA, December 3, 2008

This work is partially supported by NASA SBIR Phase-II Grant #NNG06CA13C

Motivation

• Need fast turnaround for FDTD simulations
– E.g. Frequency extraction (see Travis’ talk), cavity optimizations

• Parallelization of FDTD has limits
– Some problems too small: N > (τlatency /τcell)/N+ τcomm / τcell

– “Time does not parallelize”

– Access to large systems can be painful

• FDTD highly memory bandwidth limited
– Almost no data reuse -> caches useless

– Multi-core CPU makes it even worse

⇒ Need high memory bandwidth accelerator

Outline

• GPU architecture, programming

• GPULib: Simplification of GPU development

• Implementation of FDTD on GPUs

• Conclusion

Why scientific computing on GPUs?

Problem: used to be

hard to program

GPUs are Massively Parallel Floating-Point Co-
Processors

• Silicon used for ALUs, rather than large caches
– Up to 240 (!) processing elements (“thread processors”, TP)

– running at 1.3 GHz, statically scheduled, 2 instructions / cycle

– Small software managed caches (“shared memory”, Shrd Mem)

• Organized as ‘Multi-processors’ (~ SIMD processors)
– Software managed caches shared within one multi-processor

– Synchronization within MP, no light-weight global synchronization

• Active thread management
– Work on next thread-set while waiting for a memory request

TP TP

TP TP

TP TP

TP TP

TP TP

TP TP

TP TP

TP TP

Shrd
Mem

…MP MP

GPU Memory

Another Advantage of GPUs: High Memory
Bandwidth

Host memory GPU memory

Cache

GPUCPU

The Flipside: GPUs like (=need!) regular
“patterns”

• Collection of SIMD processors
– Thread divergence handled by masked execution

• E.g. two-way conditional takes sum of both branches

• Needs large number of threads
– Keep all TP busy

– Hide memory access latency with work

• TPs need to access successive memory locations
– Results in a single memory request

– “Memory coalescence”

• Double precision FP currently slow

⇒ Want large number of (almost) identical floating point operations on
contiguous block of memory

⇒ Redundant computation is ok, if it optimizes memory access

⇒ Avoid CPU/GPU transfers

CUDA: Code development environment for
(NVIDIA) GPUs

• Early GPGPU efforts heroic
– Graphics API (OpenGL, DirectX) no natural fit for scientific computing

• Compute Unified Device Architecture (http://www.nvidia.com/cuda)
– Supported on all modern NVIDIA GPUs (notebook GPUs, high-end GPUs, mobile

devices)
– Future: Co-Existence with OpenCL

• Single Source for CPU and GPU
– Host code C or C++

– GPU code C(++) with extensions
• “Kernel” describes on thread
• Host invokes a collection of threads

– nvcc: NVIDIA cuda compiler

• Runtime libraries
– Data transfer, kernel launch, ..

– BLAS, FFT libraries

• Simplified GPU development, but still “close to the metal”!

GPULib: One way to simplify GPU development

• Provide access to GPUs in Very High-Level Languages
– IDL, MATLAB, (Python)
– Seamless integration into host language

• Data objects on GPU represented as structure/object on CPU
– Contains size information, dimensionality and pointer to GPU memory

• GPULib provides a large set of vector operations
– Data transfer GPU/CPU, memory management
– Arithmetic, transcendental, logical functions
– Support for different types (float, double, complex, dcomplex)
– Data parallel primitives, reduction, masking (total, where)
– Array operations (reshaping, interpolation, range selection, type casting)
– NVIDIA’s cuBLAS, cuFFT

=> Reduces need for CPU/GPU transfers

• Download from http://gpulib.txcorp.com
(free for non-commercial use)

Messmer, Mullowney, Granger, “GPULib: GPU computing in High-Level Languages”, Computers in
Science and Engineering, 10(5), 80, 2008.

