## Multilevel Models Workshop

Cindy L. Christiansen

#### Susan Loveland CHQOER at Bedford VA and Boston University School of Public Health



Bedford Center for Health Quality, Outcomes, & Economics Research



## WHEN DO YOU NEED A MULTILEVEL MODEL ?

- Longitudinal or Repeated Measures

   Multiple measurements per subject or unit
- •Nested or Clustered Data
  - $\circ$  patients within hospitals
  - $\circ$  hospitals within VISNs

# Multilevel Models by any other name...

- Hierarchical Models
- Longitudinal Models
- Growth Curve Models
- Bayesian Models
- Random Effects Models
- Latent Variable Models

# DATA and PARAMETERS

- DATA = anything that you need in your data file to use the software package and selected model
  - Outcome or measure (dependent variable {Level 1})
  - Independent variables or control variables (age, female, disease status, ...)
  - Cluster variable (patient, hospital, ...{defines Level 2})
  - Indicator of time of measure (for repeated measures)

# DATA and PARAMETERS

• PARAMETERS = true population values; We need ESTIMATES of parameters.

Parameters have DATA connected to them

- Beta coefficients, regression coefficients, fixed effects (Independent variables: age, female, disease status, ...)
- Random effect parameters, variance parameters (Cluster variable: patient, hospital, ...)
- Slope or curve parameter (Indicator of time of measure)

# FIXED AND RANDOM EFFECTS?

- Why I don't use the term "fixed and random effects", Andrew Gelman, 1/25/05
   <u>http://www.stat.columbia.edu/~cook/movablet</u> ype/archives/2005/01/why\_i\_dont\_use.html
  - "No agreed-upon meaning"
  - "I'm almost sure SAS uses definition (5)." "(5)
     Fixed effects are estimated using ... maximum likelihood and random effects are estimated with shrinkage ..."
- CLC disagrees! I think SAS uses definition "(1) Fixed effects are constant across individuals, and random effects vary." (vary across hospitals in our case)

# And to make things more confusing....What is a Level?

- Some multilevel models have DATA (and PARAMETERS) at more than 1 level
  - patient mental health score & teaching/nonteaching status of hospitals
- Some multilevel models have PARAMETERS at Levels 2 or higher but no DATA at these levels except the cluster variable
  - Intercept and slope parameters at the patient level
     & random effect parameters for hospital intercepts

# **Examples of Multilevel Models** shown today...

- Multilevel model with
  - Patients within hospitals
  - Outcome Measure: mental health score that is typically around 100 with a SD of 10
  - Independent Variable: age
  - Level 1 = patient; Level 2 = hospital (SAS) calls this level "subjects")

References for help fitting other types of models provided in the handout. 8

# DATA and PARAMETERS for our Examples

#### • Data:

- Mental health score (MHS) for 2565 patients at 100 hospitals (dependent variable)
- Age of patient (independent variable)
- Hospital indicator (to define clusters)
- Parameters What are we interested in?
  - Effect of hospitals on MHS
    - Random effect of hospitals (does the intercept vary by hospitals?)
    - Variance of random effect (how much do the intercepts vary?)
  - Effect of age on the MHS
    - Fixed effect (Beta coefficient of age; slope)
    - Random effect (does the effect of age (slope) vary across hospitals?)

# SO MANY PROCS – SO LITTLE TIME SAS

- Proc GLM
- Proc Logistic
- Proc Mixed
- Proc GLIMMIX
- Proc NLMIXED
- Proc Genmod

#### DATA 10 of 2,565 obs

|       |               |        | centered_age | 2     |
|-------|---------------|--------|--------------|-------|
| Obs   | MHS           | age    | (=age-65)    | sta * |
| 1     | 107.45767989  | 62     | -3           | 1     |
| 2     | 113.39441701  | 66     | 1            | 1     |
| 3     | 99.903304035  | 64     | -1           | 1     |
| 4     | 105.34759809  | 64     | -1           | 1     |
| 5     | 112.27412702  | 69     | 4            | 1     |
| 6     | 97.298690021  | 63     | -2           | 1     |
| 7     | 110.35388017  | 66     | 1            | 1     |
| 8     | 111.54640742  | 64     | -1           | 1     |
| 9     | 101.73315717  | 66     | 1            | 1     |
| 10    | 100.77299724  | 65     | 0            | 1     |
| * sta | ranges from 1 | to 100 |              |       |

### PROC GLM VS MIXED Fixed Effects

#### PROC GLM DATA=in.data; MODEL MHS=AGE/solution; RUN;

PROC MIXED DATA=in.data; MODEL MHS=AGE/solution; RUN;

