
1

© 2002 IBM
Corporation

BlueGene/L Consortium

A Tutorial on BG/L Dual FPU SimdizationA Tutorial on BG/L Dual FPU Simdization

Alexandre Eichenberger, Rohini Nair, and Peng Wu / TPO

Mark Mendell / Tobey

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation2

OutlineOutline

�Background

�How to use the compiler

�Diagnostic info and tuning

�Alignment handling

�Experimental results

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation3

BlueGeneBlueGene/L Dual Floating Point Unit/L Dual Floating Point Unit

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation4

Architecture Constraints of Dual FPU UnitArchitecture Constraints of Dual FPU Unit

�Only stride-one memory accesses use full bandwidth
� “stride-one” means “stored consecutively in memory”

� lower bandwidth for non-stride-one accesses (non major, a[2i+1], indirect accesses)

�Access efficiently only 16-byte aligned data
� a[i] = b[i] +c [i] vs. a[i] = b[i+1] + c[i]

�Misaligned data can be loaded using cross-instructions
� data realignment pattern is encoded in the instructions,

� makes handling of runtime alignment difficult

�Non-uniform instruction set for dual unit
� double precision floating point only

�Simdization � SIMD vectorization

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation5

OutlineOutline

�Background

�How to use the compiler

�Diagnostic info and tuning

�Alignment handling

�Experimental results

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation6

The XL Compiler ArchitectureThe XL Compiler Architecture

IPA IPA
ObjectsObjects

Other Other
ObjectsObjects

System System
LinkerLinker

Optimized Optimized
ObjectsObjects

EXE

DLL

TOBEYTOBEY

TPOTPO

C FEC FE C++ FEC++ FE FORTRAN FORTRAN
FEFE

LibrariesLibraries

PDF infoPDF info

Wcode+

Wcode

Wcode+

Instrumented
runs

Wcode
Wcode

Wcode

Wcode

…
FPU CELL VMX

-O4 (Compile time) path-O5 (Link-time) path

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation7

Where does Simdization Occur?Where does Simdization Occur?

�Some occurs in TPO (high-level inter-procedural optimizer)
� computations that stream over double floats

� TPO does most loop level/inlining/cloning optimizations

�Some occurs in Tobey (low-level backend optimizer)
� complex arithmetic on double floats is an ideal target

� other non-regular double floats are also packed

� Tobey does most code motion/scheduling/machine specific optimizations

This talk focus mainly on TPO level simdization

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation8

33--Step Program to Enable SimdizationStep Program to Enable Simdization

1. Compile for the right machine
� -qarch=440d –qtune=440 (in this order)

2. Turn on the right optimizations
� -O5 (link-time, whole-program analysis & simdization1)

� -O4 (compile time, limited scope analysis & simdization1)

� -O3 –qhot=simd (compile time, less optimization & simdization1)

� -O3 (compile time, simdization2)

3. Tune your programs
� use TPO compiler feedback (-qxflag=diagnostic) to guide you

� help the compiler with extra info (directive/pragmas)

� modify algorithms (hint: more stride-one memory accesses)

1: simdization inTPO & Tobey 2: simdization in Tobey only

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation9

22--Step Program to Disable SimdizationStep Program to Disable Simdization

1. Compile for the wrong machine
� to completely disable simdization: -qarch=440 –qtune=440

2. Turn off the right optimizations
� compile for –qarch=440d –qtune=440

� disable TPO simdization (keep Tobey simdization, with at least –O3)

� for a loop: #pragma nosimd | !IBM* NOSIMD
� completely: -qhot=nosimd

� disable Tobey simdization (keep TPO simdization)

� not supported, may not work, try at your own risks
� completely: -qxflag=nhummer:ncmplx

green is for C | red is for fortran

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation10

5 to 7 Steps to Help Us5 to 7 Steps to Help Us

�Found a correctness bug?
� play with options to see at which level it fails

� isolate the error (code as small as possible)

� simdize only the loop that fails

� give us all the info (all sources, header, make files, compiler options)

� report the problem

�Found a performance bug?
� test the correctness of your code (verify results if possible)

� try to estimate a good lower bound (number of mem/fma/…)

� apply above 5 steps

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation11

OutlineOutline

�Background

�How to use the compiler

�Diagnostic info and tuning

�Alignment handling

�Experimental results

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation12

Examples of TPO Simdization Success DiagnosticExamples of TPO Simdization Success Diagnostic

Examine loop <1> on line 12
(simdizable) []

Examine loop <2> on line 20
(simdizable) [misalign(compile time) shift(3 compile-time)]

Examine loop <3> on line 26
(simdizable) [misalign(runtime)][versioned(relative-align)]

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation13

TPO Diagnostic Information on SuccessTPO Diagnostic Information on Success

�Simdizable loops
� diagnostic reports ”(simdizable)[features][version] “

� [feature] further characterizes simdizable loops
� “misalign(compile time store) ”: simdizable loop with misaligned accesses

