A POLAR ORBIT FOR THE MARS GLOBAL NETWORK MISSION

Philip Knock
Jet Propulsion Laboratory
Presented to the Mars Global Network Mission Workshop Jet Propulsion Laboratory, Pasadena Ca.
February 6-7, 1990

INTRODUCTION

The purpose of the Global Network Mission (GNM) is to deploy simple lander on the Martian surface in late 1998. The objective is to create a globally distributed network of ground stations which will collect environmental data, perhaps for as long as several years. The GNM presents unique mission design challenges, which are addressed by the following essay.

The GNM mission concept calls for two carrier spacecraft, each equipped with a number of simple lenders. Some of the landers may be deployed from approach, either to reduce carrier mass prior to orbit insertion, or to reach latitudes not available from the carrier orbit. The remaining landes are deployed from orbit.

One configuration for the Global Network Mission was proposed in a report from the Exploration Precursors Task Team to the Office of Space Science and Applications. ${ }^{1}$ This formed the basis of a previous orbit design for the GNM. ${ }^{2}$ The following analysis uses this mission scenario as a point of reference, but results from the current study are generally applicable to a wide range of GNM mission variants.

FACTORS INFLUENCING MISSION DESIGN

The need to minimize the orbit insertion $\Delta \mathrm{V}$ of the carrier implies that the carrier orbit be as elliptical as possible, and have a low periapse altitude. Elliptical orbits also
lead to lower de-orbit ΔV 's than circular orbits.

A number of other requirements act in concert to lay severe constraints on the orbit design for this mission. Among them is the need to distribute the landing sites globally. The overall goals of the mission, as well as guidance from the Mars Science Working Group, indicate a need to emplace landers near the Martian poles. This calls for an orbit capable of reaching latitudes of at least $\pm 80^{\circ}$. Coupled with this requirement is the need for good lighting angles at impact, to support descent imaging. Ideally, the sun elevations at impact would never exceed 30° or fall below 15°. An acceptable range of solar elevations is 10° to $45^{\circ} .1^{\text {. }}$ The lighting conditions, coupled with the requirement for extensive latitudinal dispersal, constitute the major orbit design drivers.

In most cases, the lander is restricted to a given range of entry flight path angles. This has particular significance in the case of landers deployed from approach. The circumstances of the interplanetary trajectory, in particular the declination of the arrival asymptote, produce a minor circle of impact points which satisfy the desired entry angle. This leads to severe restrictions on the maximum north and south latitudes available to an approach lander. For example, a high negative approach declination produces rather low maximum northern latitudes at the desired entry angle. The only way to achieve impact at the North Pole in this case is to enter at prohibitively steep entry angles. ${ }^{2}$ In addition, approach-deployed landers must accept whatever lighting conditions are available at their impact latitude.

ASSUMPTIONS

The current analysis uses the nominal GNM mission plan described in Reference 2. This specifies a launch period from December 6, 1998 to December 26, 1998, and an arrival period from September 22, 1999 to October 9,1999 . Entry interface was defined at an altitude of 125 km , and the nominal entry flight path angle at this point was taken to be -20°. The impact point was determined by propagating the free space trajectory from entry interface to an altitude of 10 km . Impact was assumed to occur directly beneath this point. (Atmospheric deceleration was not specifically addressed. The effects of drag would change the impact point by only a very few degrees along-track.) As mentioned earlier, this was only a reference scenario. The results are applicable to a range of entry angles and mission options.

The nominal deployment scenario described in Reference 2 was retained for this study. Figure 1 illustrates the deployment technique, in which the lander's de-orbit ΔV is applied tangential to the carrier's motion, and parallel to the entry velocity vector. This assures zero angle of attack at entry. The advantage of this mode of deployment is that no attitude sensors or attitude adjustments are required after deployment. All orbit-deployed landers are deployed from a fixed point in the carrier's orbit, and always impact at a fixed true anomaly with respect to the carrier's periapse location. As the carrier periapse moves due to nodal and apsidal rotation, the impact point moves along the surface of the target planet. The orbit must be chosen such that the nodal and apsidal motions place the impact points at favorable lighting conditions. Note that the maximum latitude available from orbit is equal to the orbital inclination. Longitudinal placement is achieved by making very small changes in the orbital period, causing the ground track to "walk" in longitude.