## GLM OUTPUT (remember FIXED) (Page 2)

the GLM Procedure

Dependent Variable: MHS

| Source | DF | Type III SS | Mean Square | F Value | Pr > F |
|--------|----|-------------|-------------|---------|--------|
| age    | 1  | 884.9865548 | 884.9865548 | 7.15    | 0.0076 |

#### Standard

| Parameter | Estimate    | Error      | t Value | <b>Pr &gt;  t </b> |
|-----------|-------------|------------|---------|--------------------|
| Intercept | 81.26893187 | 6.96671265 | 11.67   | <.0001             |
| age       | 0.28656649  | 0.10719438 | 2.67    | 0.0076             |

## MIXED OUTPUT (remember FIXED) (Page 1)

Solution for Fixed Effects

|           |         |          | Standard |        |         |                    |
|-----------|---------|----------|----------|--------|---------|--------------------|
| Effect    | Estim   | ate      | Error    | DF     | t Value | <b>Pr &gt;  t </b> |
|           |         |          |          |        |         |                    |
| Intercept | 81.2    | 689      | 6.9667   | 2563   | 11.67   | <.0001             |
| age       | 0.2     | 866      | 0.1072   | 2563   | 2.67    | 0.0076             |
|           |         |          |          |        |         |                    |
| T         | ype 3 ' | Tests of | Fixed E  | ffects |         |                    |
|           | Num     | Den      |          |        |         |                    |
| Effect    | DF      | DF       | F Valu   | e P    | r > F   |                    |
| age       | 1       | 2563     | 7.1      | 50     | .0076   |                    |

#### MIXED + GLM OUTPUT (remember FIXED) (Pages 1 & 2)

| Dependent       | Variable:   | MHS - GLM  | 1       |         |         |
|-----------------|-------------|------------|---------|---------|---------|
| Parameter<br> t | Estim       | ate St     | dError  | t Value | e Pr>   |
| Intercept       | 81.2689     | 31 6.96    | 5671265 | 11.67   | <.0001  |
| age             | 0.2865      | 66 0.10    | 719438  | 2.67    | 0.0076  |
| * * * * *       |             |            |         |         |         |
| * * * * *       |             |            |         |         |         |
| * * * * *       |             |            |         |         |         |
| Solution f      | for Fixed E | ffects (MI | XED)    |         |         |
| Effect          | Estimate    | StdError   | DF      | t Value | Pr >  t |
| Intercept       | 81.2689     | 6.9667     | 2563    | 11.67   | <.0001  |
| age             | 0.2866      | 0.1072     | 2563    | 2.67    | 0.0076  |

# We haven't done anything "MULTILEVEL" yet!

## Unconditional and Conditional Models – MORE TERMS!!!

(Page 3; Unconditional Model) PROC mixed DATA=in.data covtest; MODEL MHS = /solution;

```
(Page 1; Conditional Model)
PROC MIXED DATA=in.data covtest;
MODEL MHS=AGE/solution;
```

We still aren't doing anything "Multilevel"!

## **Unconditional & Conditional Models**

(Page 3; Unconditional Model)
PROC mixed DATA=in.data covtest;
MODEL MHS = /solution;

Solution for Fixed Effects Effect Estimate Std Error DF tValue Pr>|t| Intercept 99.8840 0.2200 2564 454.05 <.0001

(Page 1; Conditional Model) PROC MIXED DATA=in.data covtest; MODEL MHS=AGE/solution;

| Solution  | for Fixed | Effects   |      |        |        |
|-----------|-----------|-----------|------|--------|--------|
| Effect    | Estimate  | std Error | DF   | tValue | Pr> t  |
| Intercept | 81.2689   | 6.9667    | 2563 | 11.67  | <.0001 |
| age       | 0.2866    | 0.1072    | 2563 | 2.67   | 0.0076 |

We still aren't doing anything "Multilevel"!

#### Effect of Age on the Residual Variance

(Page 3; Unconditional Model) MODEL MHS = /solution

Covariance Parameter Estimates Cov Parm Estimate Std Error Z Value Pr Z Residual 124.13 3.4668 35.81 <.0001

(Page 1; Conditional Model) MODEL MHS=AGE/solution

Covariance Parameter Estimates Cov Parm Estimate Std Error Z Value Pr Z Residual 123.83 3.4592 35.80 <.0001 \*\*\*\*\*\*

So, AGE accounts for (124.13-123.83)/124.13 of the variance in MHS's (almost nothing!)

