
0
.5

se
tg

ra
y
0

0
.5

se
tg

ra
y
1

Genetic Algorithms and Genetic
Programming

Pavia University and INFN
First Lecture: Genetic Algorithms

Eric W. Vaandering
ewv@fnal.gov

Vanderbilt University

Eric Vaandering – Genetic Programming, # 1 – p. 1/37

Course Outline
• Machine learning techniques
• Genetic Algorithms

• Correspondance with biological systems
• Simple examples
• Possible applications

• Genetic Programming
• An example from HEP
• Implementation

There will be three lectures and I’ll be available to meet and
discuss possible applications.

Eric Vaandering – Genetic Programming, # 1 – p. 2/37

Machine Learning
There has been a long interest in teaching machines to
“automatically” solve problems, given the broad parameters of
the possible solutions.

For all but the simplest problems, an exhaustive or blind searches
are impractical. (We’ll see rather simple problems that can’t be
solved this way in the lifetime of the universe.)

There are numerous attempts to find these solutions: neural nets,
simulated annealing, expert systems, etc.

To find the best solution, maybe we should take a clue from
biology and the evolutionary process. (→ Genetic Algorithms)

Since we will use computer programs to implement our
solutions, maybe the form of our solution should be a computer
program.

Combined, these last two points form the basis of
Genetic Programming

Eric Vaandering – Genetic Programming, # 1 – p. 3/37

Genetic Algorithm: Definition
The Genetic Algorithm (GA) is a probabilistic search

algorithm that iteratively transforms a set (population)

of objects (usually a fixed-length binary string), each

with an associated fitness value, into a new population

of offspring objects using the Darwinian principle of

natural selection and operations that mimic naturally

occurring genetic operations, such as sexual

recombination (crossover) and mutation.

Eric Vaandering – Genetic Programming, # 1 – p. 4/37

Genetic Algorithms
These lectures deal mostly with Genetic Programming (GP).
Genetic Algorithms are conceptually easier to understand, so I’ll
illustrate how the biological model applies to GA’s before talking
about GP. (Historically, GP was an outgrowth of GA.)

Begin with an analogy to human DNA:
• Double strand with four letter alphabet: G-A-T-C

• A&T pair, G&C pair
• Allows for error correction

• Fixed length strand of DNA contains many genes
• Each gene codes to one protein, contains many letters

Genetic algorithms
• Usually a two letter (binary) alphabet, single strand
• Fixed length strand of bits contains many genes
• Each gene codes to one part of the problem

Eric Vaandering – Genetic Programming, # 1 – p. 5/37

GA Flowchart
Create Initial
Population

Evaluate Fitness
of Individuals

Full?
Population

Is

Criteria
Reached?

End

Select
Operation

End
Run

Population
Insert into

Start New
Population

Yes

No

Yes

No

Crossover (90%)

Copy (10%)

Mutate (1%)

The same general steps are used in Genetic Programming.

Eric Vaandering – Genetic Programming, # 1 – p. 6/37

Populations
The Genetic Algorithm (GA) is a probabilistic search

algorithm that iteratively transforms a set (population)

of objects (usually a fixed-length binary string), each

with an associated fitness value, into a new population

of offspring objects using the Darwinian principle of

natural selection and operations that mimic naturally

occurring genetic operations, such as sexual

recombination (crossover) and mutation.

Eric Vaandering – Genetic Programming, # 1 – p. 7/37

Populations and Generations
Genetic algorithms work by transforming one group of
individuals (typically a few hundred to a few thousand) in
generation n into another group of individuals in generation
n + 1.

Typically the number of individuals in each generation is the
same. Usually no duplication is allowed in the 1st (or 0th)
generation. Duplication is allowed in later generations.
(Diversity decreases.)

There are GA implementations where change is not generational,
but adiabatic. In these implementations, as a new individual is
created, an old one is “killed,” keeping the population size the
same.

Eric Vaandering – Genetic Programming, # 1 – p. 8/37

Representation
The Genetic Algorithm (GA) is a probabilistic search

algorithm that iteratively transforms a set (population)

of objects (usually a fixed-length binary string),each

with an associated fitness value, into a new population

of offspring objects using the Darwinian principle of

natural selection and operations that mimic naturally

occurring genetic operations, such as sexual

recombination (crossover) and mutation.

