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ABSTRACT

This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic
and aerodynamic problems associated with moving bodies. The Ffowcs Williams-Hawkings (FW-H)
equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies,
manipulates the source terms into surface and volume sources. Quite often in practice the voluine
sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have
attempted to use the FW-H equation with the quadrupole source neglected to solve for the surface
pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole
source to the acoustic pressure and body surface pressure for some problems which the exact solution
is known. The inviscid, incompressible, two-dimensional flow, calculated using the velocity potential,
is used to calculate the individual contributions of the various surface and volume source terms in
the FW-H equation. The relative importance of each of the sources is then assessed.

INTRODUCTION

The acoustic analogy of Lighthill [1] and in particular its application to sound generated by surfaces in
arbitrary motion by Ffowes Williams and Hawkings [2] has been an extremely useful tool in estimating
the aerodynamic sound generated by propellers and rotors. Although the Ffowcs Williams-Hawkings
(FW-H) equation is intended for the prediction of the acoustic field given the aerodynamic field
around the body, i.e. the acoustic analogy, the equation is an exact rearrangement of the mass and
momentum conservation equations and can be used to recover the aerodynamic field near the hody
which is generating the sound as well. This relatively new idea has been attempted by Farassat and
Myers [3], Long [4], and others.

In general practice, only some abbreviated form of the FW-H equation is used. One approximation
to the FW-H equation which has often been applied for hoth acoustic and aerodynamic work is one
in which the quadrupole source term has been ignored. It has been argued that the quadrupole term
may he neglected for certain conditions for which the turbulent flow region is small [5], however,
probably the most fundamental reason it is left out is because it requires a detailed knowledge of the
flow field around the hody in advance. Without determining the entire flow field, and quite possibly
the desired acoustic field, the quantities necessary to describe adequately the quadrupole source are
unknown, although reasonable guesses can be made. None the less, difficulty in obtaining a source
term is little justification for neglecting that term. Indeed Hanson and Fink [6] as well as Schmitz
and Yu [7] have shown for high speed rotating blades that the quadrupole source is very important
even though good results can be achieved in other operating ranges without the quadrupole.

In an effort to gain a new understanding about the quadrupole in hoth acoustic and aerodynamic
applications, we have chosen some sample problems for which the flow field can be determined ana-
lytically using the two dimensional velocity potential. In the case of the circular cylinder, each of the
source terms are calculated separately and compared with the exact potential solution. The forces
on the cylinder due to pressure are compared as well. This problem helps to explain the results and
difficulties of Brandao(8,9].

The circular cylinder solution suggests a new description of the quadrupole term which is useful
in identifying the volume and surface terms immediately from the exact solution. This is applied
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directly to find the relative source contributions for a Joukowski airfoil. Following this, the problem
of a circular cylinder moving near a vortex filament is examined as well. Each of these cases illustrate
the various roles of the volume source terms for incompressible lows. Another consideration of the
role of quadrupole sources for exact compressible flow problems is given by Ffowes Williams [10].

PROBLEMS WITH EXACT SOLUTIONS
The Circular Cylinder

One of the most well known exact potential flow solutions is that for a circular cylinder in an inviscid,
incompressible low. This is such an important flow because the solution can be extended to a variety
of other problems using conformal mapping of the complex velocity potential. Similarly, if one can
understand the components of the flow as given by the FW-H equation, there is hope that these
results can be transformed to give some idea of the behavior of each source term for a Joukowski
airfoil. Indeed this has essentially been done in this paper. Brandao [8,9] has also used the circular
cylinder problem in his development of an aerodynamic theory based on the FW-H equation, so
comparisions can be made with his results.

Velocity Potential Solution- The velocity potential for a circular cylinder of radius a, in a frame of
reference in which the cylinder is moving, is unsteady and known to be
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where 7,0 are the polar coordinates of x, v(t) is the velocity of the cylinder center, K is the bound
circulation on the cylinder and f is a unit vector in the x direction. The perturbation pressure, given
by the Bernoulli equation, is then written
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Here v, = v-fi and vy = |v x f| where f1 is an outward unit normal vector to the surface. Note

that for the circular cylinder  and i are equivalent. The termns are written out so that they may be
compared with the solution gained from the FW-H equation.

