Title :NEDQNT Keywords :XEDS Computer :DEC VAX 11/730-785, DEC PDP 11/2-11/73 Operating System :VAXVMS, RT-11 Programming Language :Fortran IV Hardware Requirements :None Author(s) :Nestor J. Zaluzec Correspondence Address :Argonne Nat. Lab, Electron Microscopy Center,Bldg 212 :Materials Science Division, Argonne, Illinois 60439, Documentation: ----------------------------------------------------------------------------- All formulae used in this program can be found in: "A Beginners Guide to X-ray Analysis in an Analytical Electron Microscope: Parts 1,2,3" EMSA Bulletin Vol 14 #1 page 67 1984, Vol 14 #2 page 61 1984, Vol 15 #1 page 65 1985, Vol 15 #2 page 72 1985 additional references are included in these articles. PLEASE CHECK ALL ISSUES INDICATED AS ERRATA PAGES WERE ISSUED TO CORRECT TYPESETTING ERRORS IN EQUATIONS WHICH OCCURED DURING PRINTING. ---------------------------------------------------------------------------- The following procedure is used to compile and link NEDQNT for use on a VAX $FORTRAN ATMLVLTBL <----------- This creates the file ATMLVLTBL.OBJ $LINK ATMLVLTBL <----------- This creates the file ATMLVLTBL.SAV $RUN ATMLVLTBL <----------- This creates the file ATMLVL.TBL $FORTRAN XENRGYTBL <----------- This creates the file XENRGYTBL.OBJ $LINK XENRGYTBL <----------- This creates the file XENRGYTBL.SAV $RUN XENRGYTBL <----------- This creates the file XENRGY.TBL $FORTRAN/EXTEND NEDQNT<----------- This creates the file NEDQNT.OBJ $LINK NEDQNT,SYSLIB <----------- This creates the file NEDQNT.SAV $RUN NEDQNT <----------- This creates the file NEDQNT.OUTPUT and provides screen output ------------------------------------------------------------------------- The following procedure is used to compile and link NEDQNT on a RT-11 system: WARNING YOU WILL HAVE TO TRUNCATE ALL FILE NAME TO 6 CHARACTERS MAXIMUM TO RUN ON A RT-11 SYSTEM REMEMBER TO RENAME THE FILES AS APPROPRIATE .FORTRAN ATMLVL <----------- This creates the file ATMLVL.OBJ .LINK ATMLVL <----------- This creates the file ATMLVL.SAV .RUN ATMLVL <----------- This creates the file ATMLVL.TBL .FORTRAN XENRGY <----------- This creates the file XENRGY.OBJ .LINK XENRGY <----------- This creates the file XENRGY.SAV .RUN XENRGY <----------- This creates the file XENRGY.TBL .FORTRAN/EXTEND NEDQNT<----------- This creates the file NEDQNT.OBJ .LINK NEDQNT,SYSLIB <----------- This creates the file NEDQNT.SAV .RUN NEDQNT <----------- This creates the file NEDQNT.OUTPUT and provides screen output ------------------------------------------------------------------------ Commentary All numerical data input required by NEDQNT should be entered as floating point numbers, all SYMBOLIC input requested by NEDQNT should be entered as 2 ASCII characters. For example when specifying an element symbol for Nickel one types "NI". For elements with only one character symbol such as Oxygen you must always enter two characters thus Oxygen must be either preceeded or followed by a space thus the format is "O " or " O". X-ray line identification follows the same format i.e. "KA","KB","K "(or" K"),"LA","LB","L " (or" L") for Kalpha, Kbeta, Ktotal, Lalpha, Lbeta, Ltotal. The notation Ktotal implies you are entering an intensity given by the sum of KA+KB while Ltotal= the entire L shell emission series (LA+LB+LG+LN+LL+...) When NEDQNT request multiple