Eric Vaandering – Genetic Programming, # 1 – p. 9/37

Phenotype mapping
In the biological model, the genotype (the DNA) maps, via
proteins, to the phenotype, the physical organism. Various genes
manifest themselves as traits of the organism.

In a GA, the genes of the string maps to a solution of the
problem. For instance in a damped simple harmonic oscillator
function

x(t) = Ae−βt sin(ωt + φ)

A, β, ω, and φ could each be represented by a “gene” (maybe
32-bits each). The abstract string becomes a real manifestation.

One can imagine any number of problems which can be solved
with a series of weights or constants. State machine problems are
also solvable this way.

Eric Vaandering – Genetic Programming, # 1 – p. 10/37

Reproduction Methods
The Genetic Algorithm (GA) is a probabilistic search

algorithm that iteratively transforms a set (population)

of objects (usually a fixed-length binary string), each

with an associated fitness value, into a new population

of offspring objects using the Darwinian principle of

natural selection and operations that mimic naturally

occurring genetic operations, such as sexual

recombination (crossover) and mutation.

Eric Vaandering – Genetic Programming, # 1 – p. 11/37

Cross-over

Biological
Model

Genetic algorithms:
• Choose two strings, pick point on strings
• Swap segments, create two new strings

000111011111100
000101100010101

→ 000111 011111100
000101 100010101

gives two new children
000111100010101 and 000101011111100

Eric Vaandering – Genetic Programming, # 1 – p. 12/37

Mutation
Mutations in nature change the genetic code for a small region of
DNA. Usually are harmful or neutral; occasionally helpful
(creates a better/different protein).

Mutations in GA are usually kept to a minimum and are single
letter changes in the GA string.

This is one reason binary codes tend to be used: a flip in the least
significant bits of a “gene” may not have a major effect on model.

E.g., a model with a 6-bit gene coding an integer:
101101 → 101111

(45) → (47)

A high mutation rate approximates a random search.

Mutations can restore lost (or never present) diversity.

Eric Vaandering – Genetic Programming, # 1 – p. 13/37

Reproduction
Reproduction (or cloning) simply takes an individual from one
generation and copies it into the next generation unchanged.

Some simple organisms reproduce this way.

This process preserves good genes at the expense of diversity.

One might think that there is a delicate balance between diversity
and stability, but this doesn’t seem to be the case when using
these methods. (Extremes can mess things up, but lots of
combinations seem to yield good results.)

Eric Vaandering – Genetic Programming, # 1 – p. 14/37

Selection
The Genetic Algorithm (GA) is a probabilistic search

algorithm that iteratively transforms a set (population)

of objects (usually a fixed-length binary string), each

with an associated fitness value,into a new population

of offspring objects using the Darwinian principle of

natural selection and operations that mimic naturally

occurring genetic operations, such as sexual

recombination (crossover) and mutation.

Eric Vaandering – Genetic Programming, # 1 – p. 15/37

Survival of fittest
In nature, we know that the more fit an organism is for it’s
environment, the more likely it is to reproduce. This is one of the
basic tenets of evolutionary theory.

• Organisms with serious deformities are still-born or die at a
young age

• Faster, stronger, or longer lived organisms will produce
more offspring

The Genetic Algorithm method mimics this by determining a
fitness for each individual. Which individuals reproduce is based
on that fitness.

• The better the fitness, the better the solution
• The problem must allow for inexact solutions. There may

be a single correct solution, but there must be a way to
distinguish between increasingly incorrect solutions.
(Otherwise, we are again, engaging in a random search.)

Eric Vaandering – Genetic Programming, # 1 – p. 16/37

Measuring Fitness
There are many ways to quantify the fitness of a model:

• Number of cases classified correctly vs. incorrectly
• Similarity of desired output to actual output (e.g. distance

between two functions)
• Time to complete a task

Let’s construct our problem such that better solutions have lower
values (with perfect being 0). This is called the standardized
fitness, fs.

