Myproxy and related installation guide:

Getting Started:

· Obtain the following packages:

· ftp://ftp.ncsa.uiuc.edu/aces/myproxy/myproxy-1.16.tar.gz
· http://www-unix.globus.org/ftppub/gt2/2.4/2.4-latest/gpt/gpt-3.0.1-src.tar.gz
· Go to: http://www.globus.org/gt2.4/download.html, scroll down to “Source Download”, select “Resource Management” and “Client” and do the http download. (File: globus-resource-management-client-2.4.3-src_bundle.tar.gz).
Set up the enviroment (using setup on Natasha as an example):

· mkdir /globus

· cd /globus
· mkdir globus-2.4.3 ; mkdir globus-2.4.3/src ; mkdir globus-2.4.3/ALL
· mkdir gpt ; mkdir gpt/src ; mkdir gpt/GPT-3.0.1
· place the gpt source tarball in the gpt/src directory.

· place the globus and myproxy tarballs in the globus-2.4.3/src directory.

· export GPT_LOCATION=/globus/gpt/GPT-3.0.1

· export GLOBUS_LOCATION=/globus/globus-2.4.3/ALL

· those environment variables must be set before proceeding!

Build gpt:

· cd /globus/gpt/src

· untar the source package.

· cd into the created directory and run: “./build_gpt”.

· gpt is now built and installed.

Build globus:

· cd $GLOBUS_LOCATION

· $GPT_LOCATION/sbin/gpt-build –verbose ../src/globus-resource….tar.gz gcc32dbg gcc32dbgpthr
· this build will take a while, but the –verbose flag will allow one to observe the progress of the build.
· After the build is complete, it’s most likely a good time to: source $GLOBUS_LOCATION/etc/globus-user-env.sh just to be sure that your environment is complete.
Build myproxy:

· stay where you are in $GLOBUS_LOCATION

· $GPT_LOCATION/sbin/gpt-build –verbose ../src/myproxy….tar.gz gcc32dbg

· myproxy will be installed in the $GLOBUS_LOCATION hierarchy with the config file being placed in /etc, the server and administration utilities in /sbin, and the user utilities in /bin.

Setting up/starting up myproxy server:

· Decide which user will run the myproxy server process, create an account if necessary, create /var/myproxy, chown it to that user and chmod it to 700.

· Edit $GLOBUS_LOCATION/etc/myproxy-server.config as necessary. I believe that we are currently using an unedited default version.

· Edit the init script that is placed in /etc/rc.d (or whatever it’s corollary is on the system you installed it on). This will involve several things:

· At the top of the init script before anything else, add in and set the environment variables X509_USER_CERT and X509_USER_KEY to point to the cert/key files that the server will be using. This may also be set up as a standard ephemeral env var in the user shell, but adding it to the script is most likely the best thing to do. Similarly, if the appropriate files are found in /etc/grid-security, this is probably not necessary as they will most likely be picked up automatically, but no harm in being explicit. This is not a “commented out variable” that is already part of the script, so it must be added.

· Find where GLOBUS_LOCATION is set in the script and provide the appropriate path.

· Find where the commented-out variables STORE and CONFIG are located an provide the appropriate values (STORE would be the repository and CONFIG the path to the config file). You can set PORT as well while you’re here if desired.

· If the myproxy server is not to be run as root, then search for the string “Starting up MyProxy” and change the following startup line to: su -c "$MYPROXY $PORT $CONFIG $STORE $VERBOSE" fgcm (where fgcm would be changed to the username that is going to run the process).

· BUG ALERT: I encountered the following problem when I recently installed globus/myproxy. Right after the line “export GLOBUS_LOCATION” the init script attempts to source $GLOBUS_LOCATION/libexec/globus-script-initializer and after that, globus-sh-tools.sh in the same directory. For whatever reason, these utility scripts seem to not be included in the bundle we are installing. But as they are simple shell scripts, grab them from one of the lab installs of this and copy them to the $GLOBUS_LOCATION/libexec directory.

