
,,_,._T,,_/./_,,¢__ 6

NASA Technical Memorandum 100636

NASA-TM- 100636 19880018063

l
I

FTMP DATA ACQUISITION ENVIRONMENT

Peter A Padilla --

July 1988

I

" ..--,;q'."(.,-'i" r-,_'- ' ..'

b_/::UG1 1,_,J

U_N<I_":-y_ESE;,_CHCEY,T?-P-

.. iI:,h;!'lCtl, ',,'ii_G',liiA

National Aeronauticsand
Space Administration

langley Rese_rr.hCenter
Hampton,Virginia23665

S'OMMARY

The Fault-Tolerant Multi-Processor (FTMP) test-bed data acquisition

• environment is described. The performance of two data acquisition devices

available in the test environment are estimated and compared. These estimated

data rates are used as measures of the data acquisition devices' capabilities.

The FTMP data acquisition environment consists of parallel data acquisition

paths, with each path comprising several devices (with their associated

software) which are connected in series to form a data path between the target

system, FTMP, and the host system, a VAX minicomputer. Two parallel data

acquisition paths, the Collins Test Adapter (CTA) and the 1553 data bus,

comprise the original environment.

A new data acquisition path has been developed and added to the FTMP

environment. This path increases the data rate available by approximately a

factor of 8, to 379KW/s, while simplifying the experiment development process.

The control software was developed and allows application programs written in

the host VAX minicomputer to access the control software functions through the

QIO system service interface.

Everything of interest in FTMP, e.g., system status and configuration data,

appears on the bus periodically to be processed by the operating system or

application software. The new acquisition system monitors FTMP's system bus

and can trigger on any selected word that appears on the bus. Therefore,

state and performance data, and information on fault effects can readily be

obtained.

INTRODOC'fION

The FTMPdataacquisitionenvironmentconsistsof paralleldata acquisition

paths,with eachpath comprisingseveraldeviceswith theirassociated

softwarewhichare connectedin seriesto forma datapathbetweenthe target

system,FTMP,and thehost system,a VAX minicomputer.Two paralleldata

acquisitionpaths,theCollinsTestAdapter(CTA)and the 1553data bus,

comprisethe originalenvironment.

Data acquisitionrate limitationsin both data acquisitionpaths motivated

the design and implementationof a new data acquisitionpath to be added to

the environment. The new data acquisitionsystem (DAS) is designed to

monitor, in real-time,the signals from FTMP's system bus. The systemwas

interfacedto the redundantserial bus of the FTMP test-bedand allows a

[esearcherto monitor and store the contentsof FTMP's system bus during

system operation. On this bus the state of the system is periodically

transmittedto be processedby system software. The new acquisitionpath

allows researchersto acquireand store this data efficiently.

The data acquisition system provides the following functions which will be

explained in more detail in a later section :

i. continuously monitors a user-selected bus, searching for a

user-specified trigger word;

2. starts acquisition (data storage in local memory buffer) of a

user-specified number of words (up to the maximum memory buffer

size) from all 15 busses after locating the trigger word in

• the bus serial data stream;

• 3. down-loads the data collected from DAS local memory to the host

computer memory (a VAX-II/750) through a direct memory access

(DMA) operation at 400KW/s.

A device driver was developed for the host system through which application

programs can control and integrate the data acquisition system with existing

experiment control and data acquisition software.

Thedata acquisitionsystemdesignwas drivenby the needto know the state

of the faulttoleranttest-bedat any momentduringa faultinjection

experiment.In the FTMPtest-bed,statedataare transmittedon the redundant

systembus every40ms. Thus,by monitoringthe systembus and triggeringthe

DAS on theappropriate"trigger"word,it is possibleto acquirethesedata.

The compositionof thisdocumentis as follows:the followingsection
describesthe FTMPenvironment,i.e.,the FTMPtest-bed,the CTA,and 1553

dataacquisitionpaths. The nextsectiondescribestheDAS hardwareand its

interfaceto the FTMP-VAXenvironment.Anothersectiondescribesthedevice

driverfunctionsand the interfaceto applicationprograms(a simpleexample

programis includedin appendixB). The lastsectioncomparesthe new data

acquisitionpathwith the previousonesand offerssome remarksaboutthe

possibleuse of thenew capabilities.In appendixA the systembus data rates

for readand writeoperationsare estimated.

FTMP SYSTEM _%_/IIg3NMENTDESCRIPTIONAND BACKGROUND

The Fault-Tolerant Multi-Processor system is a test-bed used for fault-

tolerant systems validation experiments, validation experiments include

fault-free performance and fault injection experiments which comprise the two

, major subdivisions of the validation methodology presented in reference i.

More on fault-free experiments can be found in reference 2. Fault injection

• experiments on FTMP are described in references 3 and 4. The FTMP system is

described in reference 5.

SYSTEM BUS LRU

A

LRUSLRU7LRU
LRU = Line Replaceable Unit

Figure la. FTMP physical configuration

Figure la shows the physical configuration of FTMP. There are ii LRUs which

are interconnected by a redundant system bus. Each LRU contains (see fig. ib)

a CPU, memory management unit (MMU), 8K cache RAM, interval timer, 8K PROM,

system bus interface (SBI), 16 control and communication registers (CCR), 1553

• I/O port, 16K system RAM, and a real-time clock (RTC).

• A processor (i.e., computer) is implemented on each LRU with the following

components: CPU, MMU, cache RAM, timer, and PROM.