Let’s define another quantity, the adjusted fitness:

fa(i) =
1

1 + fs(i)

fa ≈ 0 for very unfit individuals, = 1 for perfect solution.
i denotes the number of the individual within the population.

Eric Vaandering – Genetic Programming, # 1 – p. 17/37

Reproduction probabilities
Once we know fa(i) we can choose which solutions are allowed
to reproduce such that better solutions are chosen more often.

The standard way of doing this is a weighting called “fitness
proportionate.” The probability of the ith individual being
selected for reproduction, p(i), is

p(i) =
fa(i)∑
j fa(j)

and of course
∑

i p(i) = 1.

Implications:
• The best individual is most likely to be chosen
• The best individual is not guaranteed to be chosen
• The worst individual may be chosen

Eric Vaandering – Genetic Programming, # 1 – p. 18/37

Fitness Over selection
For complicated problems which require larger population sizes,
“fitness-over-selection” is often used. In this method:

• Divide the population into two groups
• a small group of “good” fitness
• a larger group of “bad” fitness

• Most of the time, select an individual from the smaller
group

• Rest of the time, select an individual from the larger group
• Within each group, use standard fitness rules

E.g., maybe the individuals which supply 32% of the total
adjusted fitness will be chosen 80% of the time.

This tends to speed up evolution at the expense of diversity.

Eric Vaandering – Genetic Programming, # 1 – p. 19/37

Tournament Selection
Another type of selection is also used to implement survival of
the fittest. In tournament selection, a number of individuals (two
or more) are selected randomly. The most fit from that group is
selected to reproduce. The process is repeated to find a mating
partner (if needed).

We see this behavior in nature too...

Tournament Reward

Eric Vaandering – Genetic Programming, # 1 – p. 20/37

Termination
How do we decide to terminate the evolution of a system?

In nature, of course, this never happens, evolution continues
(responding to new pressures, maybe). Not acceptable for
solving real world problems.

If a “perfect” solution is found, this is a good place to quit (what
is a “perfect” solution)?

In cases where a perfect solution does not exist or is not found,
we have to find other criteria.

Usually evolution will cease or slow considerably; this may be a
good termination point. Maybe we have an upper limit on the
amount of time that can be spent finding a solution.

Eric Vaandering – Genetic Programming, # 1 – p. 21/37

Genetic Algorithm: Definition
The Genetic Algorithm (GA) is a probabilistic search

algorithm that iteratively transforms a set (population)

of objects (usually a fixed-length binary string), each

with an associated fitness value, into a new population

of offspring objects using the Darwinian principle of

natural selection and operations that mimic naturally

occurring genetic operations, such as sexual

recombination (crossover) and mutation.

Eric Vaandering – Genetic Programming, # 1 – p. 22/37

Probabilistic
Biological evolution is not purposeful or directed. There is no
goal in mind, such as creating the human form.

How is a Genetic Algorithm probabilistic?

• Initial population is randomly generated
• Participants in reproduction randomly chosen

• Best not guaranteed, worst not excluded
• Mutation and crossover points are determined randomly
• Fitness determination can be probabilistic too (Monte Carlo

method)

Eric Vaandering – Genetic Programming, # 1 – p. 23/37

Probabilistic
Biological evolution is not purposeful or directed. There is no
goal in mind, such as creating the human form.

How is a Genetic Algorithm probabilistic?

• Initial population is randomly generated
• Participants in reproduction randomly chosen

• Best not guaranteed, worst not excluded
• Mutation and crossover points are determined randomly
• Fitness determination can be probabilistic too (Monte Carlo

method)

A probabilistic search can help avoid being stuck in local
minima. This is a common problem with deterministic search
algorithms.