Acoustic Solution—- The Ffowes Williams-Hawkings equation may he written

2
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for an inviscid, incompressible flow and where the derivatives are assumed to be generalized, H(f)
and §(f) are the the Heaviside and Dirac delta functions respectively, and the three source terms
have come to be known as quadrupole source, loading source, and thickness source terms respectively.
The function f = 0 is an equation which describes the body surface and shall be defined such that
V f = f1, which is the outward unit normal vector.
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Figure 1. The perturbation pressure for a flow around a circular cylinder, radius ¢ = 1.0, with a velocity
v = 1.0, and circulation K = =.



The solution can be ohtained using the Green’s function for the Laplace equation and since the
exact solution for pressure and velocity are known and the geometry is simple, each Green’s function
integral can be calculated analytically. When this is done, the pressures obtained are written
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Here the subscripts t,l, and ¢ refer to the thickness, loading and quadrupole contributions, respec-
tively. It is immediately clear when comparing equations (6-8) with the potential solution, equations
(3,4), that the thickness and loading sources correspond exactly to —pd¢/dt and the quadrupole
contribution corresponds to —%puz. This finding warrants further exploration to determine if this
correspondence can be generalized.

Notice in equations (6-8) that the total far-field solution is given by the thickness and loading terms,
however in the case with circulation, & # 0, the quadrupole contribution can be as important as the
thickness term. The quadrupole serves to provide a near-field pressure adjustment to the thickness
and loading pressures. Figure 1 shows the relative contributions of each of the source terms for a
cylinder with circulation.

Forces on the Cylinder— The force on the cylinder can now be easily calculated by integrating the
pressure over the cylinder surface. The force per unit length is then found to be

F=F +F +Fg (9)
where
1 dv
Ft = —Em-% (10)
1 dv 1 . .
F, = %pK(v < k). (12)

Here m = pr2a which is the virtual mass of the cylinder and k = f x £. The force composed of
F; and the first term of F; is due to and opposes the acceleration of the cylinder while the force
composed of Fy and the second part of F; is due to circulation. It is apparent that the force
generated by acceleration of the cylinder is independent of the quadrupole, but one half of the force
due to circulation is given by the quadrupole term. This implies that if the FW-H equation is to be
used for aerodynamic calculations, the quadrupole may be important for steady lifting problems.

A New Quadrupole Description

Before a more definitive statement is made, let us first return to examine the way in which the
quadrupole term was simply related to % pu?. With no loss of generality the volume term in equation
(5) can be rewritten
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where { = V X u, is the local vorticity of the fluid. The surface term arises from the generalized
gradient of H(f), 16(f). The second term on the right hand side is zero for an irrotational (V xu = 0),
incompressible (V - u = 0) flow. This quadrupole expression explicitly separates the % pu? part from
the other parts. It is also useful to rewrite the thickness term

ZApmb(£)} = -V - {puavs()} + o - (1) (14)

which puts the steady part of the thickness term in a form similar to part of the surface term in
equation (13). The FW-H equation may now be written

VAP H(f)} = - VA{5ou H()} - pV-{(¢ x WH(F)) = V- {pun(u - VI6(£))
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This new equation is similar to Powell’s theory of vortex sound [11] where the quadrupole source region
is identified with the vorticity of compact eddies in the flow. The second source term in equation (15)
is restricted to the region in the flow where the vorticity is nonzero, while the third source term is
written in terms of a vortex sheet of strength u; — v; over the surface, since u — v = (u; — v¢)t on the
surface. Equation (15) suggests writing the FW-H equation in terms of the variable B = p' + ::;pu2
which is the p = contant form of the variable B Howe [12] used for his nonlinear analogy. This
variable then eliminates the volume source terms if the flow is irrotational, which is not surprising
since the Laplace equation can be solved uniquely from the houndary data. Now the contribution to
p' from the volume source is —% pu?, exactly as in the case of the circular cylinder. In the following
problems, it will be possible to calculate the exact potential solution and then directly identify the
volume and surface contributions to the form of the FW-H equation given in equation (15).

