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ABSTRACT 

ORNL’s deterministic combat model based on a system of PDEs is used to 
develop a flexible, user-friendly computer code called DCOR, for Deterministic 
Combat model of Oak Ridge, and previously known as WAR. The numerical solution 
of the PDEs is achieved via the Method of Lines (MOL) which approximates 
the spatial derivatives on a finite mesh yielding a set of ODES that axe solved 
using the Gear B Method. A general purpose software based on the MOL called 
PDETWO is used, with some modifications in DCOR, whereby the diffusion terms 
are approximated by a five-point finite-difference scheme and the convective terms 
are approximated by an upwind finite-difference representation. DCOR is an 
interactive code with graphical display capability for the solution, that permits 
external control by the user to simulate a wargame environment. A guide to the 
user of DCOR is included to help in setting up and modifying the input, either 
interactively or from a file. Preliminary results pertaining to the validation of the 
deterministic model with respect to a Monte Carlo simulation, to the accuracy of 
the numerical solution as the spatial mesh is rehed ,  and to the versatility of DCOR 
is conducting sensitivity analyses are presented. 

V 





1. INTRODUCTION 

Combat situations are characterized by a very complex interaction between 
means and objectives, decisions and plans, actions and anticipated responses, all 
of which encompass a multitude of fully or partially stochastic information and 
covering a wide spectrum of scales, from the individual combatant to an entire war. 
Such complexity naturally led to the widespread acceptance, and actual usage, 
of stochastic models to simulate the individual events and decisions, or sequences 
thereof, occurring during a batt1e.l Clearly, stochastic models have the advantage 
of being relatively nonabstract and close, in many ways, to the real-life situation 
they are intended to simulate. Furthermore, input parameters describing various 
weapon systems involved, and data representing the prevalent environment during 
the battle, both of which are usually stochastic in nature, are directly measurable 
or derivable from design specifications and field tests. The major disadvantage of 
stochastic models is the enormous computational resources CPU time and memory) 

analyses. 
they require, which makes it prohibitively expensive to con 6 uct extensive sensitivity 

Alternatively, deterministic Lanchester-type models for combat based on a 
fully aggregated scale have been used extensively to study the temporal evolution 
of the attrition of  combatant^."^ In spite of the relatively good mathematical 
understanding of the Lanchester model, its extreme aggregated character and 
lack of spatial detail sets very strict limitations on its practical utility as an 
attritionlmaneuver model. Thus, it is used in combination with stochastic 
simulations to aggregate the outcome of many small, i.e., fine scale, battles into 
a larger, i.e., coarser scale level. 

Recently, more detailed deterministic combat models have been proposed, 
developed, implemented and tested at ORNL.’-’ The basic feature of all these 
new models is that they introduce refinements to the spatial detail thak is entirely 
missing from Lanchester’s model. Thus, the set of Ordinary Differential Equations 
ODES) that comprise the latter, are replaced in the new models by sets of Partial 5 ifferential Equations (PDEs) in which derivatives with respect to the spatial 

independent variables appear, to describe the movement (random or ordered) of 
the combatants on the battlefield. 

Deterministic combat models me motivated by three specific factors. First, if 
the experience in particle transport computational methods provide any guidance as 
to the computational performance of stochastic vs. deterministic methods, we must 
conclude that the latter possess a higher potential for efficiency than the former. 
Second, there are available analytical results on the sensitivity analysis of sets of 
PDEs, and symbolic computer codes to perform such analysis, for the benefit of the 
commander interested in optimizing the battle outcome within limitations of his 
resources and the battle environment. Third, there exists a wealth of mathematical 
understanding of PDE systems, such as existence and uniqueness of solutions, 
bifurcations, stability analysis, chaos, catastrophes, etc., which are not directly 
extendible to stochastic systems. On the other hand, stochastic simulakions are, in 
general, capable of representing complex geometrical shapes, which in deterministic 
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models would normally require the introduction of a finite spatial mesh on which 
all geometric shapes must be approximated. 

The purpose of the present document is to describe our implementation of the 
deterministic PDE combat model into a flexible, interactive computer code DCOR 
(for Deterministic Combat model of Oak Ridge) previously known as WAR, and 
some preliminary tests of the accuracy and validity of the model. Section 2 is 
dedicated to establishing the theoretical foundation of the deterministic model as a 
competitive system analogous, for example, to interacting gas mixtures. In Section 
3 we briefly develop the equations for the PDE model embodied in the DCOR code. 
In Section 4, we describe the specific implementation of DCOR, and in particular 
the input and output. Some preliminary results pertaining to the method accuracy 
with respect to the mesh size, and to the validity of the model itself compared to 
stochastic simulations, and some examples of sensitivity analyses that are unique 
to the PDE model are presented in Section 5 .  Finally, Section 6 contains a brief 
summary of our effort and an outlook to future developments. 
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2. THEORETICAL FOUNDATION 

A model is a mathematical abstraction of physical reality pertaining to a given 
system to be modeled, aimed at the quantitative and qualitative prediction of the 
behavior, or response, of that system under the influence of given external stimuli 
and constraints. The construction of a model is initiated by the realization that the 
response of a given system to a given stimulus is consistent and repeatable under the 
same conditions. One approach to building models is to break up the system into 
subsystems which are easier to model, or for which models already exist. Another 
possible approach is to use analogies between the system under consideration and 
previously studied systems sharing similar features and behavioral patterns. 

The success of a model is judged by two important qualities: solubility and 
validity. Solubility does not necessarily require a quantitative, exact 01’ numerical 
solution of the equations representing the model, but may include qualitative 
analysis of these equations, e.g., uniqueness proofs. The realm of soluble equations 
has been expanded dramatically in the last few decades by the introduction and 
rapid evolution of computers, and by the continuous development, analysis and 
implementation of numerical methods to take advantage of the latest hardware 
gear. Model validation is encompassed by the “experimental method” underlying 
all traditional fields of science, through which solutions to the equations constituting 
a model are compared to actually measured or observed behavior of the system being 
modeled. 