Eric Vaandering – Genetic Programming, # 1 – p. 24/37

An Easy Problem

Fi
tn

es
s

Model

Eric Vaandering – Genetic Programming, # 1 – p. 25/37

A Difficult Problem

Fi
tn

es
s

Model
Eric Vaandering – Genetic Programming, # 1 – p. 26/37

Probabilistic Searches
A probabilistic search is the only way to reliably ensure that you
will find the true maximum or minimum. Other such methods
include

• Beam searches
• Randomly pick a point, then try to find maximum using

a hill climbing technique
• Simulated annealing

• Models reheating and cooling a metal; organizes into
structures

• Look for better solutions, but allow a worse solution if
“temperature” is high

Eric Vaandering – Genetic Programming, # 1 – p. 27/37

A Genetic Algorithm example
We’ve heard that an infinite number of monkeys with an infinite
number of typewriters will eventually produce all of
Shakespeare’s (or Dante’s) works. Let’s try something a little
simpler.

Let’s look at how a genetic algorithm might be used to select the
optimum solution: my initials “ewv” from all 3-letter words

Step 1 – Define a representation: a 15-bit string which will
encode 3 letters (5 bits/letter).

a = 1 = 00001 b = 2 = 00010 c = 3 = 00011
. . . x = 25 = 11001 z = 26 = 11010

Step 2 – Define fitness: sum of how many steps away each letter
is.

aub = |5 − 1| + |23 − 21| + |22 − 2| = 4 + 2 + 20 = 26

Eric Vaandering – Genetic Programming, # 1 – p. 28/37

GA Flowchart
Let’s recall the flowchart and where we are going with this:

Create Initial
Population

Evaluate Fitness
of Individuals

Full?
Population

Is

Criteria
Reached?

End

Select
Operation

End
Run

Population
Insert into

Start New
Population

Yes

No

Yes

No

Crossover (90%)

Copy (10%)

Mutate (1%)

Eric Vaandering – Genetic Programming, # 1 – p. 29/37

GA example, continued
Step 3 – Generate a population of proposed solutions:

• Aside: There are 215 ≈ 33, 000 possible combinations. We
are unlikely to randomly find the right one

In interest of time, look at 4 best from 100 generated (worst have
fitness ∼ 50)

Word Binary Fitness
fpy 00110 10000 11001 11
iyz 01001 11001 11010 10
bw? 00010 10111 11100 9
cxu 00011 11000 10101 4

Step 4 – Use natural selection to select mating pairs:
• Fitness of 5 selected 10× as often as 50

Eric Vaandering – Genetic Programming, # 1 – p. 30/37

Four new individuals in 2nd gen.
Step 5 – Pick a crossover point, two parents create two children
• Keep fixed length string

First crossover Second crossover
00011 11000 10101 (f = 4) 00011 11000 10101 (f = 4)

00010 1 0111 11100 (f = 9) 01001 11001 11010 (f = 10)

Word Binary Fitness
cw? 00011 10111 11100 8
bxu 00010 11000 10101 5
bxv 00011 11000 10110 4
iyy 01001 11001 11001 9

Our four new combinations have better fitness than the original
100. In reality, we would generate 100 individuals in the 2nd
generation using the original 100.

Eric Vaandering – Genetic Programming, # 1 – p. 31/37

GA Example, continued
2nd generation examples

Word Binary Fitness
cw? 00011 10111 11100 8
bxu 00010 11000 10101 5
bxv 00011 11000 10110 4
iyy 01001 11001 11001 9

The 3rd generation might produce cwv (00011 11000 10110)
which is as close as we can get in this simple example. This
illustrates a few points:

• Diversity is important
• A perfect solution is not guaranteed
• Maybe we need mutation to restore lost bits

• We lost the ability to generate a “1” in the 3rd position

Eric Vaandering – Genetic Programming, # 1 – p. 32/37

A more complicated example
Generate “Pavia, Italia” from set of 90 characters. Same fitness
as before. Solution space is 9013 = 2.5 × 1025. It takes 36
generations of 2048 individuals (5.3 × 104) to find a perfect
solution.