#### What is centering? How do we interpret results with or without centering?

(Page 1) MODEL MHS=AGE/solution

 Solution for Fixed Effects

 Effect Estimate std Error DF tValue Pr>|t|

 Intercept 81.2689
 6.9667
 2563
 11.67
 <.0001</td>

 age
 0.2866
 0.1072
 2563
 2.67
 0.0076

#### (Page 6)

MODEL MHS = centered\_age/solution

Solution for Fixed Effects Effect Estimate Std Error DF tValue Pr>|t| Intercept 99.8958 0.2198 2563 454.56 <.0001 centered\_age 0.2866 0.1072 2563 2.67 0.007@0

# 3 Things to Remember about Fitting Data to Multilevel Models

- 1. Look at your data make eye contact
  - Check the # of clusters
  - Check the range of sample size across clusters
  - Be creative Graph something!
- 2. Center independent variables; let the reference group represent a typical person
  - Important for interpretation
  - Important for convergence (be nice to your software!)
- 3. Model fitting is ITERATIVE particularly for Multilevel Models
  - you will have to fit more than 1 model before you are finished!

Let's Do Multilevel Models STA (Hospital) = LEVEL 2, Random Intercepts Patient=LEVEL 1 AGE=FIXED, LEVEL 1 Parameter (Page 4) CLASS sta; MODEL MHS=age/solution; RANDOM int / subject=sta;

What does it mean to have random intercept for hospitals?

#### (Page 4)

#### CLASS sta; MODEL MHS=age/solution; RANDOM int / subject=sta;

| The Mixed Procedure       |                |
|---------------------------|----------------|
| Model Information         |                |
| Data Set                  | IN. DATA       |
| Dependent Variable        | MHS            |
| Covariance Structure      | Unstructured   |
| Subject Effect            | sta            |
| Estimation Method         | REML           |
| Residual Variance Method  | Profile        |
| Fixed Effects SE Method   | Model-Based    |
| Degrees of Freedom Method | Between-Within |

(Page 4)

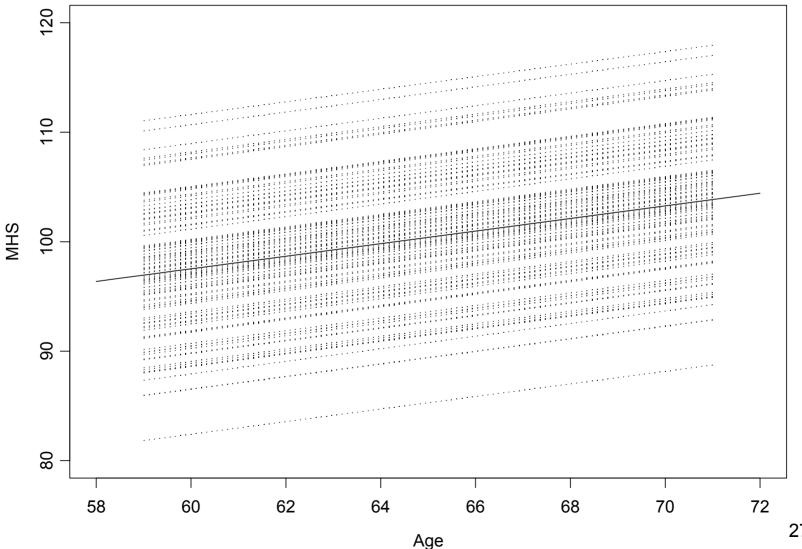
CLASS sta; MODEL MHS=age/solution; RANDOM int /sub=sta;

| Dimensions               |     |
|--------------------------|-----|
| Covariance Parameters    | 2   |
| Columns in X             | 2   |
| Columns in Z Per Subject | 1   |
| Subjects                 | 100 |
| Max Obs Per Subject      | 50  |

|           | Iteration History |                 |           |  |  |  |  |
|-----------|-------------------|-----------------|-----------|--|--|--|--|
| Iteration | Evaluations       | -2 Res Log Like | Criterion |  |  |  |  |
| 0         | 1                 | 19641.50320947  |           |  |  |  |  |
| 1         | 2                 | 19307.39611895  | 0.0000003 |  |  |  |  |
| 2         | 1                 | 19307.39591948  | 0.0000000 |  |  |  |  |

Convergence criteria met.