Fundamental to the validation process are the above mentioned requirements for 
model construction, namely consistency and repeatability. However, the application 
of these requirements is greatly relaxed by using statistical methods to interpret 
the measurements, and sometimes in constructing the model. In particular, 
physical systems composed of an extremely large number of subsystems pose a very 
challenging problem for the modeler represented by the large number of degrees of 
freedom involved. Modeling such a system esacdly requires full control (or at least 
knowledge) of the initial settings of all the variables, and the subsequent prediction 
of their values under the influence of applied stimuli; often this is literally impossible. 
Statistical averages (and higher moments) are used in these cases to simplify both 
the modeling and the actual measurements, thus enabling the validation process 
by comparing predicted and experimental values for a few macroscopic quantities. 
Good examples of such systems abound in traditional sciences, e.g., statistical 
mechanics, kinetic theory, fluid mechanics, etc. 

Another complication arises in the modeling of systems involving living 
(human or otherwise) subsystems which have the intrinsic capability of making 
subjective choices among a variety of responses that are often inconsistent and/or 
unrepeatable. If the modeled system is composed of many such subsystems, and 
if none of the individual subsystems, and none of the choices available to any 
subsystem has an overwhelmingly dominant effect on the behavior of the system 
as a whole, then statistical models can be used here also. Examples of these types 
of models include younger fields of science, often termed “soft sciences” such as 
economy models, ecosystem models, attrition models, etc. One of the most profound 
difficulties with these models concerns their didation; not only is the size and cost 
of setting experiments prohibitively large, but also controlling the experiment’s 
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environment in order to duplicate it exactly is virtually impossible (for one thing, 
living organisms generally “learn” from previous experience and live a continuous 
adaptation process). . 

We now focus the general discussion of modeling to the specific development 
of combat models, which suffer from all the difficulties described above. Combat 
situations considered here involve a large number of combatants who make 
instantaneous and independent decisions while attempting to achieve a global 
objective determined by their immediate commander in the chain of command. 
Combat models are extremely difficult to construct, very expensive to solve for 
realistic nontrivial problems, and practically impossible to validate because of 
the deficiency of sufficiently detailed and accurate historical or field data. The 
general approach to modeling combat, until very recently, has been based on a 
stochastic or semi-stochastic simulation of attrition, and uses game theory analysis 
to simulate individual, local decisions made by the combatants.’ The realization of 
such models into computer codes constitutes the extensive library of “war games”,’ 
whose members employ various levels of sophistication in simulating, and taking 
into account, all the variables determining scoring a hit, e.g., line of sight, terrain, 
weather conditions, etc. The only traditional deterministic model is Lanchester’s,*i3 
which, in different variants, has been used primarily as a gross attrition model since 
it lacks much of the detail necessary in modeling the outcome of combat. 

Recently, a more detailed, deterministic combat model based on PDEs has been 
proposed as an alternative to stochastic  model^.^^^ Initial implementation of the 
PDE model and preliminary results indicate its versatility and its high potential7-’ 
In the remainder of this section we justify using a deterministic method to model 
an essentially stochastic process by drawing an analogy with mutually interacting 
gas mixtures, which can be represented at the microscopic level by deterministic, 
Boltzmann type PDEs, and at the macroscopic level by reaction diffusion equations. 
In addition to establishing a preliminary philosophical platform for a rigorous 
derivation of a kinetic theory of combat along the same line of approach used in 
classical statistical mechanics, this view point can be useful in providing a clearer 
correspondence between the measured attrition parameters of various individual 
weapon systems, and the attrition coefficients used in PDE combat models. 

In representing an essentially stochastic system, such as combating species or 
gas mixtures, by deterministic models, one makes the implicit assumption that the 
system is made up of a large number of non-individual subsystems, which under 
similar circumstances behave in a statistically consistent manner. By this we mean 
that the outcome of events, e.g., shooting in combat, or chemical reaction in a 
gas mixture, is independent of the individual subsystems involved in it,  and is 
describable by a probability distribution. Thus a deterministic representation is 
sensible and accurate only when the simulated system involves a large number of 
subsystems of more or less equal importance, and a large number of simultaneous 
and sequential events of comparable effect on the entire system. The transition 
from stochastic reality to deterministic representation in such cases is mostly 
philosophical, but is operationally justifiable as follows. For the system described 
above, the temporal evolution of a specific initial setting of such a system depends 
on this initial setting, and on properties and behavior of the individual subsystems. 
Accordingly, there is am extremely large number, “ensemble”, of possible evolutions 
each requiring a certain chain of events occurring in a particular order. It is neither 
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possible nor desirable to exactly determine the initial setting or the specific member 
of the ensemble realized in a given experiment. Rather, just like in hard sciences, 
e.g., fluid mechanics, averaged quantities over the members of the ensemble are 
of interest, as they predict the gross behavior of the system, by “averaging-o~t~~ 
peculiar, or highly improbable members of the ensemble. Indeed, in stochastic 
models based on Monte Carlo simulations, the outcome of a single experiment has 
very limited value; for example, it can be useful as a training tool, but since it 
can produce a statistically improbable outcome, it cannot be used for planning 
purposes. Normally, several numerical experiments are performed in this case, and 
the results are averaged over the various experiments to produce “expected values” 
for the desired quantities. Deterministic methods, such as PDE combat models, 
aim at directly calculating these expected values without the expensive Monte Carlo 
simulations. 

In view of the above discussion, the analogy between a combat situation 
and a mixture of interacting gases, or molecular systems on the microscopic 
and macroscopic scales becomes evident. Microscopically, the various types of 
combatants, e.g., troops, tanks, artillery, etc. are analogous to the molecular 
species, each represented by a distribution function; the attrition rate of one 
combatant by another’s fire is analogous to a removal interaction cross section; 
the combatant’s command (;.e., mission) and the terrain effects are analogous to 
the external force field acting on the particles in the gas mixture. Macroscopically, 
each type of combating unit is analogous to the corresponding gas species space 
and time dependent mass density; the attrition rates are analogous to chemical 
reaction rates; and commands and terrain effects are analogous to convective, bulk 
movement of the gas species. The random fluctuation in the exact position, velocity, 
kill effectiveness of weapons, individual local decisions, are represented by the 
different members in the ensemble on the microscopic scale, and averaged-out of 
the macroscopic model (except in the diffusive terms). Thus, it is possible to model 
combat using deterministic methods at the microscopic, molecular scale, or the 
macroscopic scale. The microscopic model is more elaborate and computationally 
intensive to be used at this early stage of investigating deterministic combat models, 
even though it is instrumental in deriving a paradigmatic analogy between combat 
and gas mixture interactions. Hence, only macroscopic models analogous to those 
used in reaction-diffusion systems are used in the remainder of this work. At a later 
stage, interest in microscopic models may arise because they may be capable of 
providing better modeling accuracy, and also to compute better approximations to 
the macroscopic parameters from the raw data available for various weapon systems 
from the manufacturing specifications and field tests. 
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3. EQUATIONS FOR THE PDE COMBAT MODEL 

The macroscopic reaction-diffusion type equations for the PDE combat model 
have been presented and discussed in fair detail However, for the sake 
of completeness and to introduce the variables encoded in DCOR, described in the 
next section on input and output specification, we briefly discuss the equations and 
the terms involved in them. 