A GPULib example in IDL

CPU GPU

X

y

X_gpu

y_gpu

IDL> gpuPutArr, x, x_gpu

IDL> gpuGetArr, y_gpu, y

IDL> y_gpu = gpuSin(x_gpu)

Sin()
x_gpu

y_gpu

GPULib layered architecture is easily extensible

GPULib functions

GPU

Vector

Arithmetic

NVIDIA functions

cuBLAS cuFFT
Data

Manipulation

Complex

Operations

CUDA
Runtime

API

GPUlib wrappers
(language specific, includes software emulator)

IDL, MATLAB, (Python)

How to get performance?

• Kernels are very fast, GPU<->CPU data transfer is
slow

Vector length

Vector length

Kernel only

Single invocation

10 invocationsx+y

ax+by+c
Sin(x)

exp(x)

lgamma(x)

Example: Image Deconvolution

• Image is convolved with detector point-spread function:

• Clean image by (complex) division in Fourier space:

• Large computational load per CPU-GPU data transfer

• Speedup ranging from 5x – 28x for 256x256 – 3kx3k images

dudvvuPvyuxIyxI trueobs ∫ −−=),(),(),(

))(/)((),(
1

PFFTIFFTFFTyxI obstrue

−

=

Example: Database search

• Find closest match in 500k words with 128 characters each
• Less than 10ms
• CPU: ~200 ms

• GPULib 1: 500k dot-products
– Need test vector on GPU
– Vectors short
– Huge number of kernel invocations
=> Bad idea

• GPULib 2: 128 accumulations
– No need to transfer entire vector
– Large vectors
– Smaller number of kernel invocations
=> ~27 ms

• Hand crafted implementation
– Transfer data to GPU
– Perform 128 dot products concurrently
=> < 8 ms (old GeForce 8800 GTX)

500k

500k

500k

FDTD fits well on GPUs

• Data remains on GPU
– Memory large enough for interesting problems
– For distributed memory use 1D/2D/3D memcpy

• Avoid operations on short vectors
– Stencil picture may be misleading

• Treat 3D domain as large 1D vectors
– Shifted vector operations ‘cheap’

• Pointer arithmetic possible on GPUs
• Regular operation on large vector -> ideal for GPU

– ‘Dirt’ at domain boundaries due to wrap-around
• Removed by applying boundary conditions

(Canadian Company Acceleware sells GPU-based FDTD accelerators:

www.acceleware.com)

GPULib enabled rapid development of
FDTD on GPUS

• 3D FDTD
– Cut-Cell (Dey-Mittra) and Stair-Stepped boundaries

• Reads VORPAL geometry output
– Simulations should result in

• Entire computation on rectangular domain
– Compute update outside of conformal boundaries for simplified memory

access

• Entirely GPULib based
– Written in IDL -> integrated visualization, visual debugging
– Quickly demonstrate potential of GPU based FDTD
– Parallelization using mpIDL (http://www.txcorp.com/products/FastDL)

• Custom Kernel
– Optimize for performance, reduce memory transfer

Preliminary performance results
highly promising

• Performance (preliminary)
– Up to 470 Mcells/s on GPU including cut-cells boundaries

• Currently at ~70% theoretical memory bandwidth, so still potential

– ~10 Mcells/s on CPU

⇒~ 40-50x speedup compared to CPU based implementation
– Comparable to ~48 Franklin cores

• Question: How bad is effect of single precision FP?
– Needs detailed evaluation
– Think about your units!

• Question: What about large problems?
– Currently no huge GPU systems available, may change
– 2.6x speedup on a 3GPU ‘cluster’ (PSC)

Summary/Conclusions

• GPUs offer large for accelerating scientific applications

• CUDA significantly simplifies code development
– Still requires understanding of hardware

• GPULib enables GPU development from within VHLLs
– Provides large set of vector operations with unified interface
– Enables rapid development of GPU accelerated algorithms
– No hardware knowledge required

• FDTD solver on GPU
– Loosely coupled to VORPAL (tighter integration planned)
– Both stair-stepped and cut-cell boundaries

• GPUs yields ~40x speedup compared to CPU
– Problems that take O(minutes) become O(seconds)
– Compute on your desktop, rather than at HPC center

