VLT (ESO)

SNO

(SST/HST/CXO/NASA) Integra

Supernova Science

with Radioactive Ion Beams

W.R. Hix (ORNL/UTK)

Stardust (JPL-Caltech/NASA)

Supernova and their Nucleosynthesis

Supernova Modeling is Ongoing

Much Work Remains to do; 3D, General Relativity, Magnetic Fields, Nuclear Reactions, Equation of State, Neutrino Oscillations, ...

W.R. Hix (ORNL/ U. Tenn.)

Radioactive Nuclei in Supernovae

* Core Collapse Mechanism

Nuclei present during collapse/above shock Shed light on Nuclear EOS

* Nucleosynthesis

Iron-peak ⁵⁶Ni,⁵⁷Ni, ⁴⁴Ti, etc. p-process r-process

Effects of Nuclear Electron/Neutrino Capture during Core Collapse

There are 2 separate effects.

- Continuation of nuclear electron capture at high densities results in lower interior Y_e.
- 2) SMD rates result in less electron capture at low densities.

Initial mass interior to the shock reduced by ~20%.

Shock is ~15% weaker.

W.R. Hix (ORNL/ U. Tenn.)

Changes in Neutrino Emission

 ν_e burst slightly delayed and prolonged.

Other luminosities minimally affected (~1%).

Mean v Energy altered: 1-2 MeV during collapse ~1 MeV up to 50ms after bounce ~.3 MeV at late time

The impact of stellar mass

Higher mass cores have higher initial entropy. Effects of nuclear electron capture are reduced but comparable (1/2 to 2/3).

W.R. Hix (ORNL/ U. Tenn.)

Determining Y_e and Entropy

Change in lepton abundance $(Y_l = Y_e + Y_v)$ occurs gradually over 2+ decades of density up to ~ $3x10^{12}$ g/cm³.

Beyond equilibration, variations in Y_e reflect thermodynamic changes.

Entropy is flat until appreciable Y_v is achieved allowing significant neutrino capture and heating then flattens after equilibration.

Needed Electron Capture Rates

Nuclei with A ~ 100+ contribute to e^{-}/v capture.

Many rates are needed, with declining quality needed with increasing mass.

W.R. Hix (ORNL/ U. Tenn.)

What can RIBs say about $e^{-1}v$ Capture?

Charge Exchange Reactions, e.g. (n,p),(d,²He),(t,³He), also sample GT+ strength distribution, providing strong constraints on structure models.

Current Experiments, on stable nuclei, agree well with shell model calculations for A<60.

For A=80-100 nuclei of interest are 2-6 neutrons richer than stability.

Should be achievable with NextGen RIBs.

W.R. Hix (ORNL/ U. Tenn.)

v-Effects on Supernova Nucleosynthesis

- 1. Improved agreement with abundances of Sc, Cu & Zn observed in metal-poor stars.
- 2. Reduction in over-production of neutron-rich Fe, Ni.
- 3. rp-process pattern of elements from A=64 to 80+.

Enhancement of waiting-point nuclei:

 64 Ge → 64 Zn 68 Se → 68 Zn 72 Kr → 72 Ge 76 Sr → 76 Se 80 Zr → 80 Kr 84 Mo → 84 Sr

Similar Effects seen in GRB disks with low accretion rate. (Surman, McLauglin & Hix 2006)

W.R. Hix (ORNL/ U. Tenn.)

Nuclear Measurements for Astrophysics, ORNL, October 2006

How to get beyond A=64?

As Pruett et al. (2005) point out, true rp-process is limited by slow β decays, e.g. τ (⁶⁴Ge) = 64 s

W.R. Hix (ORNL/ U. Tenn.)

Neutrons in a proton-rich environment?

Main abundances: ¹H, ⁴He, ⁵⁶Ni from p-rich and α -rich freeze-out.

Protons converted to neutrons via anti-neutrino capture.

(n,p) and (n, γ) "accelerates" β decays.

Detecting the r-process in old stars

W.R. Hix (ORNL/ U. Tenn.)

Nuclear Measurements for Astrophysics, ORNL, October 2006

Simulating the r-process Uncertainties about the site of the r-process provide considerable latitude for modeling.

W.R. Hix (ORNL/ U. Tenn.)

R-process Data

- For most of the r-process, (n,γ)(γ,n) equilibrium holds.
- Much of what's needed are masses and β-decay rates.
- (n,γ) rates matter as equilibrium breaks down.

To achieve desired accuracy of r-process predictions will require neutron capture rates, at least near stability.

W.R. Hix (ORNL/ U. Tenn.)

Radioactive Ion Beams can:

1) provide better constraints on nuclear structure relevant for electron and neutrino captures.

2) provide important constraints on the properties of neutron-rich nuclear matter.

3) allow measurement of rates of interest to rpprocesses, including the vp-process, and iron peak nucleosynthesis.

4) provide masses and β -decay rates needed for the r-process, as well as selected measurements of (n, γ) and fission rates.

All of these are needed to better understand core collapse supernovae and their nucleosynthesis.

W.R. Hix (ORNL/ U. Tenn.)