Let the battlefield be a rectangular region in the x-y plane, so that (z ,y )  E 
[O, X ]  x [0, Y]. According to the analogy derived in Section XI, the spatial disposition 
of each combatant type, or weapon system, is represented by a density function 
Um(z7  y), rn = 1, .  . . , M ,  where M is the total number of weapon types involved in 
the conflict. Notice that it is not necessary to specify which side of the conflict each 
species belongs to, as this is determined exclusively by the attrition rates discussed 
below. The random, unordered, motion of each species is described by a diffusive, 
second derivative term of the form - v - ( D r n ~ ) u m -  Normally, diffusive motion 
should vanish for stationary weapons, e.g., large cahber cannons, but are of small 
magnitude for mobile weapons, e.g., tanks, and of yet slightly larger magnitude 
for highly mobile systems, e.g., infantry troops. Furthermore, diffusive behavior 
of the species depends on human factors, such as freshness of troops, order, or 
lack thereof, fear, morale, etc. For example, troops retreating in defeat should 
exhibit more pronounced random movement, than troops charging in an ordered, 
apparently successful attack. Diffusion effects, in general, should also be space- 
dependent; troops on the front line, directly exposed to the enemy’s fire should be 
expected to display more diffusion than protected or shielded forces. 

The ordered bulk, or convective movement of the combatants on the battlefield 
is proportional to the product of the first order derivatives with respect to the 
spatial variables and the velocity component in the corresponding direction: V, * 

vurn.  Because the convective velocity ij, is practically independent of the density 
(but possibly space and time dependent) the convective terms are linear. The 
convective velocity is eventually imposed by the commander trying to achieve a 
specific objective but is limited beyond his control by design specification, human 
limitation, terrain features, enemy action, etc. All these factors can be taken into 
account external to the PDEs, so that linearity of these terms is preserved. The 
equations for the PDE combat model become, 

where A,,, is the total attrition rate of the m-th weapon system modeled as discussed 
below. 

The total attrition rate is composed of local attrition, Lm, and nonlocal 
attrition, N m 7  such that A ,  = Lm + Nm. Local attrition occurs when two or more 
combatants exist at the same physical location and fire at one another. Strictly 
speaking, no two combatants can exist at exactly the same location simultaneously; 
however, this is possible in the framework of the continuum PDE representation of 
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the ensemble of discrete reality as discussed in Section 11. Essentially, it represents 
an average over members of the ensemble in which one of the two combatants 
occupies the given location and the other is nearby, and members of the ensemble 
in which the two combatants exchange locations. Local attrition is more likely in 
hand-to-hand combat, such as in historical battles, small fire arms conflicts, urban 
warfare, etc. Also, in large-scale modern warfare, and within the framework of 
discretized (in space) numerical method approximations to the PDE model, the 
range of weapons which normally would be considered nonlocal may become small 
relative to the scale of the entire battlefield, or compared with the spatial mesh size. 
In such cases, these weapons can be approximately represented by local attrition. 

In the present model, we assume that the distribution of the combatants over the 
battlefield is sufficiently sparse to warrant ignoring the simultaneous local attrition 
of one species by two or more different types of weapons; clearly such an extension 
would be straightforward if deemed necessary. Even though the probability of 
scoring a hit depends heavily on human factors for the operator of a given weapon, as 
well as on the characteristics of the weapon, and of the target, the randomness of the 
hit (or miss) event produces a probability distribution which we use to calculate a 
statistically expected value for the attrition rate. Since the amount of fire depends 
on the local density of the firing weapons, e.g., u, and the number of hits (or 
rather the amount of damage to the target) depends on the local density of the 
target weapons, e.g., 21, we model the combat local attrition rate by ~ m , ~ m ~ n .  

The attrition parameters, a,,, are real and positive functions of space and time; 
they can be turned off, i.e., set to zero, by the commander and can be controlled 
to increase continuously up to an upper limit dictated by physical performance 
constraints, and by specific circumstances in the battlefield. In case combatant m 
is being attrited by more than one enemy weapon type, the attrition rate will be 
the sum C;!, ix,,u,u,. (For example, if am, # 0, the model takes into account 
accidental “friendly fire”, which normally should be kept very small.) 

The attrition rates described above are quadratic in form. For the sake of 
mathematical completeness, because it is computationally inexpensive, and also 
based on some, maybe less, convincing arguments we include in the local attrition 
rates constant and linear terms. Thus, 

M M 

n=l n=l 

The constant term in Eq. (3.2) can be viewed as an external fixed source, for 
example, representing supplies ordered by a higher level in the chain of command. 
The linear term corresponding to n = m can represent natural attrition due, for 
example, to a hostile environment, such as severe cold or heat, extreme drought, 
high elevations, sand or snow storms, etc. The linear terms corresponding to n # rn 
formally replicate the attrition terms in Lanchester’s aimed fire model. 

Modern weapons introduce nonlocal attrition into combat, whereby the firing 
weapon and the target can be separated by extensive distances relative to the 
scale of the conflict. Artillery, and missiles are good examples of such weapon 
systems. Nonlocal attrition is more difficult to model than local attrition, because 
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one must take into account weapons firing from all possible locations at targets 
located anywhere on the battlefield. Thus, 

where the attrition kernel, K,,, is real and positive. The nonlocal attrition rates 
in l3q. (3.3) are quadratic; because the spatial integration included in Eq. (3.3) is 
computationally expensive, we did not include a linear nonlocal attrition term as 
was done in Eq. (3.2). 