� “shift(4 compile time) ”: simdizable loop with 4 stream shift inserted

� “priv ”: simdizable loop has private variable

� “reduct ”: simdizable loop has a reduction construct

� [version] further characterizes if/why versioned loops where created
� “relative align ”: versioned for relative alignment

� “trip count ”: versioned for short runtime trip count

-qxflag=diagnostic report on TPO Simdization only

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation14

Examples of TPO Simdization Failure DiagnosticExamples of TPO Simdization Failure Diagnostic

Examine loop <id=1> on line 1647
not single block loop

(non_simdizable)

Examine loop <id=1> on line 2373
dependence at level 0 from (0 73 100)

(non_simdizable)

Examine loop <id=2> on line 2356
dependence due to aliasing

(non_simdizable)

Examine loop <1> on line 4
no intrinsic mapping for <ADD int>: a[]0[$.CIV0] + b[]0[$.CIV0]

(non_simdizable)

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation15

TPO Diagnostic Information on FailureTPO Diagnostic Information on Failure

�Alignment:
� “misalign(….) ”: simdizable loop with misaligned accesses

� “non-natural ”: non naturally aligned accesses
� “runtime ”: runtime alignment⇒Action:

� align data for the compiler: double a[256] __attribute__((aligned(16));

� all dynamically allocated memory (malloc,alloca) are 16-byte aligned
� all global objects are 16-byte aligned
� inside struct / common block, you are on your own

� tell the compiler it’s aligned: __alignx(16, p); | call alignx(16,a[5]);

� like a function call, no code is issued
� can be placed anywhere in the code, preferably close to the loop

� tell compiler that all references are naturally aligned

� -qxflag=simd_nonnat_aligned

� use array references instead of pointers when possible

green is for C | red is for fortran

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation16

TPO Diagnostic Information on Failure (ContTPO Diagnostic Information on Failure (Cont’’))

�Structure of the loop
� "irregular loop structure (while-loop) “ (handle only for/do loops)

� "contains control flow “: (no if/then/else allowed)

� “contains function call “: (no function calls)

� “trip count too small “: (short loops not profitable)⇒Action:
� convert while loops into do loops when possible

� limited if conversion support

� handle best if-then-else with same array defined on both sides
� can try data select

� inline function calls

� automatically (-O5 more aggressive, use inline pragma/directives)
� manually

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation17

TPO Diagnostic Information on Failure (ContTPO Diagnostic Information on Failure (Cont’’))

�Dependence
� “dependence due to aliasing ”⇒Action:
� help the compiler with aliasing info

� use -O5 (does interprocedural analysis)
� tell the compiler when its disjoint: #pragma disjoint (*a, *b)

� use fewer pointers when possible

�Scalar references
� “non-simdizable reductions ”

� “non-simdizable scalar var ”⇒Action:
� reductions that are used in the loops can not be simdized

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation18

TPO Diagnostic Information on Failure (ContTPO Diagnostic Information on Failure (Cont’’))

�Array references
� “access not stride one ”:

� “mem accesses with unsupported alignment ”

� “contains runtime shift ”⇒Action:
� interchange the loops to enhance stride-one, when possible

� sometime TPO may interchange loops for you, in a way that you don’t want

� disable unimodular transformation: -qxflag=nunimod

� runtime alignment not feasible on BG/L

� compiler version the loop
� one of the two version may report “(non-simdizable) ”

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation19

TPO Diagnostic Information on Failure (ContTPO Diagnostic Information on Failure (Cont’’))

�Pointer references
� “non normalized pointer accesses ”⇒Action:
� simple pointer arithmetic should be well tolerated

� otherwise, try using arrays

�Native Mapping and native data types
� “non supported vector element types ”

� “no intrinsic mapping for <op type> :”⇒Action:
� none: BG/L supports only double precision floating point SIMD

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation20

Other TuningOther Tuning

�Loop unrolling can interact with simdization
� there is some support for simdizing unrolled loop, but its harder

� try to not manually unroll the loop for better TPO simdization

� unroll directive: #pragma nounroll | #pragma unroll(2)

�Math libraries:
� currently, we don’t simdize sqrt,…

� we split the loop, simdize the one without sqrt
� you can do the same, short loop that compute all the sqrt, store in a temp array

� use optimized libraries to compute vectors of sqrt
� then use it in the old loop, that one will simdize

�Use literal constant loop bounds
� e.g. #define when possible

�Tell compiler not to simdize a loop if not profitable (e.g., trip count too low)
� #pragma nosimd (right before the innermost loop)

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation21

More More pragmapragma/directive info/directive info

�Some generally available info is here
� http://publib.boulder.ibm.com/infocenter/comphelp/index.jsp

� some useful links on this site:

� Fortran/Language references/Directives
� Fortran/Language references/Intrinsic procedures/Hardware specific

� C/Language references/Preprocessor directives/Pragma directives

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation22

OutlineOutline

�Background

�How to use the compiler

�Diagnostic info and tuning

�Alignment handling

�Experimental results

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation23

FPU

A Unified Simdization FrameworkA Unified Simdization Framework

Global information gathering

Pointer Analysis Alignment Analysis

Simdization

Straightline-code Simdization Loop-level Simdization

General Transformation for SIMD

Dependence Elimination Data Layout Optimization

Simdization

SIMD Intrinsic Generator

Constant Propagation

VMX

CELL

architecture independent

architecture specific

Diagnostic
output

…

Idiom Recognition

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation24

How to load from misaligned memory?How to load from misaligned memory?