At system restart, different components of the LRUs (e.g., processors) are

organized in groups of three (called triads, see fig ic) to provide the

redundancy required to tolerate a single fault anywhere in the system. The

triads are tightly synchronized, i.e., all the processor components of a

3

processor triad execute the same instruction of the same program at the same

clock cycle. (There are special hardware and software components in the

system to support these functions, see refs 5 & 7.) Thus synchronized, the

processor triads output three copies of the results of any

computation/operation on the redundant system bus triad. The copies are then

voted bit by bit to mask any errors that might occur due to a hardware fault

on any of the triad components.

PROCESSOR

i i
I CACHE I
i cPu MMO TIeR PROM i

TRANSFER BUS
S_

1553 SYSTEM

CCR RTC
PORT RAM

SYSTEM BUS

TO OTHER

LRUs

Figure lb. LRU components

The transferbus insidean LRU is a 16-bitparallel bus. The CCRs are

write-only from the system bus and read-onlyfrom the transferbus. The CCRs
t

provideCPU control functionsand inter-processortriad communications.

Throughtheseregistersa processorcan reset,interrupt,and providethe

triad identification code to another processor triad. (The triad

identification code is used for the poll sequence mechanism of the system bus

and for system bus address decoding functions, see reference 5.)

The system bus is a composite of 4 different redundant serial busses. These

busses are the Poll bus (P bus), the Transmit bus (T bus), the Receive bus (R

bus), and the Clock bus (C bus). There are five busses of each P, T, R, and C

4

bus, of which three are being used at any given time (a bus triad) with one

exception, the C bus. The real-time clocks and the C bus are configured as

quads (four units active) to implement the fault tolerant clock.

The content of the C bus triad is a Non-Return to Zero (NRZ) IMHz square
, wave.

The P bus triad is used by a CPU triad to request control of the T and R bus

triads to access other components of the system. The P bus data rate is IMHz

and the data format is NRZ.

The T bus triad is used by a processor triad to transmit read/write commands"

to system memory triads, 1553 ports, the fault tolerant real-time clock, and

the CCRs. The data rate is 8MHz and it is transmitted as a series of pulse

width modulated pulses.

The R bus is used by memory triads, 1553 ports, and the real-time clock to

respond to processor triad read commands transmitted through the T bus triad.

The R bus triad data rate and format are the same as those of the T bus.

5

PR_ESSOR _I_ 1 PROCESSOR_I_ 2 PROCESSOR_I_ 3

]1 lil ill ,
SYST_ BUS

JR JlllJl

SYSTEM MEMORY SYST_ MEMORY REAL-TI_ CL_K
I 1 _I_ 2 QU_

SYST_ BUS

I
CCRs from LRUs 1553 I_ ports SPARE CPUs, SYST_
0,1,2,3,4,5,6,7, from LRUs 0,1,2, MEMORIES,and
8,9,A 3,4,5,6,7,8,9,A REAL-TI_ CL_KS

CONTROL & 1553 PORTS
COMMUNICATION
REGISTERS

Figure ic. F_P configuration

One processor(processorA) in FTMP is used as a "_ster" processorduring

system restart. This "master"processoris used to load system memory with

the applicationsoftwareand to issue initialconfigurationcommands,e.g.,

which processorsare going to be in triad i, triad 2, and triad 3.

After system restart, the master processor is used for data acquisition and

software debugging purposes so that it is never part of a triad.

The FTMP is interfaced to a VAX minicomputer through several hardware sub-

systems,which comprise the data acquisitionpaths. A high level block

diagram showingthe FTMP-VAXhardwareenvironmentis shown in figure 2.

FTMP

r -I I
FTMP TB

PROC i 1553 PORT CONSOLE BOARD CONSOLE& BUS
MEMORY

TRIADS --I 1553 PORT _ 1553/DMABOARD I

I I
[TB = Transfer Bus J I UNIBUS

1
CTA = Collins Test Adapter

VAX CPU

Figure 2. FTMP-VAX environment.

Each major component of the FTMP-VAX environment is represented by a block

in fig. 2. The VAX CPU accesses peripherals through the UNIBUS, a 16-bit data

bus. The console is a Hewlett Packard (HP) 2645A terminal and CTA is a

hardware interface (bus protocol converter/translator) between the UNIBUS and

master processor transfer bus.

The CTA hardware allows software running in the VAX host to read and/or

write to any location in the master-processor cache memory. Unfortunately,

all the data is stored in global memory. Thus, to access global memory, a

program is loaded and executed in the master processor (through the CTA

• interface). The master-processor program can access global memory through the

system bus and can communicate with the software running in the host computer

through the CTA interface. All I/O operations done through the CTA interface

must be programmed I/O operations (i.e. one word per read/write operation) and

delay loops must be incorporated in the host software to allow it to wait

until the master-processor program completes each operation.

The console board translates console commands from the HP terminal format to

1553 format which are then read by the FTMP (the bus master, see ref. 6) and

7

acted upon. The console board also translates FTMP status information from

1553 format to HP format so that it can be displayed on the console's screen.

The 1553/DMA board translates between 1553 format to UNIBUS format and

performs read/write DMA operations to the VAX main memory. During fault

injection experiments, the FTMP-VAX handshaking and fault injection data are

exchanged through this interface.

As mentioned above there are two data acquisition paths from FTMP to the

VAX, through the CTA and the 1553 port-UNIBUS. The data rates for these data

acquisition paths can be estimated as follows.

To transfer data through the CTA interface it is necessary to run a program

in the master processor. The master processor is one of the links of this

data path chain; the other links are 16-bit parallel busses (UNIBUS & transfer

bus), the system bus, and the CTA protocol converter hardware (fig 2).