It is evident from Eqs. (3.1-3.3) that the combat model is composed of M 
PDEs in the M densities of the combatants. Solving these equations requires 
specifying initial and boundary conditions on each density. The initial condition 
arises normally as the spatial disposition of the opposing forces over the battlefield 
at the beginning of hostilities. The boundary conditions are more elusive since 
they are essentially a mathematical abstraction with no relation to reality, since 
battlefields have no absolute boundaries, only terrain features. The most general 
type boundary conditions that can be used for the PDE system (3.1) are of the 
form, 

arnUrn(0, Y) + brn(&n/dZ)(O,y) = ern 9 (3.4) 

and analogous conditions on the x = X and y = 0 and Y boundaries. Unlike natural 
sciences, where physical constraints translate into values for a,, b,, and c, in Eq. 
(3.4) thus providing an unambiguous boundary condition, in combat points on the 
edge of the battlefield are not any different from interior points. To circumvent 
this problem, we assume that it is always possible to choose the battlefield large 
enough so that the effect of the boundary conditions on the progress of the battle 
is not detectable. If during the evolution of a battle situation, one or more of 
the combatants move too close to the battlefield boundary, it should be wise to 
terminate the simulation at this point, then restart it on a battlefield large enough 
so that the boundary effects do not influence the combatants. 

One aspect of combat, and indeed of most human activities, that has not 
been addressed intrinsically within the PDE system is decision making. Individual 
decisions made on a local scale by a combatant can be modeled via an interplay 
between stochastic events a.nd game theory analysis. As discussed in Section 11, the 
fluctuations in the gross progress of the battle resultin from individual decisions 

commanders for example, which have an overwhelming effect on the progress of 
the battle, such as charging/retreating, firing/holding fire, etc., are not modeled 
internally within the PDE system. Rather, limited control of the model parameters 
affected by these decisions is permitted to "players" commanding the combatants in 
a wargame environment. Limits are set on such control in order to avoid violating 
physical or human limitations on the weapons and their operators, respectively, such 
as the maximum speed of a vehicle, or the maximum range of sight of a soldier. 
Major decisions at this level can be analyzed using methods of sensitivity analysis 
and game theory in order to define and evaluate strategic options available to the 
commander at a given point during the battle. 

is averaged out in the deterministic PDE model. Hig % er level decisions, by the 
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4. IMPLEMENTATION INTO 
THE COMPUTER CODE DCOR 

The combat model described in Section 111 is comprised of a set of A4 nonlinear 
PDEs of the form Eq. (3.1) each with an initial condition and boundary conditions 
exemplified by Eq. (3.4). Numerical solution of these PDEs requires introducing 
approximate methods as discussed in this section. The solution algorithm has 
been implemented in the DCOR code, which has the following characteristics: 
1 two-dimensional maneuver capability; (2) heterogeneous force representations; ( 1  3 space-time dependent local and nonlocal attrition; (4) interactive modification 
of parameters during engagement; ( 5 )  flexible interactive input preparation; (6) 
dynamic memory allocation; and (7 interactive graphical display of the evolution 
of the battle. DCOR has been deve 1 oped, and is presently operational on ORNL's 
Cray X/MP running the UNICOS operating system. However, in order to enhance 
portability of the code, it has been written in standard FORTRAN, so that 
migrating it to other computers and operating systems should require only minor 
modifications. The only possible exception is the plotting routine which requires 
the availability of the DISSPLA graphics library; even then, all the graphics is 
performed in one routine, so that translation of DISSPLA commands to those of 
any other graphics software can be done with relative simplicity. 

The Method of Lines1' (MOL) has been developed and implemented for a 
vaxiety of applications in order to take advantage of the Gear B1* method for 
solving fmt  order ODEs. The Gear B method is particularly useful in dealing 
with stiff problems, and is capable of virtually unlimited accuracy as prespecified 
by the user. The MOL is based on approximating the spatial differential operator 
on a finite mesh, thus producing a set of ODEs whose independent variable is 
time, and which are solved simultaneously via Gear's method. The MOL has 
been implemented in a general purpose software (in which the spatial operator 
is discretized via the finite-difference approximation) called PDETWO which we 
used in the DCOR code as the temporal evolution routine. This choice (as opposed 
to a full finite-difference discretization) was made because of the special importance 
of the accuracy of the time dependence in this problem, compared to that of the 
spatial dependence. PDETWO is slightly modified in order to accept the flexible 
dynamic memory allocation implemented in DCOR via the use of container arrays, 
and also to permit using space dependent convection speed not available in the 
original software. Subroutines required by PDETWO to evaluate the RHS of the 
set of ODEs at various points in space, and the boundary conditions on the edges are 
provided in the most general form of the PDE combat model. These subroutines 
essentially implement the finite discretization of the reaction-diffusion-convection 
spatial operator, by using a five-point finitedifference representation of the second 
order diffusion operator. Due to the space-dependent convection field feature we 
added to PDETWO (which is essential for modeling maneuver) it is necessary to 
introduce an upwind representation of the convective terms, which has been shown 
to be unconditionally stable in similar fluid dynamics problems. 

The remaining subroutines in DCOR handle I/O, both interactive and from 
files, generate graphical metafiles using DISSPLA library, and call PDETWO to 
generate the time evolution of the battle. The code is structured to run in time 
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batches, the length of which, and the number of time steps within, are interactively 
determined by the user. Before the first time batch starts the code inquires if the 
input data is to be fed-in interactively or from an existing file named W U T ~  described 
below. If the user chooses to enter input interactively, the code inquires about the 
value of each of the input variables with a brief descriptive message. All the read 
statements are unformatted so the input can be supplied in any desirable format; 
this is particularly useful in supplying large arrays of data. The input data is printed 
in the output file waro. 

