A Tutonal on BG/L Dual FPU Simdization

Alexandre Eichenberger, Rohini Nair, and Peng Wu / TPO

Mark Mendell / Tobey

BlueGene/L Consortium

BlueGene System Software Workshop - Simdization

Qutline

U Background

L How to use the compiler
U Diagnostic info and tuning
U Alignment handling

U Experimental results

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

BlueGene/L Dual Floating Point Unit

Cuadword Load Data

%

PO

S0

FPR: Primary

FPR: Secondary

531

Primary: Scalar Side

N2 \\/ \//

Secondary

\J

Cluadword Store data

IBM T.J. Watson Research Center

© 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Architecture Constraints of Dual FPU Unit

L Only stride-one memory accesses use full bandwidth
> “stride-one” means “stored consecutively in memory”

> lower bandwidth for non-stride-one accesses (non major, a[2i+1], indirect accesses)

L Access efficiently only 16-byte aligned data
> afil =b[i] +c[i] vs. ali] = b[i+1] + c[i]

L Misaligned data can be loaded using cross-instructions
» data realignment pattern is encoded in the instructions,

» makes handling of runtime alignment difficult

L Non-uniform instruction set for dual unit
» double precision floating point only

L Simdization = SIMD vectorization

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Qutline

U Background

U How to use the compiler
U Diagnostic info and tuning
U Alignment handling

U Experimental results

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

The XL Compiler Architecture

-08 (Cokprectpadhpath

FORTRAN
FE

Libraries

EXE

=1p]=MTsi{eM INStrumented

runs System

Linker

Optimized
Objects Objects

Other
FPU CELL VMX Objects

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Where does Simdization Occur?

L Some occurs in TPO (high-level inter-procedural optimizer)
» computations that stream over double floats

» TPO does most loop level/inlining/cloning optimizations

L Some occurs in Tobey (low-level backend optimizer)
» complex arithmetic on double floats is an ideal target

» other non-regular double floats are also packed
» Tobey does most code motion/scheduling/machine specific optimizations

This talk focus mainly on TPO level simdization

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

3-Step Program to Enable Simdization

1. Compile for the right machine
» -garch=440d —qtune=440 (in this order)

2. Turn on the right optimizations
» -05 (link-time, whole-program analysis & simdization?)
» -04 (compile time, limited scope analysis & simdization?)
» -03 —ghot=simd (compile time, less optimization & simdization?)
» -03 (compile time, simdization?)

3. Tune your programs
» use TPO compiler feedback (-gxflag=diagnostic) to guide you

> help the compiler with extra info (directive/pragmas)

» modify algorithms (hint: more stride-one memory accesses)

1. simdization inTPO & Tobey 2: simdization in Tobey only

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

2-Step Program to Disable Simdization

1. Compile for the wrong machine
» to completely disable simdization: -qarch=440 —qtune=440

2. Turn off the right optimizations
» compile for —garch=440d —qtune=440

» disable TPO simdization (keep Tobey simdization, with at least —O3)

= for aloop: #pragma nosimd | HBM* NOSIMD
= completely: -ghot=nosimd

» disable Tobey simdization (keep TPO simdization)

= not supported, may not work, try at your own risks
= completely: -gxflag=nhummer:ncmplx

green is for C | red is for fortran

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

5 to 7 Steps to Help Us

U Found a correctness bug?
> play with options to see at which level it fails

> isolate the error (code as small as possible)

» simdize only the loop that fails

» give us all the info (all sources, header, make files, compiler options)
» report the problem

U Found a performance bug?
> test the correctness of your code (verify results if possible)

» try to estimate a good lower bound (number of mem/fma/...)
> apply above 5 steps

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Qutline

U Background

L How to use the compiler
U Diagnostic info and tuning
U Alignment handling

U Experimental results

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Examples of TPO Simdization Success Diagnostic

Examine loop <1> on line 12
(simdizable) []

Examine loop <2> on line 20
(simdizable) [misalign(compile time) shift(3 compile-time)]

Examine loop <3> on line 26
(simdizable) [misalign(runtime)][versioned(relative-align)]

IBM T.J. Watson Research Center

© 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

TPO Diagnostic Information on Success

U Simdizable loops
» diagnostic reports "(simdizable)[features][version] i

U [feature] further characterizes simdizable loops
> “misalign(compile time store) ”: simdizable loop with misaligned accesses

> “shift(4 compile time) ”. simdizable loop with 4 stream shift inserted
> “priv ": simdizable loop has private variable
> “reduct ”:simdizable loop has a reduction construct