The throughput of a FTMP processor was measured in ref 2, and is given as

150,000 instructions/s. The number of instructions required to set up the

system bus interface (a DMA controller) and to transfer data from FTMP to the

VAX is approximately 20 processor assembly instructions (obtained from the

program listing). Only one word can be transferred at a time using the CTA

hardware. Thus, the resulting data transfer rate is 7.5KW/s (IKW/s = 1

thousand 16-bit words per second). This data rate figure for the master

processor is an optimistic estimate, no account has been taken of all the

delays incurred in transmission, bus arbitration, etc.

In practice, the data rate through the CTA had to be reduced to ~ 40W/s ;

any faster and the UNIBUS timed out, indicating that it did not receive a

response from the CTA/master processor link. The reason for the time-out is

saturation of the transfer bus traffic. The CPU, the system bus interface,

and the CTA protocol translator (figs ib & 2) all require the use of the

transfer bus and, usually, the system bus interface wins the arbitration

battle, thus forcing the others to wait.

The other data path for acquisition is somewhat more complex than the CTA

data path. The data path component chain is:

global memory _ system bus _-_processor _-+system bus _-_1553 port _-_

1553/DMA board _-_UNIBUS.

Where the "_-_" symbol means bidirectional data flow. A data rate estimate of

each path link follows.

A 1553 port transaction, which involves 32 data words, a command word, and a

status word, requires about 700_s to complete (ref 5), for an effective data

rate of 32W/700_s = 45.7KW/s between the 1553 port and the 1553/DMA board.

The maximum rate between the DMA board and the UNIBUS is given as 700KW/s.

The 1553 port must be accessed through the system bus by a processor. The

system bus read and write data rates were estimated at -32KW/s and ~34KW/s,

respectively. (See appendix A for the derivation of these estimates of the

system bus data rates.) Full utilization of the 1553 port to output data

requires 134.6% of the system bus write data rate, while full utilization of

the 1553 port to input data requires 143.7% of the system bus read data rate.

Therefore, the 1553 port data transfer capacity cannot be fully utilized.

There is, however, a more serious limitation to this data path speed.

A program must be developed for the master processor to read data from

system memory to local cache and then from cache to the 1553 port

(approximately 40 instructions would be required for this). Thus, the master

processor data rate is reduced to < (150/40)KW/s = 3.75KW/s. Transfer bus

traffic saturation effects would reduce the data rate even further (take the

CI_ case for an example).

Another consideration is that only 32 words can be transmitted through the

, 1553 port in one transaction; thus, longer transactions must be partitioned

into several 32 word transactions. This would require more instructions to be

executed in the master processor, thus slowing the data rate, and an increase

in the system bus traffic (a polling sequence must be executed on every

transaction) which can lead to bus traffic saturation and a further reduction

in the data rate. Therefore, the maximum data rate supported by this data

path seems to be approximately 2 to 3KW/s.

9

During fault injection experiments two 1553 transactions (a read and a write

operation) are performed every 40ms to transfer handshake and fault injection

data between the VAX and FTMP. Therefore, the present data rate through this

data path is approximately 1600W/s, well within the path data rate capacity,

but leaving little room for expansion.

A current fault injection experiment involves the study of the fault effects

on the system behavior. The data requirement for this experiment is

approximately 150 words. These data must be sampled at least twice every 40ms

for a data rate of 7.5KW/s . It is clear that the capabilities of the CTA and

155] data acquisition paths in the FTMP environment are inadequate to fulfill

this data rate requirement.

i0

DATA ACQUISITIONSYSTEM DESCRIPTION

A new dataacquisitionsystempathwas developedand addedto the F_

environment. Figure3 showsthe F_ environmentwith the dataacquisition
system added.

F_

• P @
--_TER PROC CTA I

F_P

PROC
• CONSOLEBOARD CONSOLE& BUS

M_ORY

--I 1553_ BOARD

_ = Transfer Bus _IBUS

1
CTA = CollinsTest Adapter
D_ = Data AcquisitionSystem

V_ HOST

Figure 3. FTMP-VAX environment.

This path was designed with 5 characteristics in mind. These characteristics

are:

i. acquire data from the target system without affecting the target

• system behavior.

• 2. transfer the acquired data as fast as possible to the host system.

3. start data acquisition as soon as previous data is transferred to

the host (if repetitive acquisition is required).

4. independent operation of the data acquisition system from the

host (host can be dedicated to data analysis and storage).

ii

5. data acquisition functions should be determined by control

flags/words set by the host in real-time.

'['hefirst characteristic refers to an obvious desirability in measurement

systems. If the measurement system affects the target system, the

measurements taken might be of limited use or worse yet, invalid and useless.

The second and third characteristics above refer to the desirability of

speed in the data acquisition process.

The fourth characteristic, independence from host, enhances the portability

of the acquisition hardware. Also, it supports faster speeds through the

implementation of acquisition and data transfer functions in hardware.

Unloading the host from an I/O intensive task permits design optimizations

which could not be possible if the entire operation were tightly controlled

from a timeshared computer (e.g. compare a software controlled data transfer

process as the CTA data path, with a data rate of 7.5KW/s, with DAS's direct

memory access rate of 400KW/s).

The fifth characteristic offers some user flexibility and control in the

data acquisition process. This characteristic allows the host to adjust or

change the data acquisition system functions (e.g. how many words to acquire)

in real-time without having to restart the experiment or modify software.

Everything of interest in FTMP, e.g., system status and configuration data,

appears on the bus periodically to be processed by the operating system or

application software. The DAS system monitors the system bus and can

trigger on any selected word that appears on a user specified bus, be it P, R,

or T bus. After triggering, the DAS stores the content of these busses for a

user specified number of clock cycles in a local buffer. After storing the

data, it will signal the host that it is ready to transmit data, which the

host acknowledges by setting a flag, if the host is ready to accept the data.