(Page 4)


CLASS sta; MODEL MHS=age/solution; RANDOM int /sub=sta;

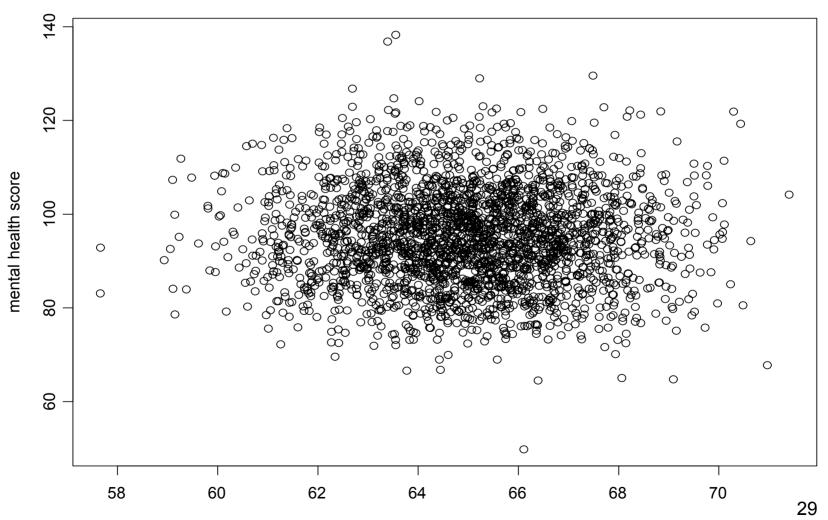
| Covariance Parameter Estimates |          |            |           |         |        |
|--------------------------------|----------|------------|-----------|---------|--------|
| Cov Parm                       | Subject  | Estimate   | Std Error | Z Value | Pr Z   |
| UN(1,1)                        | sta      | 22.53      | 4.0028    | 5.63    | <.0001 |
| Residual                       | -        | L01.62     | 2.8928    | 35.13   | <.0001 |
|                                |          |            |           |         |        |
| Solution                       | for Fixe | ed Effecta | S         |         |        |
| Effect                         | Estimat  | te std 1   | Error DF  | tValue  | Pr> t  |
| Intercept                      | 78.702   | 6.41       | 90 99     | 12.26   | <.0001 |
| age                            | 0.322    | 22 0.09    | 846 2464  | 3.27    | 0.0011 |

## Group Discussion: Pages 3, 6 thru 8

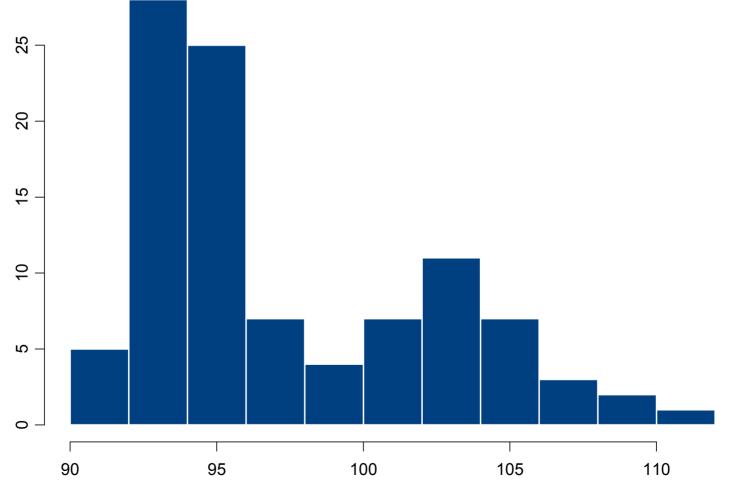
| Example 1                   |                                | Unconditional<br>Page 3 | Conditional<br>Page 6 | Random<br>Intercepts<br>Page 7 | Random Intercepts &<br>Slopes Page 8 |
|-----------------------------|--------------------------------|-------------------------|-----------------------|--------------------------------|--------------------------------------|
| Fixed Effects<br>(Level 1)  | Intercept (age centered at 65) | 99.9                    | 99.9                  | 99.6                           | 99.6                                 |
|                             | Centered Age                   |                         | .29 (.11)             | .32 (.10)                      | .32 (.10)                            |
| Level 1                     | Residual                       | 124.1                   | 123.8                 | 101.6                          | 101.6                                |
| Random Effects<br>(Level 2) | (1,1) Intercepts               |                         |                       | 22.5                           | 22.5                                 |
|                             | (1,2)                          |                         |                       |                                | .15                                  |
|                             | (2,2) Slopes                   |                         |                       |                                | 0                                    |
|                             | AIC                            | 19648                   | 19644                 | 19311                          | 19313                                |
|                             | -2LL                           | 19646                   | 19642                 | 19307                          | 19307                                |
|                             |                                |                         |                       |                                | 26                                   |