After reading-in the input data, the code compares the total size of the problem 
defined by that input and compares it to the hardwired size of the integer- and real- 
variable container arrays used in DCOR. If there is not enough room to perform 
the calculation, execution is terminated, and the code prints out the necessary 
sizes for the container arrays to accommodate the problem described by the input. 
Otherwise, and also for all subsequent time batches, the user is required to decide 
whether to start a new time batch, or stop execution at that point. Stopping 
execution will prompt the code to write the current status of the battle into a file 
warcont in exactly the same form in which wan' is expected, that can be used for 
later continuation of the battle, and terminates the plotting device and closes the 
metdles. On the other hand, if the user decides to run a time batch, the code 
interactively inquires about the number of time steps in the batch. If the number 
of time steps is negative, the code next expects the time levels at which it is to 
calculate the forces' disposition on the battlefield. If the number of time steps is 
positive, the code next expects the final time level for the batch, and divides the 
length of the batch (;.e., the difference between its final and initial time levels) into 
equal intervals. In general, the larger the time step size, the longer PDETWO takes 
to perform the calculation for that step; however, for a fixed time batch length, it 
is more efficient to use a small number of time steps. 

During a time batch the code executes in uninterrupted mode. Only at the 
beginning of a time batch are the users allowed control over their respective forces. 
Thus, a time batch starts with a menu of choices allowing the user to modify the 
parameter settings for the new time batch as follows: 

e t: Change the title of the plots; this can be useful in identifying the various 
stages of the battle, i.e., attack, maneuver, retreat, etc. 

a m: Change the position, but not the number, of the z- and y-mesh points; 
this can be useful in improving mesh resolution at selected points while the 
battle evolves (only partly functional). 

a f: Change the spatial distribution of the forces on the battlefield; this permits 
the user to regroup or redeploy forces to take advantage of the present status 
of the battle, terrain features, implement strategic actions, etc. In doing so, the 
user can conserve, or not conserve the total number of units of each force type 
to simulate reinforcements arrival or gradual retreat. Also, the user is allowed 
to change the allegiance of each force type to simulate betrayal or mutiny. 

e p: Change the diffusion constant for each type to simulate morale status, 
prevalence of order, lack thereof, etc. Also permits changing convection velocity 
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components, which is necessary to simulate maneuver, attack, retreat, change 
in terrain features, etc. 

0 a: Change local and nonlocal attrition rate data for each force; this gives the 
user control to fire or hold fire of certain force types during various stages of 
the battle. 

0 b: Change the boundary condition coefficients for each force type. 

0 c: Change contour plot data, namely the contour base and constant increment 
between contour levels; this can be useful if a large change in force levels occurs 
during battle, e.g., extensive attrition, then reducing the base and increment 
can provide spatial detail that otherwise will be lost. Also, permits changing 
the increments on the z- and y-axis labels. 

0 e: Each of the above entries allows the user to modify the indicated quantities 
then returns to the modification menu allowing further modification of other 
quantities. The “en entry would allow the user to modify everything on the list 
without going back to the modification menu between items. 

0 r: Returns to execution mode, thus running the time batch with the modified 
variables. No further modifications permitted before the end of the time batch. 

0 x: To exit DCOR before running the present time batch. 

Each selection in the modification menu includes a submenu that helps the user 
make the desired modifications, and always includes an “r” entry to allow the user 
to return to the modification menu. Clearly, modifications during the battle must 
be subject to physical and human limitations which must be strictly applied to 
changes as they are requested. This can be done with trivial modifications to the 
code, but requires knowledge of these data, which are mostly classified, and therefore 
unavailable to us. 

For each time level within a batch, PDETWO calculates the spatial distribution 
of the density of each force-type over the entire battlefield, and generates a contour 
plot of it, with a different color assigned to each side. Also, at the end of each time 
step the total number of remaining units in each force type is calculated (equal 
to the product of the density and the area associated with a mesh point, summed 
over the entire grid), and the total is printed out on screen and in the output file 
wuro. Once a time batch is concluded, the user is required to choose whether or 
not to start a new time batch, and the process continues. If the user terminates 
execution, the wall-clock and CPU times are printed on-screen and in the file wuro 
before stopping. 

There are two useful options to use when entering the elements of large arrays, 
either interactively or from file wari. The code possesses two modes for reading each 
large array: full and non-full; in interactive mode the user is prompted to make the 
choice, while in file zuuti, the line preceding each such array must start with the 
character “f” or “n” for full or non-full array entry. The user may choose full entry 
in case of uniform data, e.g., 1000*0 is the equivalent of entering 1000 zeros for the 
elements of some array. Also, the output file printed at the end of execution for the 
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purpose of continuing the battle in a later run contains all arrays printed in full form 
since the code has no means of distinguishing uniformity patterns. In most all other 
cases the user would opt for the non-full mode, where it is assumed that the array 
is made of uniform blocks covering the entire mesh, with all uninitialized elements 
set to zero on the UNICOS Cray. Each block is specified by two lines of input, the 
first contains the nonzero uniform magnitude of the block (note that zero-valued 
blocks need not be specified as they are the default), and the second contains the 
initial and final z-mesh point indices followed by the initial and final y-mesh point 
indices. There is no limit on the number of blocks that can be specified this way, 
and blocks or sub-blocks can be reassigned nonzero values in the same run. Entry 
of blocks is terminated with a zero on the magnitude line. 

Finally, we describe the structure of the input file wari. Every entry, array or 
scalar is preceded by a one-line message in which the user can describe the following 
input in terms most understandable to him. The content of these messages is 
irrelevant since they are not read by the code; all that is necessary is that each 
two entries be separated by one line. The novice user wishing to generate an input 
file is urged to try one of two approaches: use an existing sample file as a blue 
print for the format, and change the variable values to those specifying his input, 
or generate the first input file interactively then use it as a blue print as before. 
Following is a list of the entries in wari with a brief description of each variable. 
The italic comments preceding each entry is suggestive of the descriptive comments 
mentioned above, and in most cases are identical to those generated by the code in 
the output file to be used for battle continuation, warcont. 

Numbers of x-, y-meah points, and forces: 

mx: 

my: 

Number of mesh points in x-direction, i.e., (mx-1) intervals. 

Number of mesh points in y-direction, Le., (my-1) intervals. 

mfrc: Total number of separately modeled forces or weapon types on all sides of 
the battle. 

