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Localization in Disordered Two-Dimensional Systems
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The question of localization is examined by employing the localization function method
in the limit of infinitesimal disorder for a square-lattice tight-binding model. Within
numerical accuracy we find that the localization function equals to 1 within the band;
this strongly indicates that all eigenstates become localized for nonzero disorder.

PACS numbers: 71.55.Ju

Recently there has been considerable discus-
sion about the existence or nonexistence of ex-
tended electronic states in two-dimensional (2D)
disordered systems.®

The purpose of this paper is twofold. First we
present two theorems concerning the localization
function method,? L(E), which is based on Ander-
son’s original approach®*; these theorems are 1

L(E)= hmlz VY WY E) |V = hm]Z) vi*G, 9G, *"1ee G, 0-"1'

N>

N>

where V is the off-diagonal matrix element Vi
of the tight-binding Hamiltonian

H=Z>€il i)<i|+§}'Vijli>(jl ’

and

Gnio."l,.“(z)=<nii(z—H0'”1“”)-l‘ni>; (2)

the superscripts 0, #,,... denote that ¢,=¢, = +--
Finally the summatlon over j in Eq (1) is
over all sets of sites {n,, n,, ..., n,} which form
self-avoiding paths starting and ending at site 0.

The calculation of ¢, =G, %+ G, ® "2 "8-1 s
greatly facilitated by two theorems for t ‘“(z)
which are stated below (the proofs will be pre-
sented elsewhere): Theorem 1 states that

t,"(2)=I1(z = £,)/11(z - E),

=00,

(3)

where E,7 are the eigenvalues of H%™i-++» "y and
E, are the eigenvalues of H% the proof is based
on the fact that the poles of each G in the ¢;%)(2)
are canceled by the zeros of the previous G. The-
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very useful because they allow the elimination of
some additional approximations associated with
the L(E) method. Second, we report results for
the L(E) function in a 2D systém with infinitesi-
mal disorder. The localization function L(E)
which is less (more) than one in the regions of
the spectrum consisting of localized (propagating)
eigenstates is given by

.nN-lll/N’ (1)

| orem 2 states that
t;¥(2)=det{G,; ¥} /Gy, (4)
where the elements of the matrix G;", G,,, are

the Green’s functions G,,=(n|(z - H)™'|m), and
the sites n, m belong to the self-avoiding path j.
Equation (4) is valid for both open and closed self-
avoiding paths. Theorem 2 is proved either by in-
duction or by starting from Theorem 1. Up to
now ¢, (z) was approximated by (Gnlo)” in order
to avoid the very tedious calculations of Green’s
functions with many sites excluded. Equation (4),
which expresses t,*’ in terms of Green’s func-
tions with no sites excluded, greatly simplifies
the calculation of ¢; ) and makes the approxima-
tion ¢, =(G, °)¥ unnecessary. In the present
case of infinitesimal disorder, G,, are the peri-
odic Green’s functions, which can be calculated
very accurately; thus we avoid here another usu-
al source of approximation, namely that of re-
placing G,, by an appropriate average (e.g., the
coherent-potential —approximation average).
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There is still one point which makes the calcula-
tion of L(E) very difficult: The Green’s functions
for an infinite system have to be evaluated at z
=E+1is as s =0, while the localization function
L(E) must be obtained at a real energy E. One
can easily show from Eq. (3) that

lim| ¢, %(E+is)|=|t,¥(E)|.

s>0
Thus our method allows a calculation of the mag-
nitude of ¢, %’(E) but not of its sign. The latter is
needed because of the summation in Eq. (1). To
temporarily avoid this difficulty we calculated
first the quantity L*(E):

LX(E) = lim [ v £, % (B[] (5)
N>w j
Clearly L*(E) = L(E). The equality holds for E at
the band edge (or outside it) as can be seen from
Eqg. (3). The assumption of strong correlations?
puts L*(E)= L(E) everywhere. We shall reex-
amine later this assumption. To calculate
lim, __[23;1¢,%E)|]* ¥ we have followed three
equivalent yet distinct approaches in order to
check the accuracy of our extrapolation to N =,
First Method. —We explicitly calculated

det{G,"’} for all self-avoiding closed paths (poly-
gons) up to order N=14. The calculations are
facilitated because many different paths give (be-
cause of symmetry considerations) the same val-
ue for det{G,™}. E.g., to obtain the contribu-
tion of the 16 464 self-avoiding polygons of order
N =14 one needs to evaluate only 86 distinct deter-
minants of order 14X 14. Having Y| ¢, ¥ (E)|,
we define

(L) = VDIt @)/ DIt 2 B2

It turns out that (L*), vs 1/N is almost a straight
line (except at £=0); thus L*=1im, __(L*), is ob-
tained rather accurately by linear extrapolation,

Second Method.—Taking into account that (M,)"¥
—~K as N ==, where M), is the total number of
self-avoiding polygons and K is the connectivity
of the lattice (K =2.639 for the square lattice), we
can write

LX(E)=KV lim (| t; % (E)[)/Y, (6)
N>

the brackets indicate the average over all j of or-
der N. We have calculated as in the previous
method the quantity (| ¢, WYE)|)¥ up to N=14.
We found that it becomes weakly dependent on N
as N increases (except at E=0); thus the N -
limit can be obtained rather accurately.

