

Fuel Cell Power System for Transportation – Gasoline Reformer May 21, 2003

A United Technologies Company

Michael Tosca **Program Manager, Automotive UTC Fuel Cells** A United Technologies Company

PRE0979

Agenda

- Technical Goals and Objectives
- Organization and Team Structure
- Background and Program Overview
- Timeline
- Testing Status and Results
- Summary

DOE Technical Goals and Objectives

"Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol-based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of \$45/kW by 2010 and \$30/kW by 2015."

 Transportation Technical Barrier D-Fuel Cell Power System benchmarking, being addressed with reformer based integrated fuel cell power system program

UTC OVERVIEW

Program Team

Develop, manufacture and sell <u>Fuel Processors</u> for the fuel cell and hydrogen fuel markets.

Background - Series 200 ATR Based FPS

- Fully integrated system
- Ambient pressure

Series 200 Data

- ~45 minute start time
- Efficiency 25% at full power (53 kW)
- Volume ~ 870L

50 KW Gasoline Fuel Cell Power Plant

50 KW Gasoline Fuel Cell Power Plant

Efficiency

PPT02566 R010910

Next Generation Series 300

- Focus on Fuel Processor System (FPS) technology, catalyst development
- Start time
- FPS volume
- Two step approach, Integrated FPS (FP1) and Integrated power plant (PP1R)

FP1

FPS

Improvements in FPS Volume

Component Volume

Catalyst Volume

CPO Based FPS

- Benefits
 - No steam generator (smaller)
 - Fuel flexibility (Low sulfur gasoline, naphtha, diesel, F-T diesel, CNG, ethanol...)
 - Reformer durability on CA RFG II / III gasoline (desulfurized by UTC FC)
 - Faster start (lower mass) than ATR
- Start Time: 10 sec CPO, ~ 5 min FPS
- Volume: 78L Packaged (150 kW H2)
- Emissions: SULEV

• H₂ Production efficiency: 75% FPS, >80% CPO

BOP Volume Reduction Opportunities

Series 300 Schedule

Summary of FP1 Performance Data vs. Target

		Target	<u>Test Data</u>
•	FPS Volume, liters	75	78
•	Heat up time, s	165	290
•	Transient (s for 20-90%)	10	200 (prelim)
•	Number of start/stops	500	55
•	Duration of operation (total hrs)	2000	150 hrs
	 Longest single run, hrs 		10 hrs
•	Range of equivalent power, kWe	10-50	24-45
•	LHV efficiency, % at rated	<u>></u> 75	TBD
	LHV efficiency, % below rated	<u>></u> 70	TBD
•	Emissions (ppmvw)		
	 Start (NMHC, CO, NOx) 	< 34, 1791, 21	TBD
	– Run (NMHC, CO, NOx, CH4)	< 22, 15, 1.6, 700	TBD
	 Transient (CO, NH4, Aromatics) 	< 100	TBD

FP1 Startup Data

FP1 CO Data

Fuel Cell Power System for Transportation – Gasoline Reformer

- Encouraging results achieved to date
- Complete testing of FP1 to document baseline
- Build FP1 into full power plant with UTC FC PEM Fuel Cell
- Test Power Plant

For More Information

Michael G. Tosca

Program Manager, Automotive

UTC Fuel Cells 195 Governor's Highway South Windsor, Connecticut 06074 (860) 727-7324 Fax: (860) 727-2750 E-mail: Mike.Tosca@UTCFuelCells.com www.utcfuelcells.com