U [version] further characterizes if/why versioned loops where created

> “relative align ”. versioned for relative alignment

> “trip count ”. versioned for short runtime trip count

-gxflag=diagnostic report on TPO Simdization only

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Examples of TPO Simdization Failure Diagnostic

Examine loop <id=1> on line 1647
not single block loop
(non_simdizable)

Examine loop <id=1> on line 2373
dependence at level O from (0 73 100)
(non_simdizable)

Examine loop <id=2> on line 2356
dependence due to aliasing
(non_simdizable)

Examine loop <1> on line 4

no intrinsic mapping for <ADD int>: a[]O[$.CIVO0] + b[]0[$.CIV0]
(non_simdizable)

IBM T.J. Watson Research Center

© 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

TPO Diagnostic Information on Failure

d Alignment:
> “misalign(....) ”: simdizable loop with misaligned accesses
= “non-natural ”: non naturally aligned accesses

= “runtime ”: runtime alignment

= Action;

» align data for the compiler: double a[256] _ attribute ((aligned(16));
= all dynamically allocated memory (malloc,alloca) are 16-byte aligned
= all global objects are 16-byte aligned
* inside struct / common block, you are on your own

> tell the compiler it's aligned: __alignx(16, p); | call alignx(16,a[5]);
= Jike a function call, no code is issued
= can be placed anywhere in the code, preferably close to the loop

> tell compiler that all references are naturally aligned
= -gxflag=simd_nonnat_aligned

> use array references instead of pointers when possible

green is for C | red is for fortran

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

TPO Diagnostic Information on Failure (Cont’)

O Structure of the loop

» "irregular loop structure (while-loop) “ (handle only for/do loops)
» "contains control flow “.(no if/then/else allowed)
» “contains function call “." (no function calls)
> “trip count too small “. (short loops not profitable)
= Action;

» convert while loops into do loops when possible
» limited if conversion support

» handle best if-then-else with same array defined on both sides
= can try data select
» inline function calls
= automatically (-O5 more aggressive, use inline pragmal/directives)
= manually

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

TPO Diagnostic Information on Failure (Cont’)

L Dependence
> “dependence due to aliasing ”

= Action:
» help the compiler with aliasing info

= use -O5 (does interprocedural analysis)
= tell the compiler when its disjoint: #pragma disjoint (*a, *b)
= use fewer pointers when possible

1 Scalar references
> “non-simdizable reductions "

> “non-simdizable scalar var "

= Action;
» reductions that are used in the loops can not be simdized

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

TPO Diagnostic Information on Failure (Cont’)

U Array references
> “access not stride one "

> “mem accesses with unsupported alignment ”

> “contains runtime shift "

= Action;
» interchange the loops to enhance stride-one, when possible
» sometime TPO may interchange loops for you, in a way that you don’t want

= disable unimodular transformation: -gxflag=nunimod
» runtime alignment not feasible on BG/L

= compiler version the loop
= one of the two version may report “(non-simdizable) ”

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

TPO Diagnostic Information on Failure (Cont’)

U Pointer references
» “non normalized pointer accesses ?

= Action:
» simple pointer arithmetic should be well tolerated

» otherwise, try using arrays

L Native Mapping and native data types
> “non supported vector element types ”

> “no intrinsic mapping for <op type> o

= Action:
» none: BG/L supports only double precision floating point SIMD

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Other Tuning

U Loop unrolling can interact with simdization
» there is some support for simdizing unrolled loop, but its harder
» try to not manually unroll the loop for better TPO simdization

» unroll directive: #pragma nounroll | #pragma unroll(2)

L Math libraries:
» currently, we don’t simdize sqrt,...
= we split the loop, simdize the one without sqrt
= you can do the same, short loop that compute all the sqrt, store in a temp array

= use optimized libraries to compute vectors of sqrt
= then use it in the old loop, that one will simdize

L Use literal constant loop bounds
> e.g. #define when possible

U Tell compiler not to simdize a loop If not profitable (e.g., trip count too low)
» #pragma nosimd (right before the innermost loop)

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

More pragma/directive Info

L Some generally available info is here
> http://publib.boulder.ibm.com/infocenter/comphelp/index.jsp
» some useful links on this site:

= Fortran/Language references/Directives
= Fortran/Language references/Intrinsic procedures/Hardware specific
= C/Language references/Preprocessor directives/Pragma directives

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Qutline

U Background

L How to use the compiler
U Diagnostic info and tuning
4 Alignment handling

U Experimental results

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

A Unified Simdization Framework

chitecture independent

:-: architecture specific

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

How to load from misalighed memory?

