Large Plant Studies

Parabolic Trough Review Meeting February 14, 2006

Bruce Kelly

Nexant, Inc. A Bechtel-Affiliated Company San Francisco, California

Study Basis

- 88 MWe, 165 MWe, and 220 MWe parabolic trough plants with, and without, thermal storage
- GateCycle Rankine cycle models
- Excelergy default performance and cost models
- Excelergy solar multiple optimization
- Barstow weather data; 30 year average

Rankine Cycle Performance

Collector Field Piping

Annual Performance

250 MWe Plant HTF Flow Diagram

250 MWe Plant Capital Cost Hybrid Plant with Thermal Storage

Item	<u>\$1,000</u>	Contingency	<u>\$1,000</u>	
Land	2,671	0%	2,671	
Structures and Improvements	3,371	15%	3,877	
Collector System	513,029	5%	538,681	
Thermal Storage System	98,181	5%	103,090	49 \$/kWht
Heat Transport Fluid System	62,049	10%	68,254	
Electric Power Generation System	102,037	10%	112,240	449 \$/kWe
Master Control System	2,270	15%	2,610	
Total Field Cost	783,608	6%	831,423	and the second second
Engineering, Procurement, and Home Office	12,750	15%	14,662	
Construction Management and Field Procurement	5,005	15%	5,756	
Startup and Checkout	2,296	15%	2,640	
Contractor Fee (3 percent)	24,110	0%	24,110	
and the second	44,160	7%	47,167	and the second
Total Overnight Construction Cost	827,767	6%	878,590	3,514 \$/kWe

Observations Large Plant Availability

- Multiple Equipment Items
 - Multiple items for thermal storage tanks, oil-to-salt heat exchangers, steam generators, expansion vessels, and heat transport fluid pumps
 - Improves plant reliability
 - Decreases plant availability additional points of failure, plus additional support equipment such as valve actuators, instruments, and I/P transducers
- Large Auxiliary Loads
 - Multiple heat transport fluid pumps, each 3+ MWe
 - Daily startup must be coordinated with local utility

Observations

- Optimum plant sizes
 - Therminol without thermal storage: 250 MWe (peak Rankine cycle efficiency)
 - Therminol with thermal storage: 200 MWe (multiple equipment items limit economies of scale)
 - Inorganic without thermal storage: 350 MWe (lower m² collector field / MWe Rankine cycle; peak 100 bar Rankine cycle efficiency)
 - Inorganic with thermal storage: 250 to 300 MWe (<½ fluid volume per MWht; fewer equipment items)

Multiple Plant Concepts Separated Power Blocks

10 Percent Reduction in Levelized Energy Cost

- 55 percent to purchase of greater quantities of equipment and bulk materials (data on 80 2-unit plants; no data on 3+ unit plants)
- 1 percent to reuse of final design and procurement documents
- 25 percent to reuse of one organization for project development, and one for construction
- 20 percent to sharing of O&M administration staff among plants

Cost Reductions Not Available

• Construction schedule

- Efficiency losses from larger project requires additional coordination and supervision
- Higher demand for craft labor raises wage rates
- Some reduction in schedule likely, but with minor influence on interest during construction
- Simultaneous financing
 - Each bank limits its exposure to a financial area
 - Limited number of banks competing to provide debt for solar projects

Adjacent Power Blocks

ALT ALL ALT ALL ALL ALL ALL ALL ALL ALL	∠630 m →
	Collector field segment 300 E 87 loops of 6 collectors each (typical of 32) 300
A REAL AND A REAL AND A	
Power Block	Power Block
Power Block	Power Block
	B
	Ĭ

Adjacent Power Block Savings

- Plant availability and Rankine cycle operation
 - Steam production in winter insufficient for 4 Rankine cycles
 - Operate 1, 2, or 3 cycles, and perform maintenance on the 4th
 - Increases average turbine load and efficiency (+0.36%), and plant availability (94.0% to 97.9%)
- Operation and maintenance
 - 8 to 9% improvement in labor efficiency
 - Sharing foremen, control room operators, and plant equipment operators

Adjacent Power Block Liabilities

- Additional field piping headers increases field pressure losses by 3.45 bar
- Heat transport fluid pump power demand increases by 10.6 MWe (15 percent)
- Increases unit collector field piping and heat transport fluid pump cost by \$10.50/m² (\$88/kWe)

Cost Summary

		4 x 250 MWe plant	4 x 250 MWe plant
	<u>1 x 250 MWe</u>	Separated power blocks	Adjacent power blocks
Equivalent annual capital cost, \$1,000	111,496	404,333	413,900
Annual operation and maintenance cost, \$1,000	11,780	38,300	35,950
Annual energy production, MWhe	740,980	2,963,920	3,098,532
Levelized energy cost, \$/kWhe	0.166	0.149	0.145
Savings due to multiple plants, percent	Base	-10.2%	-12.7%