

IOC Application Development

Andrew Johnson APS

EPICS

Outline

- ◆ IOC development environment review
- Applications as components
- Support vs. IOC Applications
- Managing enhancements
- ◆ Revision Control CVS
- ◆ The APS Configuration Management Procedures

IOC Development Environment Review

- **♦** <top>
 - configure
 - ◆ RELEASE
 - CONFIG
 - Other build-system files
 - xxxApp
 - ◆ src
 - C sources, .dbd files
 - Db
 - .db files, templates & substitutions
 - ◆ iocBoot
 - iocxxxx
 - st.cmd
 - <installation directories>
 - dbd, db, include, bin/<arch>, lib/<arch>

Applications as Components

- The <top> structure and Makefile rules are designed to encourage modularity
 - An IOC is built up out of many components
 - ◆ Channel Access, database access, scanning software, other core libraries
 - Record, device & driver support
 - Databases
 - Sequence programs
 - etc.
 - These components do not have to be defined in the same <top> as the IOC itself
 - Most of the IOC software comes from Base
 - Other <top> areas can provide additional components
 - Other <top> areas can override (replace) components from Base
- ◆ The configure/RELEASE file determines what other <top> areas will be searched for required components, and in what order
 - Only the installation directories of other <top> areas are searched

Support Applications vs. IOC Applications

- Most sites distinguish between <top> applications that provide commonly-used components, and those that build IOCs
 - Record, Device and driver support are usually shared by many IOCs
 - Having multiple copies of source files is a recipe for disaster
 - Different engineers maintain device support than IOCs
 - The lifecycles of the two are usually very different
- Applications that provide components are 'Support apps'
 - ◆ /usr/local/iocapps/R3.14.1/support/...
- Applications that build IOCs are 'IOC apps'
 - ♦ /usr/local/iocapps/R3.14.1/ioc/...
- ◆ IOC apps use entries in configure/RELEASE to indicate which support apps they will use components from
- ◆ IOC apps may contain local record/device/driver support, but only for hardware that is *only* found in that IOC subsystem

Managing Change: Support Applications

- Support applications generally only change when a bug is fixed, or some new functionality is added
 - ◆ It should be a deliberate decision of the engineer responsible for an IOC subsystem to use a new version of a support application
 - Bug fixes can introduce new bugs
 - New functionality might include changes that break old applications
 - ◆ Therefore: once installed in use by an operational IOC application, a support application's <top> area should never be changed
 - New versions of the support app should be installed alongside the old one
 - ◆ The engineer responsible for an IOC subsystem can switch to the new version when s/he is ready for it by changing the IOC <top> configure/RELEASE file to point to the new version
 - ◆ The old version is not deleted until all agree it will never be required again
 - Disk space is cheap
 - It's easy to revert to a previous version if problems are found
 - Need some way of documenting what changed in each version of a support app, and notifying IOC engineers that a new version is available

Managing Change: IOC Applications

- ◆ IOC applications change very frequently in small ways
 - ◆ Updating alarm limits, revised sequences, adding new I/O points etc.
- ◆ It should be relatively easy to modify the files that configure an IOC (databases, subroutines, sequence programs etc.)
 - Requiring elaborate version control procedures makes it harder to respond to change requests from the scientists, so less change will happen
- However it is important to retain the history of what changes were made when and by whom
 - Being able to quickly back out of recent modifications can be essential to recovering from incorrect changes
- ◆ This is very different to the requirements of managing a support application

Source Code Revision Control – CVS

- Every site should be using a source code revision control system to record the history of the control system's source files
- ◆ At APS we use CVS for both EPICS and IOC development
 - CVS is free, flexible, easy to use, and very reliable
 - Subversion is a new system being designed to replace CVS
 - Some commercial systems require a trained administrator
- Recommended reading:
 - Book on CVS by Karl Fogel, published by Red-bean
 - ◆ The CVS-specific chapters of this book are available for free online
 - ◆ "The Cederqvist" is the CVS reference manual, and is installed along with the software. Type 'info cvs' to read it.