Aerodynamic Implications— Actually the distinction hetween the quadrupole source of equation (5)
and the volume source terms of equation (15) is an important one. If the variable B is used along
with the three dimensional Green’s function for the Laplace equation in unbounded space, an integral
representation of equation (15) can be written

1 Ba.t 1 pon(a—v). ¢ 1 dv _&(f)
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This is a singular Fredholin integral equation of the second kind for the unknown variable B, for
which the solution is desired. In [8], Brandao has derived a similar equation in which the quadrupole
(of equation 5) and unsteady terms were neglected. In that case, B is replaced by p’ and the u. &
term is dropped from the right hand side, whereas if the volume terms and unsteady term of equation
(15) are neglected, the only change to equation (16) is that the variable B is reduced to p'. Without
the full right hand side of equation (16), Farassat and Myers[3] have shown that the angle of attack
problem becomes an eigenvalue problem and cannot be solved, as [8] confirms through experience.
This is true because the term u — v on the right hand side of equation (16) represents the the local
vorticity on the surface due to the boundary layer and any bound circulation. If the u.f term is
neglected, then no mechanism is available to generate the lift.

Brand&o[9] recognized that the induced velocity of the flow must be important for the lifting problem
and used this as justification for interpreting the velocity in the thickness term differently. Brandao’s
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Figure 2. The perturbation pressure components for a flow (v = 1.0) about a Joukowski airfoil (a = 1.13,
2o = —.11 4 .101) at o = 5deg.

new interpretation of the velocity is such that the u — v term on the right hand side of equation (16)
is replaced by u — v — v, 1. If equation (16) had been used then the exact solution would be obtained
but one must remember the variable B will differ from p' on the surface of the cylinder by a constant
factor of %pv2 for the case with no circulation, as determined from equation (3).

The Joukowski Airfoil

Now consider the case of a Joukowski airfoil in incompressible flow. The exact solution is readily
obtained using the Joukowski transformation, ( = z+1/z, to transform the complex velocity potential
w(z) for the circular cylinder. The perturbation pressure p’ can be written

o Lydwe o

where the airfoil has a steady complex velocity V' = v(cosa + isina) and dw/d( is the conjugate of
the complex fluid velocity. The value for dw/d( is most easily obtained by transforming the solution

for the circular cylinder with a free stream moving past into the ¢ plane and then subtracting the
freestreamn velocity. This gives

dw = Va? K d{ =
d_C_(V_(z—zo)-l_?ﬂ'(z—zo))d_z-—V (18)

where V is the conjugate of V and z, is the center of the circular cylinder. From the previous
discussion, it is clear that the volume source contribution of equation (15) is —%puz = —%p|dw/d(|2
while the surface source contribution is given by —pd¢/dt = pRe(Vdw/d(¢). In Figure 2, the relative
contribution of the volume and surface sources for a cambered airfoil at angle of attack are compared.



Clearly for the thin airfoil of figure 2, the volume source term is small except near the stagnation
points. This observation is in fact the basis of thin airfoil theory for which p' is approximated as

d¢
I . Pl

which is exactly the contribution from the surface source terms in equation (15). Therefore, neglecting
the volume terms is justified by the same assumptions used in thin airfoil theory, and conversely, the
volume source should not be neglected if the pressure field near a thick body is desired.

Circular Cvlinder with a Vortex

As a final example, consider a circular cylinder moving past a vortex in the vicinity of the cylinder.
In this case the complex velocity potential can be found using the Milne-Thomson circle theorem
to be the sum of the velocity potential of the cylinder alone, a vortex of equal strength to the free
vortex at the center of the cylinder and a vortex of equal strength and opposite sense at the image
point zp = a?/Z, if zy is the complex coordinate for the position of the image vortex. The complex
velocity potential for the problem is

-Va® (K +T)In(z) iCln(z - 2) _illn(z — =)

w(z) = z + 27 + 27 27 (20)
after dropping a constant. The pressure p' is then found to be
y 1 dwp dw
p= —5‘0'3:— ~ pPRe(— (21)
where )
dw Va (K +T) il i Va
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and V7 and V; are the complex velocities of the free and image vortices.