After the host flag is asserted, the DAS will DMA the data at a rate of

400KW/s to a user specified buffer in the host main memory. The present DAS

local buffer size is 8KW. The buffer can be expanded to a maximum size of

64KW.

12

After down-loading the data to the host, the host can command the DAS to

start another data acquisition cycle by setting a flag, or it can change some

of the DAS parameters (e.g., the trigger word) and continue the data

acquisition process.

Figures 4a and 4b present the FTMP-DAS and DAS-VAX interfaces.

FTMP TO DAS-VAX
SYSTEM INTERFACE
BUS TTL INTERFACE (FIG. 4b)

p busses /--_ Rc/Tx /
PI-5

5 5

C busses --/--_ Rc/Tx 1 Y C
ECL INTERFACE

R busses Rc/Tx ./ Tr FWDM Tx Rt_s
-- RI_5C

5 5 TI-5

/--_ 1 Tr PWDM Tx /-- TI

Rc = Receivers , Tx = Transmitters, Tr = Terminationresistors

FWDM = Pulse Width De-ModulationCircuitry

Figure 4a. FTMP-DAS interface

The T and R busses are pulse-width-modulated;thus, they must be demodulated

to providedata (RI__ and TI_5) and clock (Ri_sCand TI_5C) signals. The

clock signalsare then used to sample the data signals.

The P busses data signals are in a NRZ format which can be interfaced

° directly to DAS. The 5 C busses are voted to generate one sampling clock

(labeled C in the figures) for the PI-s signals.

AEter demodulation and buffering, the signals are transmitted to the DAS.

Figure 4b, presents a block diagram of DAS and its interface to the VAX host.

The data and clock signals go to a multiplexer (mux). The mux picks the

signal to be examined for the trigger word and the corresponding clock to

sample this signal. Data signals also go to a register/latch where they are

13

stored for one clock cycle, thus presenting a stable input for the duration of

the memory write cycle. The signals are not latched and written into memory

until the trigger word has been detected.

(FROM FTMP-DAS INTERFACE,FIG. 4a)
C,R,__C,T,_sC PI- ,R_-5,T,-s

Ill _ 15 PI-5,RI-5,TI-5

I
15

! / I

MEMORY BUFFER

AND

I I cobol
I cobolLOGICI [16

]
DMACONTROLLER

5s
I UNIBUS

I

[v_ CPO/_ORY {

Figure 4b. DAS-VAX interface block diagram.

After trigger detection, the data is written sequentialy into the DAS memory

buffer while its address in local memory (starting from 0) is compared to the

number of data words specified by the user. When both are equal, the DAS will

signal the host that is ready to down-load data. At this signal the host can

respond in one of three ways:

I. down-load the data and reset DAS.

2. down-load the data and start acquisition again (with the same DAS

parameters).

14

3. down-load the data, change DAS parameters, and start acquisition.

The data is down-loaded at a rate of 400KW/s. Changes in DAS parameters take

approx 8_s, while starting the acquisition process takes < 200ns (these times

represent the delay after the host has issued the appropriate instructions).

' One word of data is stored every clock cycle of the sampling clock which is

selected by the user. The data is stored in serial format, i.e., one DAS word

represents one time slice (a sample) of the bus (fig 5a). Each bit in the DAS

word contains the data present on a different bus of FTMP at the sampling

instant (fig 5b).

15

I
p_ I I [J [...

p_ I I [1 [

p_ I i [J I g g •

I
P4 ..-

P_

R[...

R2 ...

R] ...

R4 . . .

R_, . ..

T] ...

'I';, ...

T_ ...

T 4 ...

T% oo.

TIME SLICE

Figure 5a. A time slice of the system bus.

The system is in the middle of the polling

sequence.

16

BIT 15 14 13 12 ii 10 9 8 7 6 5 4 3 2 1 0

NOT USED

Figure 5b. Data ac_isition bit assignment.

All the componentsof F_P's system bus transmitdata serially. Therefore,

in order to ac_ire one 16-bit word being transmittedin a bus, 16 clock

cycles_st _ stored in the D_ memory. Thus, 16 D_ words _st be used to

captureone FTMP word, but 14 additionalF_P words can be capturedwithin

those 16 D_ words, i.e., each D_ word can containone bit of 15 different

FI_P words.

As mentioned above there are a certain number of DAS parameters which the

user can select (within certain bounds). These parameters are:

i. the trigger line and sampling clock selection.

2. the trigger word (16 bits)

3. the DAS word count(atpresent< 8K; expandableto 64K)

The trigger line and sampling clock cannot be selected separately, i.e., if

the selection for the trigger line is RI, the sampling clock selection is

auto_Itically RIC. This is enforced by using only one code to specify the

pair (RI, RIC). The trigger lines and sampling clock pairs are shown in fig

6. The code which is used to select each pair is the bit number in which they

reside in the DAS word.

SELECTION

CODE 15 14 13 12 II i0 9 8 7 6 5 4 3 2 1 0

X P5 P,_ P3 P2 PI R5 R4 R3 R2 RI T5 T4 T3 T2 TI

X C C C C C R5C R4C R3C R2C RIC T5C T4C T3C T2C TIC

t
NOT USED

Figure 6. Trigger lines and sampling clock pairs.

17

Observe that only one clock is used for the P busses while the T and R

busses each have their own corresponding sampling clocks. The reason for this

is that the 5 C busses are phase locked, i.e., they are all synchronized.

