
Hydrogen Storage in Graphite Nanofibers and the Spillover Mechanism

A Study Carried Out in the DOE Center of Excellence on Carbon-based Hydrogen Storage Materials

Anthony J. Lachawiec, Gongshin Qi and Ralph T. Yang (P. I.) University of Michigan Department of Chemical Engineering 23-24 May 2005

CbHS Center of Excellence Partners

9 university projects (at 7 universities), 4 government labs, 1 industrial partner

Overview

Timeline

- Project start date: FY05
- Project end date: FY09
- New Start

Budget

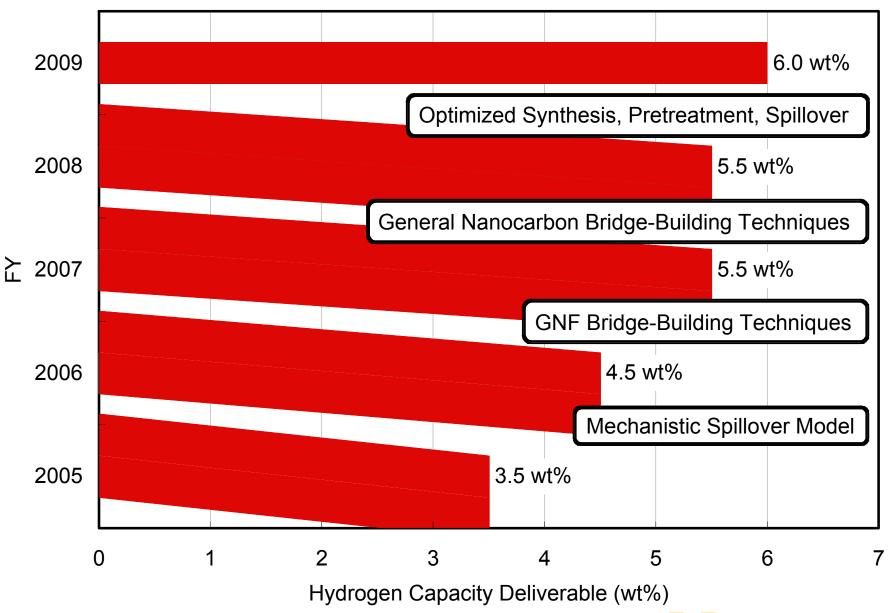
- Expected Total Funding
 - DOE share: \$939,356
 - Contractor share: \$280,000
- Funding for FY05: \$170,000

Barriers

- General
 - · Weight & Volume
 - Efficiency
- Reversible Solid-State Material
 - Hydrogen Capacity & Reversibility
 - Lack of Understanding of H Physi-& Chemisorption

Partners

- Sample/adsorbed H Measurements and Characterization
 - NREL, NIST



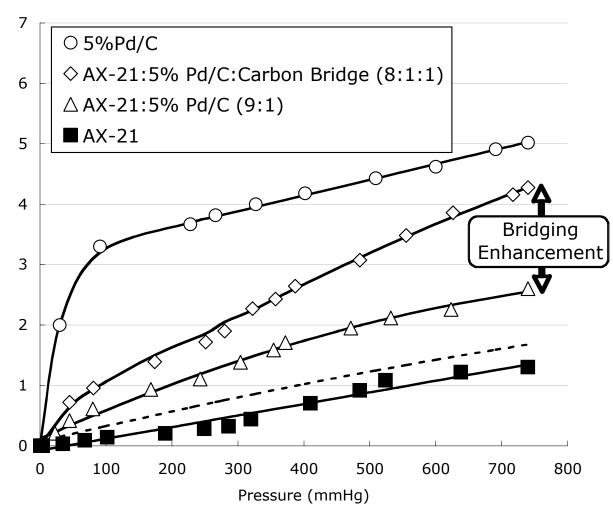
Project Objectives

- To develop Graphite Nanofiber (GNF) based hydrogen storage materials with capacities in excess of 6 wt%
 - To Optimize GNF Synthesis Catalyst & Pretreatment Conditions for Hydrogen Storage
 - To Develop Bridge-Building Techniques for Spillover to Enhance Hydrogen Storage
 - To Obtain a mechanistic understanding for hydrogen spillover in nanostructured carbon materials

Project Milestones

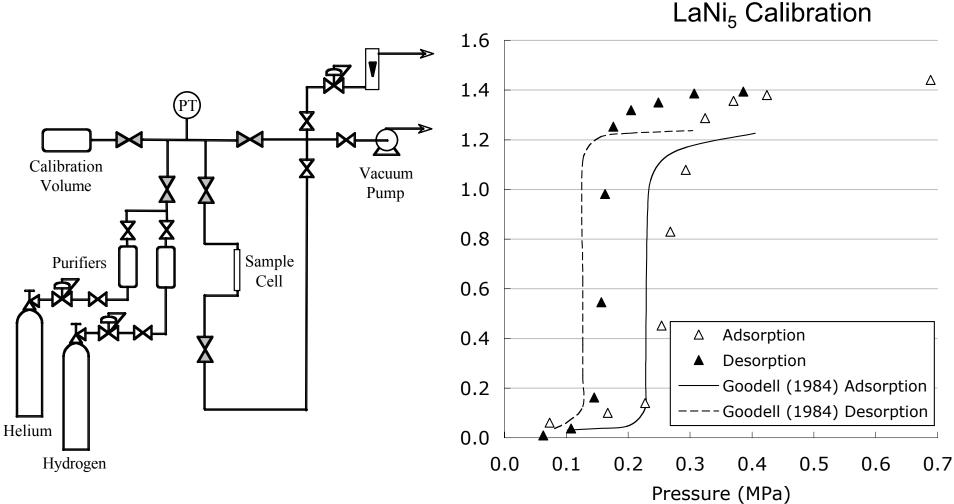
Approach

- Development of GNF material with
 - > 6 wt% reversible hydrogen capacity
 - Systematic studies of GNF synthesis catalysts (metal alloys) & pretreatment conditions
 - Production of composite materials containing catalysts to dissociate hydrogen
 - Enhancement & optimization of spillover mechanism through modeling & bridgebuilding techniques