PDE solver parameters: 

meth: 1( 2) selects Adams (backward) differencing method. Recommended choice 
0 
L. 

miter: 0 selects functional iterations; 

1 selects the chord method with the Jacobian provided by the user in 
subroutine PDB; 

selects the chord method with a finite-difference approximation of the 
Jacobian; recommended; 

2 

3 selects the chord method with a diagonal approximation in place of the 
Jacobian; recommended for faster performance. 
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morder: the maximum order of the method used in Gear B, and should not 
exceed 12(5) if meth=1(2); maximum order recommended. 

A string of 40 or fewer characters always ending with “$”, to be displayed 
on top of each plotted frame at each specified time level. The title should 
start on a new line, use “(” for uppercase, “)” for lower case, which is 
the default; $, (, and ) are included in the 40 characters count. 

title: 

non-unifo rm z-mes h 

x(i): x-coordinate of the non-uniformly spaced mx mesh points in the x-direction; 
alternatively, if the mesh is uniform in the x-direction, the previous line 
should start with the character “u” and in this case the code will read 
only x(1) and x(mx) then generate the (mx-2) interior points so the spatial 
intervals are equal in size. 

non-uniform y-mesh 

y(j): 

distribution of forces among sides 

mdist(m): mfrc integer values specifying the side of the battle each heterogeneous, 
or weapon type, belongs to; this has no effect on the model or the 
numerical solution procedure, but affects same color plotting of forces 
on the same side. For clarity reasons the grid is plotted in white on a 
black background, and the combatants are plotted in yellow for one side 
and in cyan for the other. 

y-coordinate of the non-uniformly spaced my mesh points in the y-direction; 
similar provision as above for uniform y-mesh spacing. 

initial force distribution: 

full specification of force 1 array 

u(l,i,j): mx x my array specifying the initial spatial density distribution of force 
type 1; non-full specification using the format described above available 
if the first character in the previous line is “n”. 

. . 
full specification of force mfrc array 

u(mfrc,ij): Initial condition for force type mfrc. Note that full/non-full, data entry 
is independently selected for each force by entering an “f” or “n” on the 
line preceding data entry. 

d igus io n coefic ient 

d(m): mfrc values for each force’s diffusion coefficient; these should be positive, and 
relatively small in magnitude. Spatial dependence of the diffusion coefficient 
has not been implemented yet. 
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Co nv ec t a o n v e 1 oc it y components  : 
f u l l  specification of x -componen t  f o r  force 1 array 

cx(l,i,j): mx x my array specifying the space dependent x-component of the 
velocity field for force 1 in full mode; non-full mode data entry available. 

f u l l  specification of z -componen t  f o r  force mf rc  array 

cx(mfrc,i,j): mx x my array specifying the space dependent x-component of the 
velocity field for force mfrc. 

f u l l  specification of y-component  f o r  force 1 array 

cy( l,i,j): Analogous to cx( l,i,j). 

f u l l  specification of y-component  f o r  force mf rc  array 

cy( mfr c , i j ) . 
f u l l  specif ication of external  source f o r  force 1 array 

s(l,i,j): mx x my array specifyin the space dependent external, or fixed source 
for force 1 in full mode ffnon-full mode available). This is the same as 
71 in Eq. (3.2). 

f u l l  specif ication of external  source for force mf rc  array 

s(mfrc,i,j). 

local l inear in terac t ions  f o r  force 1 

al( 1,m): vector of length mfrc specifying the spatially constant  local attrition rate 
of force 1 by all other forces, designated the symbol P I n  in Eq. (3.2); 
only full mode input available. 

local l inear interact ions f o r  force mfrc  

al(mfrc,m). 
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local quadratic interactions for force 1 

aq(l,m,n): mfrc x mfrc array specifying the spatially constant local attrition rate 
of force 1 due to the coexistence of force types m and n locally; only full 
mode input available. 

. 
local quadratic interactions for force mfrc 

aq( mfrc,m,n). 

nonlocal interactions for force 1 

an(1,l): The nonlocal, quadratic, spatially constant attrition rate of force 1 at a 
given point by force 1(!) at another point. 

The minimum distance between the attriting and attrited forces for an 
to be effective. 

rO(1,l): 

rl(1,l): The maximum distance between the attriting and attrited forces for an 
to be effective; an, rO, and r l  can be entered on the same line. 

. 
an( l,mfrc),rO( 1 ,mfrc),rl( 1,mfrc). 

nonlocal interactions for force mfrc 

an(mfrc,I),rO(mfrc,l),rl(mfrc,l). 

an( mfrc,mfrc) ,rO( mfrc ,mfrc),rl (mfrc,mfrc). 

BCs for force 1 

bc(l,l,l), bc(1,2,1), bc(1,3,1): The coefficients for the top boundary condition for 
force 1, denoted in Eq. (3.4) by al, b l ,  and c1, respectively. 

bc( 1,1,2), bc(1,2,2), bc(1,3,2): The coefficients for the right boundary condition for 
force 1. 

bc( 1,1,3), bc( 1,2,3), bc( 1,3,3): The coefficients for the bottom boundary condition 
for force 1. 
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bc(1,1,4), bc( 1,2,4), bc(1,3,4): The coefficients for the left boundary condition for 
force 1. 

BCs f o r  force mf rc  

bc(4,1,4), bc(4,2,4), bc(4,3,4). 

contour  parameters  

zbase: base (or minimum) value at which contour lines are plotted. 

dcont: increment between contour lines; the smaller the magnitude of dcont ,  the 
closer the contour lines are to one another. These p'arameters do not 
influence the calculation itself, and can be entered on the same line. 

x- and y-axis i ncremen t s  

delx: 

dely: 

Distance (in units of x) between x- labels on the contour plot. 

Same as delx for y-axis. These parameters do not influence the calculation 
and can be entered on the same line. 

This concludes the description of the input file wari. The DCOR Code, and 
hence all input data, has been written in dimensionless units, so that the only 
restriction on input data is that it all have consistent units. 
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5. SOME PRELIMINARY RESULTS ON 
VALIDITY, ACCURACY, AND SENSITIVITY 

In this section, we present some preliminary numerical results we obtained from 
DCOR and discuss their impact on validating the code (and model), and on the 
accuracy of the spatial approximation. Also, we demonstrate the utility of the code 
in performing sensitivity studies that the field commander should use when making 
decisions on the battlefield. 