PREVIOUS ORBIT DESIGN

The nominal orbit design described in Reference 2 involves one carrier in a 45° inclined orbit, and a second carrier in a complementary, 135° retrograde orbit. Both carriers are in $1 / 5$ sol site-synchronous orbits with periapse altitudes of 200 km . Figure 2 shows a plot of sun elevation at impact vs. latitude of impact for the 45° orbit. As shown, immediately after insertion, the carrier can deploy landers at favorable sun elevation angles. In this orbit, there is a single sweep of deployment opportunities from 45 N to $45^{\circ} \mathrm{S}$. The retrograde, 135° orbiter must wait between 70 and 150 days after arrival before deploying its landers. The retrograde orbiter sweeps once from $45^{\circ} \mathrm{S}$ to 45 N .

The advantage of the nominal orbit design is that some landers may be deployed immediately after arrival. This orbit does not allow easy attainment of high latitudes, however. In order to reach the North Pole, a lander would have to be deployed on approach, and enter the atmosphere at very steep entry angles (-43.9° to $\left.-49.8^{\circ}\right)^{2} \mathrm{~A}$ lander placed at the North Pole would also enter in darkness. Another factor to consider is the lack of deployment redundancy; there is only one deployment sweep from 45 N to $45^{\circ} \mathrm{S}$. Favorable lighting angles do not occur again for several hundred days, and only for a narrow range of latitudes.

POLAR ORBIT

Figure 3 shows a plot of solar elevation at impact vs. latitude of impact for a carrier in a $1 / 5$ sol orbit, with an inclination of exactly 90° and a periapse altitude of 275 km . The graph applies to a direct, periapse insertion from a northern approach at the start of the arrival period. Initially, the impact point is at the North Pole, which is in darkness. After waiting approximately 160 days, however, the impact point has moved to the Southern Hemisphere, and the lighting angles have moved into the acceptable range. Shortly thereafter, the impact point sweeps from the South Pole to the North Pole, remaining at good lighting angles. After the North Pole is reached, the impact points move south again, staying at reasonable lighting conditions until a latitude of $55^{\circ} \mathrm{S}$ is attained.

This situation occurs, in part, because the impact point moves from the South Pole to the North Pole as the Sun is moving from the Southern Hemisphere to the Northern Hemisphere. Figures 4 and 5 illustrate how the impact point follows the Sun. In addition, it is necessary that the orbit plane be placed properly with respect to the Sun, and that the rate of periapse advance be chosen to complement both the nodal movement with respect to the Sun, and the rate of change in solar declination. The $1 / 5$ sol orbit is the most elliptical site-synchronous orbit with the required characteristics, and the 275 km periapse altitude provides the best lighting conditions for both the south-north sweep and the sweep from the North Pole to $55^{\circ} \mathrm{S}$. The situation is similar at the end of the arrival period, although a small periapse rotation at insertion is required.

The advantages of such an orbit are evident. It allows landers to be placed anywhere on the Martian surface at reasonable lighting conditions and at the desired entry angle. A measure of redundancy is afforded by the second sweep from 90 N to $55^{\circ} \mathrm{S}$. (This sweep could be used as backup in the event of failed landings on the first sweep.) The polar landers would be deployed from orbit instead of approach, and would enter at the nominal entry angle. The option exists to deploy all the landers from orbit, thereby eliminating the need for two deployment techniques, and avoiding the larger landing dispersion of approach-deployed landers.

The major disadvantage of this orbit design is the 160 day wait time required before lander deployment. This interval is largely unavoidable, as the orbit only slowly drifts into the required solar geometry. It should be noted, however, that for the 1998 opportunity, the wait interval allows the dust storm season to pass before first
deployment. The time could be used for other purposes as well, such as aeronomy measurements. The carrier could be placed in an orbit with a lower periapse, and then elevated to the 275 km altitude for a small investment in $\Delta \mathrm{V}$.

CONCLUSIONS

A $1 / 5 \mathrm{sol}$, polar orbit with a periapse altitude of 275 km offers the best circumstances for orbital deployment of the Global Network Mission landers. It allows easy polar access at nominal entry angles, and global dispersal of landing sites at lighting angles suitable for descent imaging. The polar orbit allows the option of deploying all the landers from orbit. A wait interval of 160 days after arrival is required before deployment can commence.