input on a given line each input value must be seperated by a comma. Thus,for example, when NEDQNT requests "ENTER Symbol,Line,Intensity for element number 1" if your response is Nickel, Kalpa, 1000 counts you would type the following NI,KA,1000. The following is an example of a complete analysis performed using NEDQNT illustrating both the questions and responses. The data output should be used to verify that your version is running correctly. Default responses to questions are indicated by square brackets , this means that if you hit instead of typing a response to a question the program will assume the answer shown in the [ ]. c-------------------------------------------------------------------- ****************************** * NEDQNT * * EDS DATA ANALYSIS PROGRAM * * 8706100020-NJZ * ****************************** Data Analysis on: 11-JUN-87 at 12:15:25 Si(Li) Detector/Microscope Parameters ________________________________________ Parylene thickness(cm) = 0.0000E+00 Aluminium thickness(cm) = 0.0000E+00 Beryllium thickness(cm) = 1.0000E-03 Gold thickness(cm) = 3.0000E-06 Silicon Dead layer(cm) = 3.0000E-05 Silicon Act. layer(cm) = 3.0000E-01 X-ray Incid. Angle(deg) = 0.0000 Detector Azimuth (deg) = 90.0000 Detector Elevation(deg) = 20.0000 Detector Solid Angle(Sr) = 0.1300 FWHM of Mn K-alpha (eV) = 171.0000 Constant for Mn K-alpha = 4.3000 Incomplete Charge Const A= 0.0000 Incomplete Charge Const B= 0.0000 Enter Analysis/Specimen Identification : DEMONSTRATION OF NEDQNT FOR EMMPDL, INTENSITY TO COMPOSITION ------------------------------ SELECT Type of Calculation ------------------------------ COMPOSITION from Intensity=C INTENSITY from Composition=I Enter your Choice [C] =C Accelerating Voltage (kV)? : 120 Number of Elements to be Analyzed ? : 4 Enter Element,Line,Intensity of Peak Number 1 [A2,A2,REAL] AL,KA,100. Enter Element,Line,Intensity of Peak Number 2 [A2,A2,REAL] NI,KA,200. Enter Element,Line,Intensity of Peak Number 3 [A2,A2,REAL] CR,KA,200. Enter Element,Line,Intensity of Peak Number 4 [A2,A2,REAL] Y ,KA,100. Int Wt% At% Wt%-Ratio At%-Ratio ------------------------------------------------------- AL KA 1.000E+02 9.78 20.82 1.0000 1.0000 NI KA 2.000E+02 28.28 27.68 2.8925 1.3293 CR KA 2.000E+02 24.96 27.59 2.5535 1.3251 Y KA 1.000E+02 36.99 23.91 3.7834 1.1482 Analysis by Thin Film Approximation ------------------------------------------------------- Absorption Correction? [Y] Y Enter Specimen Thickness (nm) along Beam Direction : 100. Enter Specimen Tilt: X-Axis, Y-Axis [ZZ,ZZ] : 45,0 Enter Specimen Density (Calculate by Averaging = 0.):0 Intensity Wt% At% Wt%-Ratio At%-Ratio ------------------------------------------------------- AL KA --------------10.28 21.75 1.0000 1.0000 NI KA --------------28.14 27.36 2.7382 1.2584 CR KA --------------24.87 27.31 2.4203 1.2560 Y KA --------------36.72 23.58 3.5729 1.0843 Analysis with Absorption Correction ------------------------------------------------------- Electron Incidence Angle = 45.00 Thickness (nm) = 100.00 Abs. Pathlength (nm) = 78.02 Density = 5.36 Iterations = 1 -> Thin Film Approx = XPT<0.1 <- XPT FOR AL KA = 0.117 **Fails Thin Film Criterion** XPT for NI KA = 0.007 XPT for CR KA = 0.009 XPT for Y KA = 0.002 Change Absorption Parameters? [N]:N Tabulate Element Parameters? [Y] : Y X-ray Generation Parameters for AL KA _____________________________________ Atomic Number = 13.00 Atomic Weight = 26.98 [g/M] X-ray Line Energy = 1.49 [keV] X-ray Edge Energy = 1.56 [keV] Overvoltage = 76.943 Cross-section = 2925.21 [Barns] Fluorescence Yield = 0.038 Partition Function = 0.978 Detector Efficiency = 0.639 X-ray Generation Parameters for NI KA _____________________________________ Atomic Number = 28.00 Atomic Weight = 58.71 [g/M] X-ray Line Energy = 7.48 [keV] X-ray Edge Energy = 8.33 [keV] Overvoltage = 14.401 Cross-section = 280.07 [Barns] Fluorescence Yield = 0.432 Partition Function = 0.878 Detector Efficiency = 0.984 X-ray Generation Parameters for CR KA _____________________________________ Atomic Number = 24.00 Atomic Weight = 52.00 [g/M] X-ray Line Energy = 5.41 [keV] X-ray Edge Energy = 5.99 [keV] Overvoltage = 20.036 Cross-section = 453.26 [Barns] Fluorescence Yield = 0.273 Partition Function = 0.880 Detector Efficiency = 0.962 X-ray Generation Parameters for Y KA _____________________________________ Atomic Number = 39.00 Atomic Weight = 88.90 [g/M] X-ray Line Energy = 14.96 [keV] X-ray Edge Energy = 17.04 [keV] Overvoltage = 7.043 Cross-section = 101.91 [Barns] Fluorescence Yield = 0.711 Partition Function = 0.844 Detector Efficiency = 0.989 Tabulate Mass Abs. Coeff. [Y] : Y Calculated Mass Absorption Coefficients _______________________________________ AL KA in AL = 382.88 AL KA in NI = 4834.76 AL KA in CR = 2996.84 AL KA in Y = 1794.15 AL KA in Compound = 2803.68 NI KA in AL = 60.92 NI KA in NI = 58.81 NI KA in CR = 310.18 NI KA in Y = 156.86 NI KA in Compound = 157.54 CR KA in AL = 149.45 CR KA in NI = 141.97 CR KA in CR = 88.00 CR KA in Y = 378.65 CR KA in Compound = 216.21 Y KA in AL = 8.87 Y KA in NI = 69.55 Y KA in CR = 46.74 Y KA in Y = 23.63 Y KA in Compound = 40.78 Tabulate Detector/Microscope Parameters [Y] : Y Si(Li) Detector/Microscope Parameters ________________________________________ Parylene thickness(cm) = 0.0000E+00 Aluminium thickness(cm) = 0.0000E+00 Beryllium thickness(cm) = 1.0000E-03 Gold thickness(cm) = 3.0000E-06 Silicon Dead layer(cm) = 3.0000E-05 Silicon Act. layer(cm) = 3.0000E-01 X-ray Incid. Angle(deg) = 0.0000 Detector Azimuth (deg) = 90.0000 Detector Elevation(deg) = 20.0000 Detector Solid Angle(Sr) = 0.1300 FWHM of Mn K-alpha (eV) = 171.0000 Constant for Mn K-alpha = 4.3000 Incomplete Charge Const A= 0.0000 Incomplete Charge Const B= 0.0000 Do you wish to Enter more Data? [N]Y ------------------------------ SELECT Type of Calculation ------------------------------ COMPOSITION from Intensity=C INTENSITY from Composition=I Enter your Choice [C] =I Compositions in Wt% or At% ? [At%] AT Accelerating Voltage (kV)? : 120 Number of Elements to be Analyzed ? : 3 Enter Element,Line,Composition of Peak Number 1 [A2,A2,REAL] Y ,K ,1. Enter Element,Line,Composition of Peak Number 2 [A2,A2,REAL] BA,K ,2. Enter Element,Line,Composition of Peak Number 3 [A2,A2,REAL] CU,K ,3. At% Wt% Rel. Int. ------------------------------------------------------- Y K 16.67 16.04 15.677 BA K 33.33 49.56 7.540 CU K 50.00 34.40 76.784 Analysis by Thin Film Approximation ------------------------------------------------------- Absorption Correction? [Y] Y Enter Specimen Thickness (nm) along Beam Direction : 200 Enter Specimen Tilt: X-Axis, Y-Axis [ZZ,ZZ] : 45,0 Enter Specimen Density (Calculate by