Thus it does not matter which C bus is used to sample the P bus transmissions

(which are also synchronized). In order to assure a sampling clock for the

DAS, the 5 C busses are voted in the FTMP-DAS interface, and the voted clock

is used by the DAS to sample PI through Ps-

In contrast, the time skew between the T (or R) busses transmissions are not

guaranteed to be less than half a bit period (62.5ns), i.e., they are not

synchronized. Thus, the appropriate sampling clock must be used to sample a

signal for the trigger word.

In order to observe timing relationships between data signals, all the

signals are sampled by the selected clock. Thus, any time skews between the

elements of the T (or R) bus triads can be detected. This property is very

useful for timing analysis and studies of fault injection effects on system

behavior.

As mentioned above, the DAS works independently from the host VAX though it

receives control information through several control flags and registers. A

program that provides a software interface to the hardware and hides all the

hardware complexity from the user was developed. The next section provides a

description of the DAS software interface.

18

DAS SO_ INTERFACE

A control and data flow graph for the VAX-DAS interface is shown in figure

7. This flow graph represents the information and control flow from the

application programs to DAS. The device driver program translates application

program commands into the bit patterns understood by the DAS hardware. When

requested by the applications program (with a command), the device driver will

• automatically set up the DMA transfer that will write the acquired data to a

application program data buffer or it will load DAS control registers with

information stored in another application program buffer.

I APPLICATION I COMMANDS
PROGRAM

ACQUISITION % $
DATA

DEVICE DRIVER
PROGRAM

VAX

4`CONTROL

DATA 4`COMMANDS

UN IBUS DMA

CONTROLLER

ACQUISITION I I 4. CONTROL
DATA _ DATA

DAS

DAS

Figure 7. Control and data flow graph of the VAX-DAS interface.

There are several commands that an application program can issue. Each

command is related to one of the functions that DAS can perform: down-load

data to the VAX, start acquisition, reset, get status information, and load

DAS control registers.

When a "load DAS parameters" command is issued by the application program,

the device driver sets up a DMA controller. The controller reads the

application program data buffer where the DAS parameters are stored, and loads

them into DAS control registers.

19

At reception of the command "start DAS", the driver sets a flag that

indicates to the DAS hardware to start acquisition immediately.

The applicationprogram can access a flag, set by DAS to indicateits

readinessto down-loaddata, through the command "get csr" (csr = controland

status register). The flag is containedin bit i0 (word bits numbered from 0

to 15) of the csr register. Other bits are used for debuggingpurposes.

If the command is "read DAS data", the driver will set up the DMA controller

to down-load the data from the DAS local buffer to an application program's

buffer in the host main memory subsystem (if DAS is ready).

The command "reset DAS" immediately stops DAS from whatever it is doing and

resets it. This command does not reset DAS control registers, so that a start

command can be issued without having to reload the control registers.

The VAX Queued Input/Output (QIO) system service is utilized to send a

command to the device driver program. (For information about QIO system

service refer to Digital Equipment Corporation manuals.) The code in the

driver has been streamlined and optimized to give the fastest performance

possible. For most experiments, the QIO interface performance should be

sufficient. (The slower commands are the "load DAS parameters" and "read DAS

data", which take approx 20~50_s to initiate the indicated operation.)

The format of the QIO service and the control parameters for the different

DAS commands are shown in tables i, 2A, and 2B.

20

TABLE i. QIO FORMATS FOR DAS COMMANDSa,b

COMMANDS QIO FORMAT

RESET DAS $QIOW_S ,CHAN,#IO$_RESET, IOSB

LOAD DAS PARAMETERS SQIOW S ,CHAN,#IO$ LOAD, IOSB,-
,,PI=TRIGGER,P2=#6

START DAS $QIOW_S ,CHAN,#IO$_START, IOSB

GET CSRc $QIC_ S ,CHAN,#IO$GET CSR,-
IOSB

READ DAS DATA $QIOW S ,CHAN,-
--#I05 READ BUFFER,IOSB,I

,,PI_BUFFER,P2=#BYTES

The dash ("-") indicatesthat the statementcontinues
on the next line.

b See Appendix B: An ExampleProgram.
' The csr is returnedin the second word of the iosb
variable, see table 2A.

21

TABLE 2A. DAS QIO COMMANDPARAMETERS

PARAMETER DESCRIPTION

CHAN 16-BIT WORD THAT CONTAINS
A CHANNEL NUMBER USED BY

THE QIO SERVICE TO
DETERMINE WHICH DEVICE IT

SHALL ADDRESS (SEE EXAMPLE

IN APPENDIX B)

IOSB 2 32-BIT WORDS WHICH ARE

USED BY THE QIO SERVICE TO
RETURN STATUS INFORMATION
(A 0 IN THE LEAST SIGNIFI-
CANT BIT OF THE FIRST WORD
SIGNALSAN ERROR)

I05_ INDICATESA FUNCTIONCODE,
I.E., A HEX NUMBER WHICH
INDICATESWHICH COMMAND
SHOULD BE EXECUTED

IO$ LOAD = 000B LOAD DAS PARAMETERS (LOAD
CONTROLREGISTERS)

I05 START = 001A START DAS

IO$ RESET = 0024 RESET DAS

IO$ GET CSR = 001B GET CSR (GET STATUS INFO)

IO$ READ BUFFER = READ DAS DATA (DOWN-LOAD
000C ACQUISITIONDATA)

22

TABLE 2B. QIOCOMMANDS: P1 AND P2 PARAME'I_KRS

COMMAND _ P1 AND P2 PARAMETER DESCRIPTION

LOAD DAS P1 = ADDRESSOF THE APPLICATION
PARAMETERS PROGRAMBUFFER WHERE THE

PARAMETERS ARE STORED. THE
FORMAT OF THIS BUFFER IS

AS FOLLOWS:

(3 CONSECUTIVE 16-BIT WORDS)
FIRST WORD: TRIGGER LINE

SELECTION CODE b
SECOND WORD: TRIGGER WORD b
THIRD WORD: NUMBER OF DAS

WORDS TO ACQUIREb

P2 = NUMBER OF BYTES IN BUFFER
(P2 = 6)

READ DAS DATA Pl = ADDRESSOF THEAPPLICATION
PROGRAM BUFFER TO RECEIVE

THE DATA (THE BUFFER SIZE

MUST BE EQUAL OR LARGER
THAN THE "NUMBEROF DAS
WORDS" PARAMETERSPECIFIED:
IN THE THIRD WORD OF THE
"LOAD DAS PARAMETERS"
COMMANDBUFFER)

P2 = BUFFER SIZE IN BYTES
(BYTES= # OF 16-BITWORDS

x 2)

Start DAS, reset DAS, and get csr commandsdo not
requirePl or P2 parameters

t,See previous section for a descriptionof its function

A short VAX assembly language program that executes a data acquisition cycle

is listed in appendix B. The fully commented listing contains all the

information required to program the DAS.

The program shown in the appendix can be used as shown, i.e. without

modifications, to read and list (on the computer terminal screen) data

acquired from the FTMP system bus.

23

CONCLUDING REMARKS

To provide a point of comparison between DAS and the other data acquisition

paths available in the FTMP environment, an estimate of the equivalent data

rate of DAS is computed below.

The present size of the DAS local buffer is 8192 16-bit words (expandable to

65535 16-bit words). At 8MHz (the data rate of the T and R busses) this

buffer will be filled in 1.024ms. Add 50_,s delay to send the "read DAS data"

command. Add the time required to unload the 8192 data words at a rate of

400KW/s (8192W/400,000W/s = 20.48ms). Add the time required to issue a start

command (approx 10_s). The total time delay from the start to unloading the

data adds up to approx 21.564ms . Dividing the number of words transferred by

the time required to transfer them (8192W/21.564ms) produces an estimated data

rate of 379KW/s. This data rate is at least 8 times larger than that of any

other data acquisition path available in the FTMP environment.

The added capabilities to the FTMP data acquisition environment should

provide the necessary functions to support a new range of experiments which

are geared toward determining the effects of faults on FTMP's system

operations.

24

APPE_qDIXA

Estimationof the SystemBus Data Rates.

The system bus data rates for read and write operations are estimated using

published data on the FTMP's performance.

The information in refs 5 and 8 is used to estimate the system bus data rate

for read operations. To obtain control of the system bus, a processor triad

must win the polling procedure. From ref 8 it can be computed (table 3, p 29)

that the mean wait time to start the polling procedure is 9.87_s (bus is busy

47% of the time a request is made with an average wait for a free bus of

211/s). To start the polling procedure it must transmit 12 bits in the P bus

(@ IMHz) for an average delay of 14.58_s (taking into account the delays

involved when it losses the polling sequence; 8% of the time). Then it must

transmit the read command through the T bus, 24 bits @ 8MHz, for a total time

of 3//s The average response delay after the command transmission is 2_s.

Transmission of the data itself (i word) takes 2_s.

Subsequent read commands are transmitted in parallel with the previous

command response. Thus, the next read response (though still 2_s after the

read command word is transmitted) comes only 8 bit times (ll/s) after the

previous response (see fig 3.4 in ref 5). Read responses cannot be packed

closer than this.

Thus, the total data transmission delay for one word transaction is (9.87 +

14.58 + 3 + 2 + 2)i/s or 31.45_s . The effective system bus data rate for a

read operation is then 31.8KW/s .

For a transaction of two or more words, the l_s time delay between read

responses must be included to estimate the data rate.

• The data rate e(_lation for this case (tightly packed blocks of n words, n >

i) is:

data rate = n x [29.45+ n * 3]-I x i0_ W/s , n > 1

The term29.45(in_s) aboveis the sum of thepollingtime (24.45_s),the

transmissionof the firstcommandword (31,s),and thewait time for the first

25

response (2_s). The constant in the term, n * 3, accounts for the 2_s for

each data word transmission and l_s for the idle time between data word

transmissions (n is the number of words transmitted).

The system bus data rate for write operations can be computed more easily.

The polling sequence time is 24.45_s, the command transmission time is 3_s (24

bits), and the data transmission time is 2_s for a total of 29.45_s for a

write operation. Thus, the system bus data rate for write transactions is

33.96KW/s.

26

APPENDIX B

An Example Program

; Author: Peter A. Padilla

; define the command codes for the QIO system service from values defined

; in the system macro $iodef

$iodef

io$ load = io$ writepblk ;"load DAS parameters" command

io$ start = io$ setchar ;"start DAS" command

io$ reset = io$ rewind ;"reset DAS" command

io$ read buffer = io$_readpblk ;"read DAS data" command

io$ get_csr = io$_sensechar ;"get csr" command

io$ boom = io$ writevblk ;terminal I/O codes

io$_buffer = io$_ttyreadpall!io$m_timed!io$m_purge

; define the number of words to down-load from DAS to the host

count word = 50
_I

no of bytes = 2 * count word

; define data area, allocate space for the buffer and variables

.psect data l,noexe,word

than: .word 0

chan 2: .word 0

loop: .word 0

.align word

; DAS parameters buffer area

trigger: .word 0 ;Trigger line (TI)