Validation of combat models and wargame codes against actual memured data 
is practically impossible due to the lack of detail, and often large uncertainties in 
historic battles data. Validation of such codes, therefore, require the development 
of special. validation philosophies, and possibly defining validity norms specially 
designed to take into consideration the peculiarities of combat and the la& of detail 
in historic data. However, this is beyond the scope of this work. A simpler approach 
which we have a d ~ p t e d l ~ ~ ' ~  is to validate our deterministic model code against the 
results of the Monte Carlo Simulation, wargame code, JANUS.' The justification 
for such an approach is that the two approaches represent vastly differing solution 
philosophies to the same problem, so that the agreement of their respective results 
can loosely be interpreted as validation of each against the other. Alternatively, 
one can think of the Monte Carlo simulation as the mathematical twin of an actual 
battle that indeed does not require didation, as long as the individual events and 
attrition rates are valid. n o m  this point of view, the comparison with JANUS 
results would constitute a validation of the deterministic model. 

The problem of validation was made more difficult for us by the fact that the 
data, i.e., attrition coefficients for current weapons, and even results of wargame 
simulations are mostly classified. One exception was an engagement scenario in 
which a Red Force consisting of a tank regiment executes a frontal attack on a Blue 
Force consisting of M60A3 tanks and M901 vehicles carrying TOW antitank missiles 
in a prepared defensive position.14 The JANUS results for this battle simulation have 
been published, even though the attrition data for each of the participating weapon 
systems is not available. Hence, we reduced our validation attempt to showing 
that for properly tuned attrition coefficients the deterministic model is capable 
of displaying a temporal behavior of the total number of remaining units in each 
weapon type as the Monte Carlo simulation. Clearly, a much stronger validation is 
necessary, and will be performed, when attrition data for this case are available, or 
when a completely artificial battle fought with imaginary (thus unclassified) weapon 
systems is solved by the two approaches, and the results are compared. 

The purpose of the JANUS example, called the Staggered Defense Scenario, 
which we use for our validation process, is to evaluate the human performance and 
casualty criteria of the Blue Force as a function of various nuclear weapons laydown 
conditions. The simulation, i.e., force types, number ratios, etc., is tailored so 
that the blue force is the consistent winner in the absence of nuclear detonation. 
Solutions to this situation then provides the base reference case, and the effect 
of the nuclear element is determined by comparing solutions to the various nuclear 
laydown conditions to this reference solution. Clearly, our interest lay completely in 
the conventional arms reference case, for which the initial disposition of the various 
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weapon types is shown in Fig. 1 adapted from Ref. 14. The interested reader will 
find more details on the specifications of this battle scenario in Ref. 14. For our 
purposes, all that matters is the number of remaining units for each weapon type 
as a function of time, which has been obtained in Ref. 14 by averaging the results 
of three independent JANUS runs to produce an approximate expected value for 
these quantities. A comparison between the JANUS and DCOR results obtained 
on a 15 x 9 mesh for the Staggered Defense Scenario is shown in Fig. 2. The 
comparison indicates a very good agreement especially in the early stages of the 
engagement. The relatively larger disagreement between the two methods’ results 
towards the end of the battle can be blamed on two factors: unreliability of the 
stochastic simulations when only a few units are left on Red’s side; and inaccuracy 
of the deterministic method solution at large time levels due to numerical diffusion. 
Needless to say, this attempt at validating the DCOR code and the deterministic 
model is very crude and preliminary. The availability of unclassified, even if unreal 
data and battle simulations, will immediately prompt a more rigorous, in-depth 
comparison bet ween the two met hods. 
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Fig. 1. The Staggered Defense Scenario: adanted from Ref. 14 



21 

"0 . . . . I . . . . . .  0 ..... 

- 0 BMP:byJANUS 

0 5 10 
- 

0 l ' m ' - l  

Time (min) 

Fig. 
Staggered Defense Scenario as calculated by DCOR and by JANUS.14 

The accuracy of the spatial, finite-difference, approximation is an easier, though 
computationally nontrivial task. In order to estimate the accuracy, we solved 
the Staggered Defense Scenario on 29 x 17 and 57 x 33 uniform meshes, which 
correspond to one-half and one-fourth the computational cell size per dimension for 
the 15 x 9 mesh case discussed above. The initid disposition of forces in the 29 
x 17 and 57 x 33 cases is identical, but is slightly different from that used in the 
15 x 9 mesh case, where the coarseness of the mesh obscures some of the details 
of the initid condition. The time evolution of the total number of remaining units 
for each of the four weapon systems (two Blue and two Red) as calculated on the 
three meshes described above are presented in Figs. 3.a-d. Again, the results agree 
considerably well at the beginning and deteriorate towards the end of the battle due 
to numerical diffusion and accumulation of errors as time evolves. It is interesting to 
note, however, that on the two finer meshes, with the more accurate representation 
of the initial condition, the end-of-battle total number of T72 tanks and BMPs is 
closer to that predicted by JANUS. As a sample of the graphical display sequence 
depicting the time evolution of the spatial distribution of the density of each of the 

2. Percent remaining forces as a function of time for the 
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four participating force types at t=l, 4, 6, and 11 minutes into the battle, calculated 
on the 57 x 33 mesh is shown in Figs. 4.a-d, respectively. 
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Fig. 3. Accuracy of the temporal evolution of the percent remaining 
force for each weapon type in the Staggered Defense Scenario as 
calculated by DCOR on three meshes. The large discrepancy between 
the 15 x 9 mesh results and the fine mesh results is mainly due to the 
difference in initial conditions dictated by the coarseness of the former. 
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Fig. 4. Contour map depiction of the spatial distribution of the four 
weapon types over the battlefield in the Staggered Defense Scenario as 
calculated by DCOR on a 57 x 33 uniform mesh, after: (a) 1, (b) 4, (c) 
6, and (d) 11 minutes into the battle. 
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In colored graphics the Blue side appears in cyan, while the red side is yellow. 
Only one contour line is drawn per force type where the density equals 1 km-’; the 
contour lines for the M60s and the TOW missiles overlap over most of the battle’s 
duration. 

Finally, to demonstrate the utility of the DCOR code to the commander 
planning an attack on a defended site, or planning defense against an impending 
attack, we perform a study of the sensitivity of the battle outcome with respect to 
the variables under his control. All sensitivity studies presented below are performed 
on the 15 x 9 mesh with the same attrition rates that have been validated against 
JANUS. 