O Load one misaligned quad:

16-byte boundaries

D bO | b1 | b2 | b3 ‘]

1 misaligned-quad load costs 2 aligned-quad cross-loads + 1 select

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

How to access misaligned memory (cont’)?

U Load multiple consecutive misaligned quad data:
» reuse quad load-across

16-byte boundaries

1 misaligned-quad load costs on avg. 1 aligned-quad cross-loads + 1 select

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

When misalignment handling is needed?
dfor (i=0; i1<100; i++) a[i] = b[i] + c[i+1] ;
» aligned: a]i], bJi]
» misaligned : c[i+1]
» action: realign c[i+1]

dfor (i=0; i1<100; i++) a[i+1] = b[i+1] + c[i+1];
» misaligned, but relatively aligned: a[i+1], b[i+1], c[i+1]

» action: peel first iteration

dfor (i=0; 1<100; i++) a[i+1] = b[i+1] + c[i];
» misaligned, but relatively aligned: a[i+1], b[i+1]

» aligned: cJi] is aligned
» action: peel first iteration, realign cfi]

a[0], b[0], c[0] assumed aligned

IBM T.J. Watson Research Center

© 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Minimizing data reorganization overhead

dfor (i=0; i<100; i++) a[i] = b[i+1] + c[i+1];
16-byte boundaries

[b0 | b1 | b2 | b3 | ba | b5 | b6 | b7 | b8 | b9 |b10

d D On average: 1 aligned
store, 2 aligned cross-
bl | bO || b3 | b2 loads, 1 add, 1 select

b3+c3 [b2+c2

bl+cl|b2+c2

bl+cl|bO+cO

U cO|lecl|[c2|c3|cd|ch|co|c7|c8]|co|cl0

16-byte boundaries

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Issues with Runtime Alighment

L Depending on the alignment, different code sequences may be generated
» When alignment is runtime, the compiler does not know which code sequence to

generate
1. when b[1] is aligned 2. when b[1] is misaligned
16-byte boundaries 16-byte boundaries
“ 1
U b0 | bl | b2 | b3 ﬂ b0 | bl

bl | bO

P2 | b3 | ..
‘ b3 ‘ b2 I

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Versioning for relative alignment

L Solution to loops with runtime alignment
» versioning for relative alignment

dWhen versioning is needed?
» for (i=0; i<100; i++) afi+n] = b[i+1+n] + c[i+1+n];
= nis runtime loop invariant
= a[i+n], b[i+1+n], c[i+1+n]: runtime alignments, but relatively aligned
" NO versioning is necessary

> for (i=0; i<100; i++) p[i] = q[i] + r[i];
" p, g, and r are pointers, alignment & relative alignment unknown
= versioning is necessary
= bet on them being relatively aligned
if ((p-gq) mod 16 == 0 && (p-r) mod 16 == 0) = SIMD version

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Qutline

U Background

L How does the compiler simdize
U Diagnostic info and tuning

U Alignment handling

U Experimental results

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Evaluation of Alignment Handling

L Measurements on a set of kernel loops
» Harmonic means of a set of 50 loops with identical characteristics

» 3 loads, 2 adds, 1 store per statement

= 3 statements per loop for multiple statement loops
= 500 iterations per loop

= Randomly generated memory alignments

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Single-statement loop with compile-time misalignment

Single-statement compile-time misalignment
(simd vs nsimd for 440d)
ELS[] Hﬂ.&"vﬁ/\r#\../ \//
3]
£ 100
=1
= |
® 50
=
o D | | | | | | | | | | | |
1T 2 3 4 5 6 T 8 9 10 11 12 13
Test cases

IBM T.J. Watson Research Center © 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

Multiple-statement loops with compile-time misalignment

Speedup factors (%)

200

150

100

|
-

-

Multiple-statement compile-time misalignment
(simd vs. nsimd for 440d)

T 2 3 4 5 6 7 8 9 10 11 12 13 14

Test cases

15

IBM T.J. Watson Research Center

© 2005 IBM Corporation

BlueGene System Software Workshop - Simdization

HPCC/StreamC Simdization performance

U Compiler simdizes all 4 stream tests, speedup factor 1.39 ~ 1.97.

HPCC/ISTREAMC benchmark performance
(simd vs nsimd for 440d)

2
o _w Simdization
0 *
= —=— Arch (440d) with
0.5 Simdization
0 : . -

STREAM Copy STREAM Scale STREAMAdd STREAM Triad

Stream Test Cases

© 2005 IBM Corporation

IBM T.J. Watson Research Center