16-byte boundaries

lfxd b[0]

b0b1 b0b1

lfxd b[2]

b2b3 b2b3

fpsel

b1 b2b1 b2

b0 b1 b2 b3 ...

1 misaligned-quad load costs 2 aligned-quad cross-loads + 1 select

� Load one misaligned quad:

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation25

How to access misaligned memory (contHow to access misaligned memory (cont’’)?)?

�Load multiple consecutive misaligned quad data:
� reuse quad load-across

16-byte boundaries

lfxd b[0]

b0b1 b0b1

lfxd b[2]

b2b3 b2b3

fpsel

b1 b2b1 b2

b0 b1 b2 b3 b4 b5 b6 b7 b8 ...

lfxd b[4]

b4b5 b4b5

fpsel

b3 b4b3 b4

1 misaligned-quad load costs on avg. 1 aligned-quad cross-loads + 1 select

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation26

When misalignment handling is needed?When misalignment handling is needed?

� for (i=0; i<100; i++) a[i] = b[i] + c[i+1] ;
� aligned: a[i], b[i]

� misaligned : c[i+1]

� action: realign c[i+1]

� for (i=0; i<100; i++) a[i+1] = b[i+1] + c[i+1];
� misaligned, but relatively aligned: a[i+1], b[i+1], c[i+1]

� action: peel first iteration

� for (i=0; i<100; i++) a[i+1] = b[i+1] + c[i];
� misaligned, but relatively aligned: a[i+1], b[i+1]

� aligned: c[i] is aligned

� action: peel first iteration, realign c[i]

a[0], b[0], c[0] assumed aligned

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation27

lfxd b[0]

Minimizing data reorganization overheadMinimizing data reorganization overhead

� for (i=0; i<100; i++) a[i] = b[i+1] + c[i+1] ;

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

16-byte boundaries

b1 b0

lfxd c[0]

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

16-byte boundaries

c1 c0

fpadd

b2+c2

lfxd b[2]

b3 b2

lfxd c[2]

c3 c2

fpadd b3+c3

b0+c0b1+c1 b2+c2b1+c1fpsel

On average: 1 aligned
store, 2 aligned cross-
loads, 1 add, 1 select

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation28

Issues with Runtime AlignmentIssues with Runtime Alignment

�Depending on the alignment, different code sequences may be generated
� When alignment is runtime, the compiler does not know which code sequence to

generate

16-byte boundaries

lfxd b[0]

b0b1 b0b1

lfxd b[2]

b2b3 b2b3

fpsel

b1 b2b1 b2

b0 b1 b2 b3 ...

2. when b[1] is misaligned

lfpd b[1]

b0 b1 b2 b3

b1 b2

16-byte boundaries

1. when b[1] is aligned

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation29

Versioning for relative alignmentVersioning for relative alignment

�Solution to loops with runtime alignment
� versioning for relative alignment

�When versioning is needed?
� for (i=0; i<100; i++) a[i+n] = b[i+1+n] + c[i+1+n];

� n is runtime loop invariant
� a[i+n], b[i+1+n], c[i+1+n]: runtime alignments, but relatively aligned

� no versioning is necessary

� for (i=0; i<100; i++) p[i] = q[i] + r[i];

� p, q, and r are pointers, alignment & relative alignment unknown

� versioning is necessary
� bet on them being relatively aligned

if ((p-q) mod 16 == 0 && (p-r) mod 16 == 0) ⇒ SIMD version

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation30

OutlineOutline

�Background

�How does the compiler simdize

�Diagnostic info and tuning

�Alignment handling

�Experimental results

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation31

Evaluation of Alignment HandlingEvaluation of Alignment Handling

�Measurements on a set of kernel loops
� Harmonic means of a set of 50 loops with identical characteristics

� 3 loads, 2 adds, 1 store per statement
� 3 statements per loop for multiple statement loops

� 500 iterations per loop
� Randomly generated memory alignments

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation32

SingleSingle--statement loop with compilestatement loop with compile--time misalignmenttime misalignment

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation33

MultipleMultiple--statement loops with compilestatement loops with compile--time misalignmenttime misalignment

BlueGene System Software Workshop - Simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation34

HPCC/HPCC/StreamCStreamC Simdization performanceSimdization performance

�Compiler simdizes all 4 stream tests, speedup factor 1.39 ~ 1.97.