This particular problem highlights a situation where the second volume term in equation (15) must
not he neglected. Since the vorticity is concentrated at the point x;, the vorticity vector ¢ can be
written —I'é(x — x1)k where T is the strength of the vortex and k is the unit vector @1 x €. The
pressure contribution due to the second term in equation (15) may then be written

' 1 / . pTk x u|x, « (x — x1)
=—V. 'k 8y - In|x - y|ldy = 2
Py = 5o pI'k x ué(y ~ x1)In|x — y|dy I E— (23)
v
If this result is rewritten in terms of complex variables it becomes
r iT'
pv_pRe{zﬂ'(Z—Zl)} (24)

which is recognized immediately in equation (22). The acoustic solution can be thought of as that
for the circular cylinder alone, with circulation (K + I'), superimposed with the solutions for the
free and image vortices. The surface source terms are changed from the cylinder alone solutuion by
exactly by the image system of the free vortex. Powell [13] and Ffowcs Williams [14] have shown
this is true for turbulent boundary layers on a plane boundary as well. One logical approximation to
the volume source is to again neglect the %pu2 part of p' and only include the effects of the free and
image vortices as given by equation (24). Figure 3 shows just this approximation compared to the
full exact solution. This type of approximation is not obvious directly from equation (5).
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a) Exact potential solution for p' b) Approximate solution p' ~ —pd@d/dt

Figure 3. Comparison of p' and —pd¢/dt for a circular cylinder moving in proximity to a free vortex. (V = 1.0,
K =2.0, T = —2.0, Vortex position (r1,01) = (2., 15 deg.) )

CONCLUDING REMARKS

The aim of this paper has been to gain more understanding of the importance of the quadrupole source
in the FW-H equation. Incompressible flow about both thickand thin bodies has been considered. The
circular cylinder problem has shown that the thickness and loading contribution to p' is proportional
to d¢/dt when the potential ¢ is written in a frame of reference fixed to the undisturbed medium.
The quadrupole contribution is just —%pu2 in this frame. This result is true generally, for inviscid,
incompressible flows, if the quadrupole is reorganized into the form of equation (13).

With the incompressible FW-H equation in the form of equation (15), the perturbation pressure
solution, p', may be safely approximated by the surface source terms alone away from the body. Near
the body and especially on the body surface, as is the case for aerodynamics, the surface sources alone
in equation (15) are equivalent to thin airfoil theory. Thus the volume sources need to be included for
aerodynamic calculations around thick bodies. It is important to distinguish between the neglecting
the quadrupole term in equation (5) and the volume source terms in equation (15) since the vorticity
needed for steady lift generation is found to be the difference between the two assumptions. This
understanding of the FW-H equation as applied to incompressible aerodynamics is believed to be
new. :

It has also heen seen in this paper, as Powell has shown previously, that the vorticity in the fluid can
be considered the acoustic pressure generation mechanism. This view identifies the source regions
as vortices, boundary layers, bound circulation, and wakes, which are tangible features in the flow.
As in the case of the cylinder in the vicinity of a vortex, it should be possible to model regions of
vorticity in the flow separately for acoustic calculations.



REFERENCES

{1] Lighthill, M. J., “On Sound Generated Aerodynamically,” Proceedings of the Royal Society, Series A,
Vol. 211, 1952, pp. 564-587.

[2] Ffowcs Williams, J. E. and Hawkings, D. L., “Sound Generated by Turbulence and Surfaces in Arbitrary
Motion,” Philosophical Transactions of the Royal Society, Series A, Vol. 264, No. 1151, 1969, pp. 321-342.
[3] Farassat, F. and Myers, M. K., “Aerodynamics via Acoustics: Application of Acoustic Formulas for
Aerodynamic Calculations,” AIAA paper 86-1877, 1986.