Averaging = 0.): At% Wt% Rel. Int. ------------------------------------------------------- Y K ------------------15.739 BA K ------------------ 7.584 CU K ------------------76.676 Analysis with Absorption Correction ------------------------------------------------------- Electron Incidence Angle = 45.00 Thickness (nm) = 200.00 Abs. Pathlength (nm) = 156.04 Density = 4.63 Iterations = 0 -> Thin Film Approx = XPT<0.1 <- XPT for Y K = 0.005 XPT for BA K = 0.001 XPT for CU K = 0.015 Change Absorption Parameters? [N]:Y Analysis by Thin Film Approximation ------------------------------------------------------- Absorption Correction? [Y] Y Enter Specimen Thickness (nm) along Beam Direction : 1000 Enter Specimen Tilt: X-Axis, Y-Axis [ZZ,ZZ] : 10,0 Enter Specimen Density (Calculate by Averaging = 0.): At% Wt% Rel. Int. ------------------------------------------------------- Y K ------------------16.462 BA K ------------------ 8.105 CU K ------------------75.432 Analysis with Absorption Correction ------------------------------------------------------- Electron Incidence Angle = 80.00 Thickness (nm) = 1000.00 Abs. Pathlength (nm) = 1969.62 Density = 4.63 Iterations = 0 -> Thin Film Approx = XPT<0.1 <- XPT for Y K = 0.057 XPT for BA K = 0.010 XPT FOR CU K = 0.193 **Fails Thin Film Criterion** Change Absorption Parameters? [N]:N Tabulate Element Parameters? [Y] : Y X-ray Generation Parameters for Y K _____________________________________ Atomic Number = 39.00 Atomic Weight = 88.90 [g/M] X-ray Line Energy = 14.96 [keV] X-ray Edge Energy = 17.04 [keV] Overvoltage = 7.043 Cross-section = 101.91 [Barns] Fluorescence Yield = 0.711 Partition Function = 1.000 Detector Efficiency = 0.989 X-ray Generation Parameters for BA K _____________________________________ Atomic Number = 56.00 Atomic Weight = 137.34 [g/M] X-ray Line Energy = 32.20 [keV] X-ray Edge Energy = 37.44 [keV] Overvoltage = 3.205 Cross-section = 37.75 [Barns] Fluorescence Yield = 0.900 Partition Function = 1.000 Detector Efficiency = 0.507 X-ray Generation Parameters for CU K _____________________________________ Atomic Number = 29.00 Atomic Weight = 63.54 [g/M] X-ray Line Energy = 8.05 [keV] X-ray Edge Energy = 8.98 [keV] Overvoltage = 13.365 Cross-section = 251.20 [Barns] Fluorescence Yield = 0.472 Partition Function = 1.000 Detector Efficiency = 0.986 Tabulate Mass Abs. Coeff. [Y] : Y Calculated Mass Absorption Coefficients _______________________________________ Y K in Y = 23.63 Y K in BA = 65.77 Y K in CU = 76.06 Y K in Compound = 62.55 BA K in Y = 20.98 BA K in BA = 8.36 BA K in CU = 9.52 BA K in Compound = 10.78 CU K in Y = 128.39 CU K in BA = 348.51 CU K in CU = 53.56 CU K in Compound = 211.75 Tabulate Detector/Microscope Parameters [Y] : Y Si(Li) Detector/Microscope Parameters ________________________________________ Parylene thickness(cm) = 0.0000E+00 Aluminium thickness(cm) = 0.0000E+00 Beryllium thickness(cm) = 1.0000E-03 Gold thickness(cm) = 3.0000E-06 Silicon Dead layer(cm) = 3.0000E-05 Silicon Act. layer(cm) = 3.0000E-01 X-ray Incid. Angle(deg) = 0.0000 Detector Azimuth (deg) = 90.0000 Detector Elevation(deg) = 20.0000 Detector Solid Angle(Sr) = 0.1300 FWHM of Mn K-alpha (eV) = 171.0000 Constant for Mn K-alpha = 4.3000 Incomplete Charge Const A= 0.0000 Incomplete Charge Const B= 0.0000 N STOP This ends the documentation of NEDQNT