· At this point, the myproxy server should start up after all of these changes have been made. Simply run ./myproxy start. Even if it is being run as non-root user, it will still log to /var/log/messages with the line “myproxy-server” in the appropriate log lines (for string searching).

Installing Cyrus SASL:

Note: PAM authentication can be used to support one-time-password authentication when retrieving a proxy certificate from MyProxy. The rest of this document describes how we installed sasl to talk to a pam module.

· Obtain the Cyrus SASL package:

· http://ftp.andrew.cmu.edu/pub/cyrus-mail/cyrus-sasl-2.1.20.tar.gz
· I performed a non-default installation so we can control our own install and to use it in case the system installed sasl libraries did not suit our needs (for example, on my test machine, there were no sasl header files). Plus, globus sets up the $SASL_PATH variable when it initializes the environment, and this can compete with a default install.

· So, copy the library tarfile to where the rest of the globus/myproxy sources are (ie: $GLOBUS_LOCATION/../src), untar it and configure it thusly:

· ./configure –prefix=$GLOBUS_LOCATION –disable-cram –disable-digest --enable-login (the two disable flags are probably optional, but the install docs suggested disabling whatever you did not need).

· Then make ; make install. This will place the sasl binaries (saslauthd and some password utils) in $GLOBUS_LOCATION/bin, the main sasl shared libararies will be placed in $GLOBUS_LOCATION/lib and the sasl “plug-ins” will be placed in $GLOBUS_LOCATION/lib/sasl2.

· Of Note: when the globus environment is set up it will set the environment variable $SASL_PATH to $GLOBUS_LOCATION/lib/sasl (not sasl2). So at this point it is appropriate to cd to $GLOBUS_LOCATION/lib and: ln –s sasl2 sasl.
· Of Further Note: the aforementioned env var $SASL_PATH overrides the sasl package’s natural tendency to search in /usr/lib/sasl2 for it’s plugins and application specific configuration files. So this must be set not only in the environment/shell that the myproxy-server is being run under, but any client applications (such as myproxy-get-delegation) must not only see a valid sasl plugin/install, but must see one configured for myproxy. This is another good reason as I see it to eschew a standard install and install with the globus stuff because ostensibly anyone using globus/myproxy utils will have the globus environment setup and this allows globus to do it for the user rather than any further action required on the user’s part.
· This will now necessitate a recompile of myproxy:
· ./configure --with-flavor=gcc32dbg --with-sasl2=$GLOBUS_LOCATION ; make ; make install. This will freshen up the myproxy binaries and correctly install them in the globus tree.
· At this point, the directions for pam configuration found on the myproxy site: http://grid.ncsa.uiuc.edu/myproxy/sasl.html are prety much right on the money.
· The application specific conf file will go in $SASL_PATH/myproxy.conf. For simple pam unix-password configuration I used their sample myproxy.conf file using the “plain” mechanism and saslauthd for pwcheck_method.
· Since we’ll be cooking up more extensive pam recipes, I deviated from their example pam conf file (/etc/pam.d/myproxy) and went with this for my first stab:
account required pam_unix.so

auth requisite pam_nologin.so

auth required pam_unix.so

session required pam_unix.so

· This is a no-frills version of the standard unix login module. Other pam plugins (such as the one that enforces strong passwords) can be added into the stack as necessary.

· Next is starting up saslauthd. First mkdir /var/state/saslauthd and make sure it’s writable by the owning process. I’m just running it as root. Non-root run processes are able to talk to it. The daemon is started thusly:

· $GLOBUS_LOCATION/sbin/saslauthd –a pam – I just doctored up my myproxy init script to invoke this before the myproxy-server starts and kill it (via “killall”) when the myproxy-server is stopped. The sasl daemon can also just be started via another system init script if desired. But it must be running with the –a pam flag for us to link into the pam module framework.

· Then get some delegated credentials. It will first prompt for the myproxy cred password as per usual, and then prompt for the user’s system password. If it is delivered, then the proxy is handed out.

· This is one step in an evolutionary install process. For anyone following this document, getting this running (simple password auth) before plugging in any more auth mechanisms (OTP, RADUIS, etc) is probably wise to make sure that the installation and environment is set up correctly.