REFERENCES

1. Atkins, K., and Muirhead, B., "Mission Concept and Development for Mars Global Network Mission", Sept. 15, 1989, report from the Exploration Precursors Task Team (JPL) to the Office of Space Science and Applications.
2. Knocke, P., "Global Network Mission Analysis", NASA Jet Propulsion Laboratory Interoffice Memorandum 312/89.2-1581, December 15, 1989.
LANDER DEPLOYMENT FROM ORBIT
De-orbit $\triangle \mathrm{V}$ applied tangentially and parallel to entry
velocity vector.
Entry Interface: 125 km altitude, -20° entry flight path angle

POLAR ORBIT: SUN ELEVATION VS. IMPACT LATITUDE

Figure 3
POLAR ORBIT: $\underset{(2000 / 04 / 14)}{200 \text { DAYS AFTER ARRIVAL }}$
ENTRY: $125 \mathrm{~km},-20^{\circ}, 4.2 \mathrm{~km} / \mathrm{s}$

Figure 4
POLAR ORBIT: 300 DAYS AFTER ARRIVAL

Figure 5

Session B, Submittal No. 2

Arden Albee
California Institute of Technology
Jim Burke and Robert Mostert
Jet Propulsion Laboratory/California Institute of Technology
LANDERS
GLOBAL NETWORK SURFACE LA
SYSTEMS DESIGN OPTIONS
ARDEN ALBEE BURKE
T MOSTERT
JPL
MARS
SYSTEM CONSIDERATIONS FOR MARS NETWORK SURFACE LANDERS

APPROACH:

- ASSESS IMPACT OF EACH POSSIBLE GOAL ON SYSTEM DESIGN
- SKETCH SYSTEM CONCEPTS COMPATIBLE WITH DIFFERENT SETS OF GOALS:
ALTERNATIVE OR DUAL DESIGNS
(a) Raises question of doing everything with one design
(b) Two simple designs vs. one complex design
- DEFINE DEVELOPMENTS NEEDED FOR SYSTEM OPTIONS CONSIDERED PROMISING
DESIRED RESULT:
- BETTER KNOWLEDGE OF GOALS \rightarrow DESIGN POSSIBILITIES;
\therefore BETTER KNOWLEDGE OF DEVELOPMENT PRIORITIES
\therefore BETTER KNOWLEDGE OF DEVELOPMENT PRIORITIES
GOAL OBJECTIVES, SETS AND CONSTRAINTS
OBJECTIVES GROUP INTO THREE SETS:
A) SIMPLEST SURFACE LANDER:
LONG-LIFE METEOROLOGY
LONG-LIFE SEISMOLOGY
SURFACE CHEMISTRY
B) ADDITION TO SIMPLE LANDER (SUBSET OF (A)):
Lighting conditions; high data rate or relies on impact survival

C) OTHER ADDITIONS TO SIMPLE LANDER (W/WO IMAGING):

Small data rate and quantity; long-life goal; power and thermal considerations;
requires sample or instrument to be
subsurface; favors penetrators
SOME GOAL IMPLICATIONS
High entry angles; more TPS and aerodeceleration demand.

$$
\begin{aligned}
& \text { Favors singly launched landers from } \mathrm{S} / \mathrm{C} \text {; } \\
& \text { favors smaller, simpler landers. } \\
& \text { Size, mass, volume, power, thermal, lifetime, } \\
& \text { data compression. }
\end{aligned}
$$

GOALS GROUP INTO THREE CLASSES
(1) WANT TO BE BELOW SURFACE (M's), CAN BE SHORT-LIVED,
SMALL DATA RATE AND QUANTITY
(EXAMPLES: CHEMISTRY, VOLATILES DETECTION)
(2) MUST BE LONG-LIVED (~YRS), CAN BE AT SURFACE,
SMALL DATA RATE, LARGE TOTAL QUANTITY
(EXAMPLES: SEISMOLOGY, METEOROLOGY)
(3) MORE COMPLEX, CAN BE SHORT-LIVED, EITHER HIGH DATA
RATE OR STORE/READOUT, MODEST TOTAL QUANTITY
(EXAMPLES: DESCENT IMAGING, POST-LANDING IMAGES)
SYSTEM OPTIONS