Thivd Method.—We have estimated (|{¥Y(E)|)/¥

in Eq. (6) from a sample of M randomly gener-
ated open self-avoiding paths of order N (N up to
100; M=10-100). Again the results are almost
independent of N for large N and one can easily
extrapolate to N=oo,

The Green’s functions G, for the square lattice
were calculated by some well-known recursion
relations.® At the center and the edges of the
band, special care is needed because of the sin-
gularities of G,,. Also for |E|z4V the recur-
sion relations develop numerical instabilities
which can be avoided by using asymptotic expan-
sions for G, (for large |n —m|). Details will be
presented elsewhere.

In Fig. 1 we present our results for L*(E) vs E
according to the three methods above. A test of
the accuracy of our calculation is the behavior of
L*(E) for E =4V, where L*(E)= L(E); L(E) must
approach monotonically 1 as E —-4V*. Figure 1
shows that this is actually the case within a 1%
numerical uncertainty. This is the first time
that such accuracy has been obtained without the
use of adjustable parameters. There is a pre-
cipitous drop of L*(E) at E=0 (from 2.33 +0.05
at E/2v=0.005 to 1,4+0.4 at E=0). Furthermore
the estimated error at E=0 is more than an or-
der of magnitude larger than the estimated er-
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FIG. 1. The localization function L(E) (solid line)
and its upper limit L*(E) (dashed line) vs E for a
square lattice in the limit of infinitesimal disorder.

At the center (E = 0) and the edges (E = + 4V) of the
band, L*(E)=L(E)=1. The points (solid square, open
circle, and solid circle) represent results for L*(E)
according to three different methods (see text) and

the crosses are results for L(E) from finite systems;
bars indicate estimated errors.
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rors at other energies. Finally, according to
arguments to be presented below, the actual val-
ue of L(E) at E=0is 1.

The precipitous drop of L*(E) at E=0 has two
causes: First, for a lot of paths j (closed or
open), ¢,%)0) was exactly zero. As a matter of
fact, for large N it was difficult to find a path for
which ¢,¥0) was not zero. Second, even when
| £,%%0)| was different from zero, it was substan-
tially less than the value of the same diagram at,
e.g., E/2v=0.005.

We found that the vanishing of ;¥)0) is asso-
ciated with at least one of the eigenvalues E’
being zero [see Eq. (3)]; these zero eigenvalues
correspond to localized chainlike eigenfunctions
which terminate at appropriate points of the path
j as discussed by Kirkpatrick and Eggarter® and
Yoshino and Okazaki.” Thus one sees that the
E =0 Kirkpatrick-Eggarter localization, which is
associated with a special type of disorder,® is re-
lated to the localization of the eigenfunctions at
E =0 for any kind of disorder.

The reduced values of the nonzero tj“(O) can be
explained by the following argument: The Green’s
function G, (E +1s)~ |n - m|"/? when |n — m|>R(E)
and E inside the band; for |n-m|=<R(E), G,, is
of the same order of magnitude as G,,. The
length R(E) ~« as E —=0; thus G,,(0)/G,,(0) re-
mains appreciable for any distance |z -m|. This
property (which implies strong multiple-scatter-
ing effects) cause both a very slow convergence
as N increases [which explains the large esti-
mated errors of L*(0)] and a reduction of the val-
ue of det{G;™}.

We found out that all ¢;%’(is) [apart from a
common factor G,,(is)] are real and for a given
N all have the same sign; thus L(0)=1lim,_  L(is)
=lim,,  L*(is). But the localization function L(is)
is less than one for s # 0 because the renormali-
zation perturbation expansion® always converges
outside the band.? Hence L(0) <1. Actually the
equality sign holds because as the disorder ap-
proaches zero the eigenstates at £ =0 must tend
to extended Bloch states.