{4] Long, L. N., “The Compressible Aetrodynamics of Rotating Blades Based on an Acoustic Formulation,”
NASA TP 2197, 1983.

[5] Farassat, F., “Theory of Noise Generation from Moving Bodies with an Application to Helicopter Rotors,”
NASA TR R-451, 1975,

[6] Hanson, D. B. and Fink, M., “The Importance of Quadrupole Sources in the Prediction of Transonic Tip
Speed Propeller Noise,” Journal of Sound and Vibration, 62(1), 1979, pp. 19-38.

[7] Schmitz, F. H. and Yu, Y. H., “Transonic Rotor Noise - Theoretical and Experimental Comparisons,”
Vertica, Vol 5, 1981, pp. 55-74.

8] Brandido, M. P., “A New Perspective of Classical Aerodynamics,” Proceedings of the AIAA/ ASME/
ASCE/ AHS 28th Structure, Structural Dynamics, and Materials Conference, Paper AIAA-87-0853-CP, Mon-
terey, California, April 6-8, 1987.

[9] Branddo, M. P., “A New Method for the Aerodynamic Analysis of Lifting Surfaces,” Presented at the
Thirteen European Rotorcraft Forum, Sept. 8-11, 1987, Paper 2-3.

[10] Ffowes Williams, J. E., “ On the Role of Quadrupole Source Terms Generated by Moving Bodies,” AIAA
79-0576, 1979.

[11] Powell, A., “Theoty of Vortex Sound,” Journal of the Acoustical Society of America, Vol. 36, No. 1.,
1964, pp. 177-195.

[12] Howe, M. S., “Contributions to the Theory of Aerodynamic Sound with Applications to Excess Jet Noise
and the Theory of the Flute,” Journal of Fluid Mechanics, Vol. 58, Part 4, 1973, pp. 625-673.

[13] Powell, A., “Aerodynamic Noise and the Plane Boundary,” Journal of the Acoustical Society of America,
Vol. 32, No. 8, 1960, pp. 982-990.

[14] Ffowes Williams, J. E., “Sound Radiation from Turbulent Boundary Layers formed on Compliant
Surfaces,” Journal of Fluid Mechanics, Vol. 22, Part 2, 1965, pp. 347-358.




NNASA Report Documentation Page.

Nalonat 4eronaulcs and
Scace Agrnsir3non

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TM-100623
4. Title and Subtitle 5. Report Date
The Exact Calculation of Quadrupole Sources for Some May 1988

Incompressible Flows

6. Performing Organization Code

7. Authorls) 8. Performing Organization Report No.

Kenneth S. Brentner o Work Ui Ne. ;

505-63-51 i

9. Performing Organization Name and Address ,
11. Contract or Grant No.

NASA Langley Research Center
Hampton, VA 23665-5225

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
Technical Memorandum
National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, DC 20546-0001

15. Supplementary Notes

Presented at the 1988 Spring Conference: Acoustics 1988 in Cambridge, England,
April 5-8, 1988.

16. Abstract

This paper is concerned with the application of the acoustic analogy of Lighthill to
the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs
William-Hawkings (FW-H) equation, which is an interpretation of the acoustic analogy
for sound generation by moving bodies, manipulates the source terms into surface

and volume sources. Quite often in practice the volume sources, or quadrupoles,

are neglected for various reasons. Recently, Farassat, Long and others have
attempted to use the FW-H equation with the quadrupole source neglected to solve

for the surface pressure on the body. The purpose of this paper is to examine the
contribution of the quadrupole source to the acoustic pressure and body surface
pressure for some problems which the exact solution is known. The inviscid, in-
compressible, two-dimensional flow, calculated using the velocity potential, is

used to calculate the individual contributions of the various surface and volume

source terms in the FW-H equation. The relative importance of each of the sources
is then assessed.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Acoustic : L s
Aerodynamic Analysis Unclassifed-Unlimited
Unsteady Aerodynamics Subject Category 71
19. Security Classif. (of this report) 20. Security Classif. (of thjs page) 21. No. of pages 22. Price
Unclassified Unclassified 10 AQ2

NASA FORM 1626 OCT 86






