Marsv for Plan 9

Kenji Okamoto !, Yoshitatsu Suzuki 2

Coll. Integrated Arts € Sciences,
Osaka Prefecture Univ.,
Sakai, Osaka, 599-8531, Japan

After GUI was spread, we have to deal with
huge sized programs written for investigation
of planetary data. There are many
commercial based utilities to make those
smaller such that GUI libraries or more
abstracted forms aslanguage based IDL etc..
Those utilities are, unfortunately, suffered
from very often updates, which makes us
annoying sometime. We searched many
operating systems and found Plan 9 from
Bell Labs, which was newly designed from
scrach with the aim of replacing Unix in a
future, and has a very compact graphics
system. Plan 9 is now open to researcheres
without fee. Based on that Plan 9 OS, we
expected to make a smaller sized and well
featured GUI program for our investigation
of Mars MOLA and image data, and got such
with total C source codes of about 10,300
lines. We call the program as marsv.

Marsv has no icon, and only has top menu
bar where some menues are shown as their
default values. Each menu item has a list of
other similer menu items behind it, which is
shown by mouse button3. Mouse button2
executes the item shown in the menu bar, etc,
which is similer to pulldown menu of X, but
not same. Marsv displays each window as a
stratified and tiled window as shown in the
figure. The size of individual window can be
changed by mouse at anytime and anywhere
as if it has window manager like such in X.
Marsv reads many kinds of PDS formatted
planetary images such as Viking, Voyager,

lokamoto@granite.cias.osakafu-u.ac.jp
2now at Itochu Techno-Science Co., Tokyo,
yoshitatsu.suzukiQ@ctc-g.co.jp

Mars Global surveyer, Megellan etc. Mars
MOLA grid data also can be read, and are
laid over the corresponding Viking cube
image processed by ISIS from USGS, and we
can make contour map on the image. We can
also measure interactively the height,
longitude and latitude of individual mouse
point in the image by ”altitude” menu
behind the ”contour” top menu. When
MOLA data alone are read, by specifying the
wanted area by mouse, those height data are
converted to brightness, and marsv shows
them as an image, where bottonl reads the
height, longitude and latitude of the point.
Annotations can be attached by ”pen” menu,
and”pallet” menu changes the color of the
couter map etc.. Marsv can also save the
processed image to a postscript or Plan 9’s
PIC format file.

Marsv is designed for concurrent parallel
programming using the thread(2) library of
Plan 9, which means it has full scalability.
Plan 9 has two different level graphic
libraries of draw(2) and control(2), where the
former is the lowest level graphic library, and
may correspond to X toolkit library judged
from its range of functionarity, and the latter
is a higher level library which deals with
some widget sets such as menu, button, text
input etc. We used somewhat revised version
of this control(2), because we needed 3
button functions for menu bar.

When marsv is running, we have three
processes, one of which for watching the
events (channel), and the other one accepting
keyboard or mouse input, and the last
contains threadmain() function of marsv
program and many other threads called from
the threadmain(). The last process is
composed of many threads, each of which is
called as a "task” or ’thread’, and will be
called when appropriate event has detected
or more precisely any appropriate channel
has the message to that thread. The event



will be passed through channel, whic is a
buffered or unbuffered queue for a fixed-size
messages. In our case, one process has many
tasks for real processing of image data, which
can run only as one exclusive task in the
process in a time interval we are concerning.
In other words, only one task can run in the
last process containing threadmain(). It is
the most simple case study of thread library
of Plan 9. Only the channel is the mean to
communicate with each other for processes or
tasks, and one of the rforked process will
watch the channel list.

Those three processes are forked by use of
light weight rfork(2) of Plan 9, and shares
many of memory, and will not use so much
memory space. In our case marsv uses 828
Kb memory area for the main process at its
start. Those three processes uses preemptive
time sharing, then, can run simultaneously,
which enables rapid communication. It is the
reason why those three preemptive time
sharing processes are used for watching
keyboard and mouse and channels.

We tried to design all the tasks simpler as
possible as we can. However, we have to
accept some nested tasks because of
complexity of the processing the planetary
data. The deepest nest level of marsv is
seven, and seen when saving the processed
image to a file. The sequence of this nesting
is from top level thread of threadmain to
imagerthread, canvasthread, viewerthread,
savethread, filebrowsethread and selectthread
from top to bottom.

From the programmer’s point of view, one of
the most difficult or cumbersome is coding to
make all the windows size-flexible, because
Plan 9 doesn’t have window manager, but
only has a function named resizecontrolset()
in control(2) library the content of which
must be defined by user. All the other
windows also must be prepared for resizing
by the user.

Figure 1:

Figure 2:

user interface