What is happening at other energies? The
real question is whether or not the signs of each
t;®)(E) produce enough cancellations as to re-
duce L(E) from its upper-limit value L*(E) to 1.
To examine this question we considered finite
systems (25X 25, 51 X 51, 101 x 101 sites) with no
disorder and rigid boundary conditions for which
we calculated explicitly the Green’s functions
G, at real energies E. Thus, by employing Eq.
(4), we were able to obtain ¢(F) for all self-
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avoiding polygons up to order 14. Using the first
or the second method, we calculated both L*(E)
and L(E). Because we are dealing with real ener-
gies, the errors associated with the N -« extrap-
olation were significantly larger than before for
most of the energies inside the band (see Fig. 1).
The values of L* (not shown in Fig. 1) were con-
sistent with the previous ones. L(E) was found
considerably less than L*(E) and, within numeri-
cal uncertainties, equal to one for E within the
band. As the disorder increases from zero, one
expects that L(E)<1 for all E (implying that all
eigenstates are localized); L*(E) would also de-
crease except for E = 0 where the sharp peak
would tend to disappear. On the basis of numeri-
cal work in finite samples,® we conjecture that
L*(E) <1 implies strong localization while L(E)
<1< L*(E) implies very weak localization which
is not revealed in the numerical work. It is pos-
sible that L(E)< L*(E) for a d-dimensional sys-
tem when d <2, while for d>2 L(E)~L*(E). Let
us point out that for d <2 (and only for d <2) a
closed self-avoiding path separates the space into
two disjoint regions, one inside and one outside.
As a result of this topological property the eigen-
values E 7 of H%"1»-"y (see Theorem 1) can be
separated into two groups: The first group is as-
sociated with eigenfunctions outside the closed
path (scattering-type eigenfunctions) while the
second group is associated with the eigenstates
trapped inside the closed path. We suspect that
this second weakly correlated group, which is
absent for d>2, may be responsible for strong
sign cancellation in [23,¢,"’| and thus may be
responsible for the localization in all disordered
d -dimensional systems (with d <2).

In conclusion, we have significantly improved
the L(E) method, and we have demonstrated that
for 2D lattices the eigenstates become localized
for any nonzero disorder.

This work was partly supported by a University
of Virginia computing grant.
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Hybrid Quantum Oscillations in a Surface Space-Charge Layer

R. E. Doezema, M. Nealon, and S. Whitmore
Department of Physics and Astronomy, University of Oklahoma, Novman, Oklahoma 73019
(Received 18 August 1980) :

The transconductance of an accumulation layer on z-type InAs is studied in a magnetic
field H parallel to the layer. Structures are observed, nonperiodic in 1/H, corresponding
to mixed electric and magnetic subbands. The effect promises a simple, sensitive method
of probing the shape of the self-consistent potential in surface space-charge layers with

multiply occupied subbands.

PACS numbers: 73.40.Qv, 85.30.Tv

We report the observation of quantum oscilla-
tions in a surface space-charge layer for the
crossed-field geometry. In this geometry the
magnetic field His applied parallel to the space-
charge layer, in contrast to the usual configura-
tion in which both electric and magnetic fields
are normal to the layer. For the usual configura-
tion, electric and magnetic quantization is de-
coupled, leading to complete quantization of the
two-dimensional electron gas.! For the crossed-
field geometry, electric and magnetic quantiza-
tion is mixed, giving hybrid subbands whose dis-
persion depends on the relative strengths of elec-
tric and magnetic fields.? The number of observ-
able oscillations in our experiment corresponds
to the number of electric subbands occupied at
H=0; thus a space-charge layer with multiply
filled subbands is best suited for studying the ef-
fect.

The accumulation layer on low-concentration -
type InAs is such a multiply filled system.>* Be-
cause of the small (isotropic) effective mass (m*
=0.024m,)° the space-charge layer is ~100 A
thick in the usual density range (~10'2 cm™2), In
relatively modest magnetic fields (=10 T), the
cyclotron radius achieves a comparable value,
so that a perturbation approach® is not expected
to be applicable.

Effects of a parallel magnetic field on a space-
charge layer have been observed in other experi-

© 1980 The American Physical Society

ments. In a fixed, high-density accumulation lay-
er on n-type InAs, Tsui” used a tunneling techni-
que to observe the decrease of the binding energy
of the (single) bound state with increasing mag-
netic field. In this high-density case (i.e., strong
electric field) perturbation theory® predicted the
observed H? dependence. Beinvogl, Kamgar, and
Koch® observed the (plasma-shifted) intersubband
resonant frequency to increase with magnetic
field for an accumulation layer on (100) Si. Their
result, expected qualitatively from perturbation
theory,® was analyzed quantitatively by Ando.?®
Although the effect of H on the occupied ground-
state subband can be treated as a small perturba-
tion, the excited (unoccupied) subbands are sev-
erely distorted by the magnetic field. In PbTe
this strong-field condition is easily realized for
all subbands, and recently inversion-layer
cyclotron resonance was shown to behave three
dimensionally in a parallel magnetic field. The
present experiment is capable of describing fea-
tures of the hybrid subbands not directly accessi-
ble by these other methods.

Our sample is a (100) epitaxial layer of InAs
(n =2x10* cm™®) overlaid with a SiO, insulating
layer and a gate electrode. Further details may-
be found elsewhere.®* We monitor the low-tem-
perature (4.2 K) transconductance do/dV of the
induced accumulation layer as a function of V,
and H. (o is the channel conductivity and Ve is
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