The first step in strategy development in a situation where one side wins 
consistently is to find out the source of strength of that side. The commander 
of the side possessing this strength would then build his strategy on the premise of 
preserving his edge in that area, and in anticipating and aborting any attempt by 
his opponent to reduce his advantage. On the other hand, the opposing commander 
would direct his resources towards eliminating the source of strength of the enemy, 
and if sacrifice is absolutely necessary to accomplish his objective, try to reduce 
losses to a minimum. In searching for the source of strength of the Blue side in 
this battle, in spite of the overwhelming initial Red to Blue Force ratio advantage 
(2.5:l) one can attempt to increase the initial Red Force so that the ratio is 4:l and 
6:1, for example. The resulting time dependent attrition profiles are shown in Figs. 
5 and 6, respectively. From these figures, it is clear that the larger initial Red Force 
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0 M60:Base DCOR 

.................................... TOW:4:1 DCOR 
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Fig. 5. Comparison between the reference case (initial Red to Blue 
ratio of 2.5:l) and an initial ratio 4:l case, both calculated by DCOR on 
a 15 x 9 uniform mesh. 
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advantage lengthens the battle duration, and annihilates the M60s completely in 
the 6:l case, but they are insufficient to demolish the TOW missiles, and make them 
ineffective. Indeed in the 6:l initial ratio case, the TOW missiles solely hold back 
the Red attacking forces starting from the fifteenth minute of the battle, and are 
responsible for demolishing the Red Force at the end of the battle, albeit at great 
losses to the Blue side. 
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Fig. 6. Comparison between the reference case (initial Red to Blue 
ratio of 2.5:l and an initial ratio 6:l case, both calculated by DCOR on 
a 15 x 9 uni 2 orrn mesh. 

These initial experiments seem to suggest the crucial role the TOW missiles 
play in guaranteeing Blue's victory. To confirm this conclusion, we replace all of 
Blue's TOW missiles in the 2.5:l initial ratio case with M60 tanks and repeat the 
calculation. The results of this experiment as shown in Fig. 7, clearly indicate the 
truth of this hypothesis as it shows Blue's defeat, at a great cost to Red. 
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Fig. 7. Comparison between the reference case (Blue has 36 M60 
tanks and 12 TOWs) and a case where the TOWs are replaced by M60s 
(Le., Blue has 48 M~OS),  both calculated by DCOR on a 15 x 9 uniform 
mesh. 

At this point the commander of the Red side must weigh the importance of 
achieving his objective, which at most can be to soften but not demolish the Blue 
defense, against the grave cost of annihilation of his forces. If attacking while 
Blue possesses the TOW missiles is inevitable, the Red commander should consider 
alternative, possibly unconventional, initial force deployment schemes in order to 
maximize his gain, e.g., maximum softening of Blue force. We tried three such 
schemes: a single formation massed at 2=4.5, y=5; a single skirmish line at 2=4.5; 
and uniformly distributed over the rectangle 4.5 5 x 5 6.5, 3.5 5 y 5 6.5. The 
resulting attrition evolution profiles are shown in Figs. 8, 9, and 10, respectively. It 
is clear from these figures that the single massed formation is worst, followed by the 
single line skirmish, then the uniformly distributed initial deployment. However, 
out of the three experiments, only the last produces better results for Red than the 
two echelons, two forward and one following battalions, reference case depicted in 
Fig. 1. 



28 

Fig. 8. Comparison between the reference case initial Red Force 
deployment, and a case where Red is massed in a single formation at 
x=4.5, y=5, both calculated by DCOR on a 15 x 9 uniform mesh. 
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Fig. 9. Comparison between the reference case initial Red Force 
deployment, and a case where Red initially forms a single skirmish line 
at x=4.5, both calculated by DCOR on a 15 x 9 uniform mesh. 
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Fig. 10. Comparison between t h e  reference case initial Red Force 
deployment, and a case where Red is initially uniformly spread over the  
rectangle 4.5 5 x 5 6.5, 3.5 5 y 5 6.5, both calculated by DCOR on a 
15 x 9 uniform mesh. 

Red's last resort to avoid annihilation at Blue's hands would be to find a way 
to eliminate, or at least diminish the number of TOW missiles before beginning 
the attack. This can be accomplished by requesting support from his superiors 
of weapon systems not at his disposal, that are capable of selectively striking the 
TOWs, e.g., air support, smart weapon~,~' etc. Clearly, it is Blue commander's 
job to anticipate and neutralize such attempts by Red's commander to preserve his 
battlefield superiority represented by the TOWs. 

The example we used in this section and the arguments we used in developing 
strategies and counterstrategies based on sensitivity studies conducted via the 
DCOR code lack realistic military insight, and would probably appear to be 
naive to the military expert. For example, no commander fights a battle up 
to complete annihilation of his force. However, the emphasis here has been 
on flexibility, versatility, and computational robustness of the DCOR code in 
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performing a wide variety of modeling tasks that can provide the commander with 
invaluable predictions of the “expected outcome” of the battle. Such predictions 
can complement intuition, expertise, and military doctrine in realistic situations to 
develop better strategic evaluations of battle outcomes as a function of options and 
actions available to the commanders of the two sides in the battle. 
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6. CONCLUSIONS 

We have developed the first version of a flexible, user-friendly computer code, 
DCOR (previously known as WAR , implementing the deterministic PDE combat 

still in its infancy and requires substantial development, testing, and validation. 
However, the results we have accumulated so far, some of which are reported 
here, and others still emerging at the time of this writing, all seem to suggest 
the usefulness of this code, and its future progeny, in performing various combat 
modeling tasks. Thus, it provides a very powerful tool for predicting battle outcome, 
determining initial deployment of forces, optimizing use of resources to maximize 
gain from battle,. predict the opponent’s actions by exploring his options, and 
developing strategies and counterstrategies to achieve battle objectives. Just like in 
other areas where neither Monte Carlo nor deterministic methods totally dominate 
the field, we conjecture that stochastic battle simulations and PDE combat models 
will coexist in the future, most probably complementing one another. 

model recently proposed and teste d by ORNL. We realize that the DCOR code is 
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