APS Configuration Management Procedures

- Chapter 7 of the "IOC Software Configuration Management Guide" concentrated the requirements for the two kinds of <top> into a series of procedures developed for use at APS
- ◆ A "Quick Reference" guide for these procedures gives engineers all the CVS commands they need in to use most situations
- Other labs have also adopted our procedures (SNS)
- We discourage hiding the CVS commands inside a set of scripts
 - ◆ This would prevent engineers from understanding how we use CVS and thus from being able to do unusual things
 - ◆ The command set we use is relatively simple, thus written procedures and a quick-reference card have proved to be sufficient

APS: Support Applications

- ◆ All paths depends on the relevent EPICS base release version /usr/local/iocapps/R3.13.6/support
- Within the support directory, base is just another application

```
zeus% ls /usr/local/iocapps/R3.13.6/support
allenBradley/ base/ bitBus/ directNetBug/
directNetMpf/ ipac/ motorTransform/ mpf/
mpfGpib/ mpfIp330/ mpfSerial/ share/
```

 Support subdirectorise often contain multiple revisions of a support application

```
zeus% ls /usr/local/iocapps/R3.13.6/support/mpfSerial R1-3/ R1-4/ R1-4-asd1/ R1-5/
```

- ◆ Version numbers used are those from the official maintainer, with a local modifier added where necessary (-asdn) due to:
 - Locally created bug fixes
 - Repeat builds of the same source version with an updated dependency
 - ◆ Above, mpfSerial R1-4 was built against two different versions of mpf

APS: Support Apps & CVS

- All support applications have their source kept in CVS
 - A different repository to that used for EPICS development
- We use the CVS "vendor-tracking" feature to import new source versions of externally maintained packages

```
zeus% cvs import ipac v2-3 support/ipac
```

◆ After doing an import like the above, it is very important to perform the merge step that follows

- Omitting this would leave old files un-deleted, and omit changes in files that have also been edited locally
- ♦ All versions that are to be installed for operations must be tagged zeus% cvs tar R2-3

APS: Building Operational Support Apps

 Support applications are retrieved from CVS and built by staff in the Operations group, on request from a controls group member

```
helios% cd /usr/local/iocapps/R3.13.6/support/ipac helios% cvs -r export -d R2-3 -r R2-3 support/ipac
```

- The 'cvs -r export' command does not create CVS management directories, and makes all files Read-Only.
- The application version directory name matches the CVS tag
- ◆ All build output messages are logged helios% cd R2-3; gnumake | & tee build.lst
- ◆ The support application is now available for use

APS: IOC Applications

- ◆ All paths depends on the relevent EPICS base release version /usr/local/iocapps/R3.13.6/ioc
- ◆ IOCs are grouped by functionality into different <top> areas

```
zeus% ls /usr/local/iocapps/R3.13.6/ioc
booster/ fb/ fe/    id/    linac/ mcr/ par/ rf/
s35misc/ sr/ srbpm/ srtune/ video/
```

- Each IOC area comprises a line of development of a single <top>
 - IOC development is managed along CVS branches

```
zeus% ls /usr/local/iocapps/R3.13.6/ioc/sr
B2/ B3/
```

- These 'Bn' directories are CVS working directories
- Major application modifications are made on a new branch
- ◆ A new branch is also created if an update cannot be used for all of the IOCs built within a single <top> area at the same time

IOC Branch Management

APS: IOC Applications & CVS

 Developers check out the relevent branch of an IOC <top> that they need to work on from CVS

```
zeus% cd ~/iocapps/R3.13.6/ioc
zeus% cvs checkout -d sr -r B2 ioc/sr
   This creates the directory tree sr with the latest files from branch B2
zeus% cd sr
   Make, build and test application changes as required
```

- ◆ IOCs can be booted from the developers' area if desired for tests
- ◆ The changes are checked in, and the operations group informed zeus% cvs commit -m 'fixed vacuum alarm levels'
 - CVS tags are not required for application changes along a branch, but may be used if desired to mark the start or end of particular phases of work
- See the documentation for instructions on creating new branches

APS: Building Operational IOC Apps

Operations staff perform a CVS update in the operations area

```
helios% cd /usr/local/iocapps/R3.13.6/ioc/sr/B2 helios% cvs update
```

Check that the files modified correspond to those the developer said they changed helios% gnumake rebuild |& tee build.lst

- ◆ The updated IOC area is now ready for reboot & commissioning from the operations tree
- ◆ To revert to a previous version, cvs update can be given a date/time to update to, or use tags if applied by the developers