Best String Fitness Best String Fitness Best String Fitness
ZtieK-/%cVjKd 183 Raskb.!Foagjf 30 Pavkb, Hsalia 5
COrlX&:Ooaf_h 113 Rask](Hvblkb 22 Pavkb, Hsalia 5
VOrlX&:Ooaf_h 106 Rask](Hvblkb 22 Pavkb, Hsalia 5
VOrlX&:Ooaf_h 106 R_rga)"Ivblkb 21 Pavka, Hsalia 4
W/mST0 UkbqfZ 97 R_rga)"Ivblkb 21 Pavha, Hsalia 3
PchY[”Igeqae 84 R‘vkb, Hsahhb 14 Pavha, Hsalia 3
MWvTb0 UkbqfZ 76 Pavkb, Hsahhb 11 Pavia, Hsalia 2
Sbrkr)"Qt[mWk 75 Pavkb, Hsahhb 11 Pavia, Hsalia 2
Pcp_/.!FoaWkb 58 Pavkb, Hsahhb 11 Pavia, Isalia 1
Rask](#HvYgjf 40 Pavkb, Hsahhb 11 Pavia, Isalia 1
Rasd]*"Orbgjf 38 Pavkb, Hsaljb 7 Pavia, Isalia 1
R_rga)"Joahhh 33 Pavkb, Hsaljb 7 Pavia, Italia 0

This model has a little bit of mutation.

Eric Vaandering – Genetic Programming, # 1 – p. 33/37

How does the GA work?
Let’s go back to our “initial” example:

What is the reason ‘fpy’ matches ‘ewv’ pretty well?

• Is it that ‘f’ matches ‘e?’
• Is it that ‘p’ matches ‘w?’
• Is it that ‘y’ matches ‘v?’
• Is it some combination of these?

The Genetic Algorithm doesn’t know the answer. But it does
know that ’fpy’ is better than ’zaa’ and it knows that ’fpy’ is
better than average. So something must be “right” about ‘fpy.’

The same thing is true in biology. We might not know which
combination of traits an organism might possess enable it to
reproduce.

Eric Vaandering – Genetic Programming, # 1 – p. 34/37

How does the GA work?
Of the combinations on the previous page, the GA wants to
determine which ones are important.

Implicitly (but not explicitly) what the GA does is attribute
success or failure to all these possibilities (and combinations).

• If one explanation is associated with both good and bad
fitness, it may be unimportant.

• The GA figures this out automatically

In a sense, it does what you or I might do: change something and
see what makes a difference. But, the GA does this statistically
by varying many things at a time.

In practice, if there are important genes, they are usually
“locked-in” quickly.

Eric Vaandering – Genetic Programming, # 1 – p. 35/37

Some suggested applications
Now that we’ve seen how GAs work, what are some possible
applications?

• “Fits” with a number of parameters, especially those with
local minima that conventional fitting programs may
become stuck in

• Weighting scheme to classify events (e.g. a spam filter)
• Calibrating a multi-channel piece of equipment (e.g., a

calorimeter)
• Many, many more

Eric Vaandering – Genetic Programming, # 1 – p. 36/37

GA & GP Resources
There is a lot of information on the web about Genetic
Algorithms and Programming:

• http://www.aic.nrl.navy.mil/galist/ —
Genetic Algorithms

• http://www.genetic-programming.org/ —
John Koza

Software frameworks for both GA and GP exist in almost every
language (most have several)

• http://www.genetic-programming.com/
coursemainpage.html#_Sources_of_Software

• http://zhar.net/gnu-linux/howto/ – GNU AI
HowTo (GA/GP/Neural nets, etc.)

• http://www.grammatical-evolution.org —
GA–GP Translator

Eric Vaandering – Genetic Programming, # 1 – p. 37/37

	Course Outline
	Machine Learning
	Genetic Algorithm: Definition
	Genetic Algorithms
	GA Flowchart
	Populations
	Populations and Generations
	Representation
	Phenotype mapping
	Reproduction Methods
	Cross-over
	Mutation
	Reproduction
	Selection
	Survival of fittest
	Measuring Fitness
	Reproduction probabilities
	Fitness Over selection
	Tournament Selection
	Termination
	Genetic Algorithm: Definition
	Probabilistic
	Probabilistic
	An Easy Problem
	A Difficult Problem
	Probabilistic Searches
	A Genetic Algorithm example
	GA Flowchart
	GA example, continued
	Four new individuals in 2nd gen.
	GA Example, continued
	A more complicated example
	How does the GA work?
	How does the GA work?
	Some suggested applications
	GA & GP Resources