- VIKING/SURVEYOR-TYPE LARGE SOFT LANDERS - RULED OUT BASED ON SIZE ESIRED FOR MISSION N)
- SOVIET-TYPE "ROUGH" LANDERS - TOUCHDOWN PROXIMITY RETRO
o DESCENT IMAGERS DESIGNED TO SURVIVE AND SEND IMAGE(S) AFTER LANDING
o RUGGED LANDERS (HIGH "G") = PENETRATORS
\Rightarrow NETWORK MISSION CONCEPT REQUIRES MANY SITES
POST-LANDING SURVIVAL (IT CAN BE BRIEF)
DESIRABLE AT THE NETWORK SITES
\therefore CHOICE IS NARROWED TO "HIGH G (PENETRATOR AFTERBODY)" VS
"MODERATE G" LANDERS WHERE "HI" $>10^{3}$; "MODERATE" 10 's OF G's
PROS AND CONS OF ALTERNATIVE LANDER TECHNIQUES
CONS
QUARANTINE
MORE TPS, AERODECEL.
DISPERSAL IN PAIRS,
SETS
COMPLICATES LANDERS
LARGER ERR. ELLIPSES
MAY LIMIT ANGLE TOL.
DIFFICULT
NEEDS R \& D
MAY AFFECT PACKING
MAY AFFECT PACKING
WITHSTANDS 100'S G's SOME MAY FAIL
LONG-LIFE POWER,
THERMAL
ADDS MASS TO SYSTEM PROS GOOD TARGETING;
SIMPLIFIES LANDERS;
USES EXISTING BUS SUBSYSTEMS
QUARANTINE; SIMPLIFIES SEQ.
EXPANDS REACHABLE LATITUDES
SIMPLIFIES LANDERS
MORE SITES REACHABLE MORE DISPERSION

SIMPLE

MORE ANGLE TOLERANCE
MAY ALLOW GOOD IMAGING
COMBINES FUNCTIONS
WELL TESTED
SIMPLEST
PACKING
WELL USED

0	BUS DEFLECTION
0	LANDER DEFLECTION
0	NARROW ENTRY ANGLE TOLERANCE
0	WIDE ANGLE TOLERANCE
0	STACKED ON AEROSHELL
0	TPS FOR EACH LANDER
0	LIFTING ENTRY
0	PARACHUTES
0	BALLUTES
0	AUTOGYROS
0	AEROSHELL/(L/D) SHAPES
0	IMPACT LIMITER
0	ROUGH OR HARD LANDERS
0	PENETRATORS
	TERMINAL ROCKETS

BUT HIGH-RATE TELEMETRY AND/OR STORAGE, STORAGE RELIES ON IMPACT SURVIVAL

RELIES ON IMPACT SURVIVAL

PRIMARY IMPLICATION IS ON LANDER
POWER/THERMAL SYSTEMS

FAVORS NOT ENTERING IN PAIRS OR SETS
AS A RESULT OF BEING STACKED ON
AEROSHELLS
FAVORS SMALLER, SIMPLER LANDERS
FAVORS PENETRATORS, EITHER DROPPING
IN OR DRIVEN IN
SIZE, MASS, VOLUME, POWER, THERMAL,
LIFETIME, DATA COMPRESSION
SYSTEMS DESIGN TREE

90 DAY STUDY RESULTS

OVERALL DISADVANTAGE: MISSION HAS ONLY 6 PAIRS OF LANDERS; EACH PAIR TO BE DELIVERED TO THE SAME REGION ${ }^{2 / 690}$
SAIC 1970'S RESULTS

AMES 1977 RESULTS

1) S/G ORBIT TRAJECTORY FOR RELEASING LANDERS ON APPAOACH \quad FROM ORBIT

InITIAL LANDER TRAJECTORY CONTROL

BUS DEFLECTED \quad LANDER DEFLECTED

VIKING RESULTS

MARS 3 RESULTS

COMPLICATES LANDERS vs． QUARANTINE，SIMPLIFIES SEQUENCE RANGE OF SITES REACHABLE NOII甘ปヨาヨ〇ヨロ ヨษヨHdSOWI甘 MOา

8）
（s
12
3）
4）

Session B, Submittal No. 3

Alan L. Friedlander
Science Applications International Corporation