Technical Accomplishments

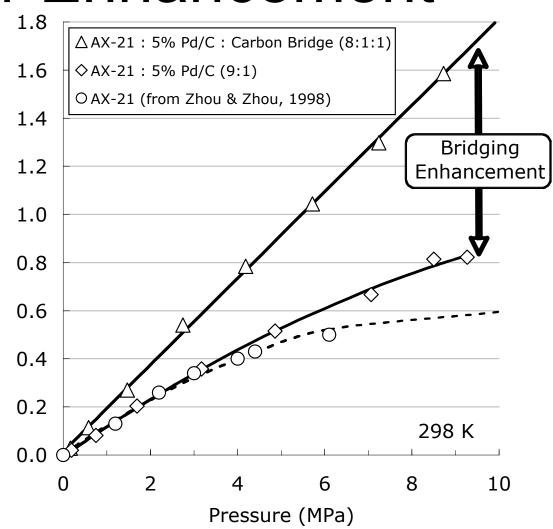
- Development of Calibrated High Pressure Apparatus & Test Protocol
- Demonstration of Bridge-Building Technique to Enhance Spillover
- Screening of Two GNF-Metal Hydride Composites for Spillover Enhancement
- Identification of Carbon Composite
 Demonstrating Reversible Hydrogen
 Storage Capacity of 1.8 wt% at 298 K &
 10 MPa

Low Pressure Spillover Enhancement


- AX-21 Receptor
- 5 wt% Pd/C Catalyst
- Carbon 'bridge' formed by carbonization of precursor (e.g., glucose)
- Adsorption at 298 K
- < 4% adsorbed volume at 0.1 MPa due to PdH_{0.6}
- Adsorption capacity tripled at 0.1 MPa (only doubled without bridges)

Source: AX-21 Bridge Data: Unpublished Work, Lachawiec, Qi & Yang (2005)

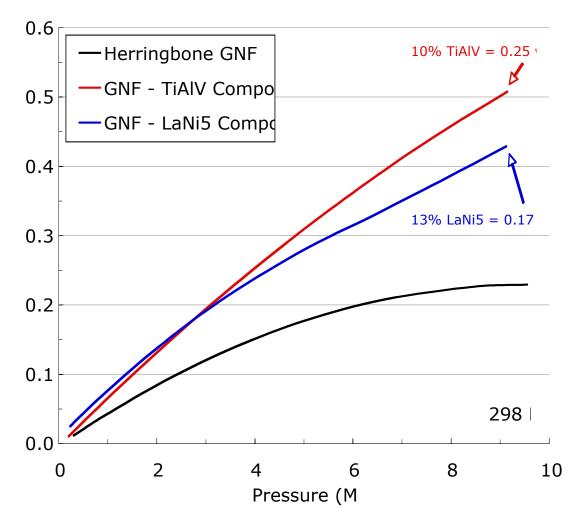
High Pressure Measurement


- •Calibrated Volumetric System (LaNi₅ & TiAl_{0.12}V_{0.04})
- •In-situ Pretreatment to 1023 K (750 C)
- •Adsorption Measurements to 12 MPa (1800 psia)

Source: Goodell (1984) J. Less-Common Met. 99, 1

High Pressure Spillover Enhancement

- Extension of lowpressure work
- Identical trends observed at high pressure
- Completely reversible adsorption at 298 K
- Adsorption capacity tripled at 10 MPa (only 1.3 times without bridges)
- 1.8 wt% capacity at 10 MPa without optimization



Sources: AX-21 Bridge Data: Unpublished Work, Lachawiec, Qi & Yang (2005) AX-21 Isotherm: Zhou & Zhou (1998) Chem. Eng. Sci. 53, 2531

Graphite Nanofiber-Metal Hydride Composites

- Herringbone GNF
- LaNi₅ & TiAl_{0.12}V_{0.04} alloy powders 50 - 500 micron
- Incipient wetness-paste direct doping technique
- Isotherms are sum of individual component capacities
- No spillover at 298 K from these metal alloys
- Investigating catalysts & conditions to promote spillover

Source: Unpublished Work, Lachawiec and Yang (2005)

Future Work

- Remainder of FY 2005 (3.5 wt%)
 - Screen & select optimal GNF synthesis catalyst
 - Extend demonstrated bridge-building technique to GNF composite materials
 - Develop mechanistic understanding for spillover
- FY 2006 (4.5 wt%)
 - Optimize catalyst/pretreatment conditions
 - Optimize bridge-building conditions
 - Implement spillover to achieve target for storage

Addenda

 Slides after this page will not be on the poster, but will be part of the Annual Review CD material.

Hydrogen Safety

Primary Hydrogen Hazard

 Potential energy release & fire from hydrogen leaking at high pressure from measurement system

Secondary Hazards

 Issues related to the nature of hydrogen as a compressed gas (e.g. stored potential energy, asphyxiation)

Hydrogen Safety

Mitigation of Primary Hazard

- Use of high-integrity VCR® fittings in high pressure system (leak rate < 10⁻⁸ atm-cc/sec)
- Component pressure rating to 2000 psia
- Helium leak check at 1500 psia prior to hydrogen introduction
- Procedural control to evacuate sample for minimum 1 hr to remove air from system
- Backfill with helium prior to sample removal
- System volume < 50 cc & isolated during static measurements to limit leakage quantities