.word ^xAAAA ;Trigger word

.word count word ;number of words

27

; terminal I/O messages and buffer areas

devnam: .ascid /das0:/

terminal: .ascid /sys$output/

error: .ascii /read drll-w eir instead of the csr/

length = .-error

error_2: .ascii /data acquisition timed out/

length_2 = .-error_2

error 4: .ascii /status b is not being reset/

length 4 = .-error 4

outbuf: .blkb 800

outl = .-outbuf

outlen: .long outl

.address outbuf

control: .ascid / R0= !XL RI= !XL /

control 2: .ascid /data = !XW counter = !xw/

msgl: .ascii /Enter trigger word [AAAA]:/

lengthl = .-msgl

msg2: .ascii /Enter trigger line number [0000]:/

length2 = .-msg2

ouuf: .blkb 800

oul = .-ouuf

table: .byte 0,1,2,3,4,5,6,7,8,9,^xA,^xB,^xC,^xD,^xE,^xF ;hex table

; buffer to receive down-loaded data from DAS

.align word

buffer: .blkw 65536

; variable to receive status information from the DAS

.psect data_2,noexe,long

Josh: .blkl 2

28

; code begins

.psect dastest,exe,byte

.entry dastest,^M<r2,r3,r4,r5>

clrl rl0

$assigns terminal,chan_2 ;ASSIGN TERMINAL CHANNEL

$assigns devnam,chan ;ASSIGNDAS CHANNEL

$qiow_s ,chan,_io$_reset,iosb ;RESETDAS

bsbw ask ;ASKTHE USER

$qiow_s ,chan,#io$_load,iosb,,,pl=trigger,p2=#6;LOADDAS

;PARAMETERS(PARAMETERSARE STORED IN THE 6 BYTES LONG BUFFER "TRIGGER")

blbs iosb,2$;IF NO ERROR GOTO 25

bsbw print_iosb ;PRESENT STATUS INFO AT TERMINAL

brw 205

25: $qiow_s ,chan,#io$_start,iosb ;START DAS COMMAND

blbs iosb,10$;IF NO ERROR GOTO i05

bsbw print_iosb ;PRESENT STATUS INFO

brw 205

I05: bsbw wait for das ;WAIT FOR DAS TO SIGNAL

; ITS READINESS TO DOWN-LOAD DATA

blbc r0,205 ;IF ERROR CONDITION EXISTS

; Go_o 205

$qiow_s ,chan,#io$readbuffer,iosb,,,pl=buffer,p2=#noof bytes
; RFAD DAS DATA (STARTSDMA OPERATION)

blbc iosb,20$;IF ERROR GOTO 205

bsbw print_data ;SEND DATA TO THE TERMINAL

; SCREEN

205: $qiows ,chan,#io$_getcsr,iosb ;GET CSR COMMAND

bsbw wait for b ;IF STATUS B IS SET, WAIT!

; IT IS SENDING DATA

• Sqiows ,chan,_io$_reset,iosb ;RESETDAS

$exits

29

l

wait for das: ;subroutine to wait for

; DAS to set the readiness flag

clrl rl0

I05: incl rl0 ;timeout loop (to detect

; hardware problems)

cmpl r10,#20000 ;timeout value

bgtru 405 ;timeout occur

Sqiows ,chan,#io$_get_csr,iosb ;get csr command

blbc iosb,20$;if error goto 205

blbs iosb+4,305 ;if other error goto 305

bbc #10,iosb+4,10$;if DAS flag = low ,goto i05

movl #l,r0 ;r0=l no error status

rsb

205: bsbw print_iosb ;print status info

brw back

305: bsbw print error ;print "wrong register read"

; error message

brw back

405: bsbw print_error 2 ;print timeout error message

back: Sqiow s ,chan,#io$ reset,iosb ;after error, reset DAS

clrl r0 ;r0=0 error status

rsb

wait for b: ;wait until DAS finishes

; down-loading data before doing something else (this routine is required only

; if there is nothing else to do)

clrl rl0

I05: incl rl0 ;timeout loop

cmpl r10,#2000

bgtru 405

Sqiow_s ,chan,_io$_get_csr,iosb ;get csr command

blbc iosb,20$; error conditions

blbs iosb+4,305

bbs #10,iosb+4,10$;if DAS flag = 1 , goto I05

30

; down-loading in process

movl #1,r0 ;if DAS flag = 0, no error

rsb

205: bsbw printiosb
brw backb

305: bsbw print_error ; wrong registerwas read
brw backb

405: bsbw print_error 4 ;DAS flag is not being

; cleared, hardware fault

backb: $qiow_s ,chan,#io$_reset,iosb ;reset DAS

clrl r0 ; signal error condition

rsb

; The next subroutines send information to the terminal screen.

print iosb:

$fao s control,outlen,outlen,pl=iosb,p2=<iosb+4>

$qiow_s ,chan_2,#io$_boom,iosb,,,pl=outbuf,p2=#outl,p4=#^x30

blbs iosb,lO$

$exit s

I05: rsb

print data:

movl _l,r9

clrl rlO

clrl rll

movaw buffer,rlO

55: movw (rl0),rll

Sfao s control 2,outlen,outlen,pl=rll,p2=r9

" Sqiow s ,chan_2,#io$boom,iosb,,,pl=outbuf,p2=#outl,p4=#^x30

blbs iosb,lO$

$exits

lOS: incw r9

addl _2,rlO

cmpl r9,#countword

blequ 55
rsb

31

print_error:

Sqiows ,chan_2,#io$_boom, iosb,,,pl=error,p2=#length,p4=#^x30

blbs iosb,10$

Sexit s

I05: rsb

print error_2:

$qiows ,chan_2,#io$_boom, iosb,,,pl=error2,p2=#1ength_2,p4=#^x30

blbs iosb,10$

Sexit s

i05: rsb

print error 4:

$qiow_s ,chan_2,#io$_boom, iosb,,,pl=error_4,p2=#1ength4,p4=_^x30

blbs iosb,10$

Sexit s

i05: rsb

; The next subroutine request information from the user.

ask:

; qios sends prompt to the screen and waits for answer

Sqiows _2,chan_2,#io$_buffer,iosb,,,pl=ouuf,p2=#oul,-

p3=#120,p4=#0,pS=#msgl,p6=#1engthl

; input the trigger word above

blbs iosb,10$

$exit s iosb

i05: bsbw convert

movw rll,<trigger+2> ;rll = result of conversion

$qiow_s _2,chan_2,_io$_buffer,iosb,,,pl=ouuf,p2=#oul,-

p3=#120,p4=#0,p5=#msg2,p6=#length2

32

; qio asks for the trigger line code.

blbs iosb,20$

Sexit s iosb

205: bsbw convert

movw rll,trigger

rsb

; The next routine converts ascii numbers to hex numbers

convert:

clrl r8

clrl r9

clrl rl0

clrl rll

cmpb ouuf,#^X39 ;input in ouuf

blequ 55

addb2 _9,ouuf

55: bicb3 _^XF0,ouuf,r8

cmpb <ouuf+l>,#^X39

blequ i05

addb2 #9,<ouuf+l>

i05: bicb3 #^XF0,<ouuf+l>,r9

cmpb <ouuf+2>,_^X39

blequ 205

addb2 _9,<ouuf+2>

205: bicb3 _^XF0,<ouuf+2>,rl0

cmpb <ouuf+3>,_^X39

blequ 305

addb2 _9,<ouuf+3>

305: bicb3 _^XF0,<ouuf+3>,rll

33

ashl #4,r8,r8

ashl #4,rlO,rlO

bisl2 r8,r9

bisl2 rlO,rll

ashl _8,r9,r9

bisl r9,rll

rsb

.end dastest

34

RE_CES

I. "VALIDATIONMETHODS RESEARCHFOR FAULT TOLERANTAVIONICSAND CONTROL

SYSTEMS- WORKING GROUP MEETING II," NASA CP-2130,October 1979.

2. E. Clune, Z. Segall, and D. Siewiorek,"FAULTFREE BEHAVIOROF RELIABLE

MULTI-PROCESSORSYSTEMS: FTMP EXPERIMENTSIN AIRLAB," NASA CR-177967,

August 1985.

3. J.H. Lala, and T.B. Smith III, "DEVELOPMENTAND EVALUATIONOF A FAULT

TOLERANTMULTI-PROCESSOR(FTMP)COMPUTER,VOLUME III, FTMP TEST AND

EVALUATION,"NASA CR-166073,May 1983.

4. G.B. Finelli, "CHARACTERIZATIONOF FAULT RECOVERYTHROUGH FAULT INJECTION

ON FTMP," IEEE Trans. on Reliability,VOL. R-36, NO. 2, June 1987,

p 164-170.

5. T.B. Smith III and J.H. Lala, "DEVELOPMENTAND EVALUATIONOF A FAULT

TOLERANT MULTI-PROCESSOR(FTMP)COMPUTER,VOLUME I, FTMP PRINCIPLESOF

OPERATION,"NASA CR-166071,May 1983.

6. "MIL-HDBK-1553,MULTIPLEXAPPLICATIONSHANDBOOK,"Departmentof Defense,

November 1984.

7. J.H. Lala and T.B. Smith III, "DEVELOPMENTAND EVALUATIONOF A FAULT

'IDLERANTMULTI-PROCESSOR(FTMP)COMPUTER,VOLUME II, FTMP SOFT_ARE,"

NASA CR-166072,May 1983.

8. K.G. Shin, M.H. Woodbury,and Y. Lee, "MODELINGAND MEASUREMENTOF FAULT

'tOLERANTMULTI-PROCESSORS,"NASA CR-3920,August 1985.

35

Report Documentation Page

11 Rept.t No. 2. Government Accession No. 3. Recipient's Catalog No.

NASATH-100636

4. Title and Subtitle 5. Report Date

FTMPData Acquisition Environment July 1988
6. Performing Organization Code

4

7. Author(s) 8. Performing Organization Report No.

Peter A. Padilla
10. Work Unit No.

9. Performing Organization Name and Address 506-46-21-05
11. Contract or Grant No.

NASA LangleyResearchCenter
Hampton, VA 23665-5225

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum
NationalAeronauticsand Space Administration 14.SponsoringAgencyCode
Washinqton, DC 20546-0001

15. Supplementary Notes

16. Abstract

The Fault-TolerantMulti-Processor(FTMP)test-beddata acquisition
environmentis described.The performanceof two dataacquisitiondevices
availablein the testenvironmentare estimatedand compared.Theseestimated
data ratesare used as measuresof the devices'capabilities.

new data acquisitiondevicewas developedand addedto the FTMPenvironment.
Thispath increasesthe data rateavailableby approximatelya factorof 8, to
379 KW/S,whilesimplifyingthe experimentdevelopmentprocess.

r

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Fault-Tolerance Unclassified-Unlimited
Data Acquisition

Fault-TolerantHulti-Processor(FTrlP) SubjectCategory33

19. Secu,ity Classil. (of th,s report) t 20. Security Classif. (of this page) 21. No. of pages 22. Price

Unclassified I Unclassified 37 A03
NASA FORM 1626 OCT 86