#### Predictions of the effect of Age on MHS by hospitals (dotted lines) and overall (solid line) (model on Page 7)




27

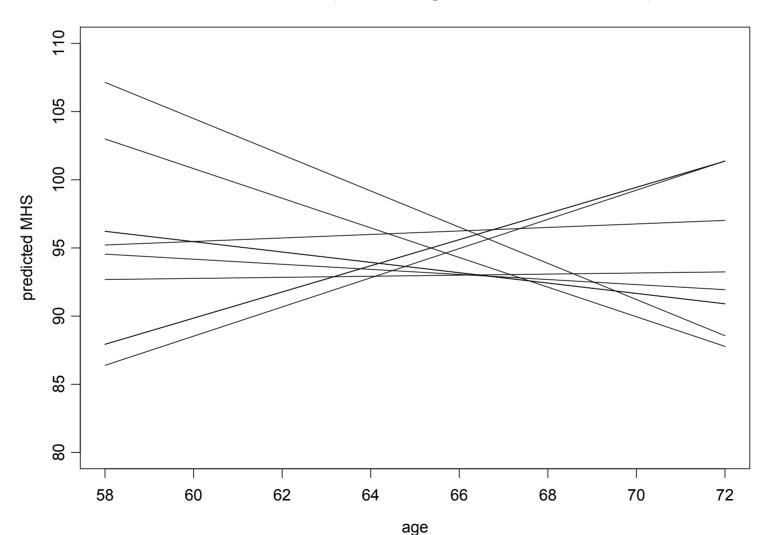
# Data for Example 2 2565 observations at 100 hospitals


|                          | # obs per<br>hospital* | Mental Health<br>Score | Age* |
|--------------------------|------------------------|------------------------|------|
| Minimum                  | 1                      | 49.8                   | 58   |
| 1 <sup>st</sup> Quartile | 13                     | 88.3                   | 64   |
| Median                   | 26                     | 95.1                   | 65   |
| Mean                     | 25.7                   | 95.3                   | 65   |
| 3 <sup>rd</sup> Quartile | 38                     | 102.2                  | 66   |
| Maximum                  | 50                     | 138.3                  | 71   |

\* Same as in Example #1

## Correlation between MHS & Age = -.03 (nothing to write home about)

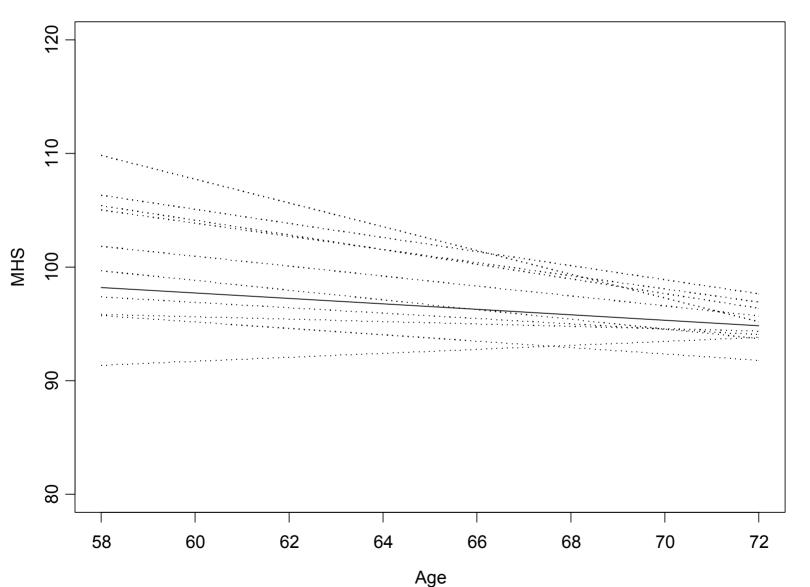



## First Glance Variation in MHS across Hospitals?



average MHS at hospital

#### First Glance Important Variation in effect of AGE across Hospitals?


Predictions from separate regressions for 10 hospitals



## Group Discussion: Pages 9 - 12

| Example 2                      |                       | Unconditional<br>Page 9 | Conditional Page<br>10 | Random<br>Intercepts Page<br>11 | Random Intercepts &<br>Slopes Page 12 |
|--------------------------------|-----------------------|-------------------------|------------------------|---------------------------------|---------------------------------------|
| Fixed Effects<br>(Level 1)     | Intercept<br>(age 65) | 95.3                    | 95.3                   | 96.5                            | 96.5                                  |
|                                | Centered<br>Age       |                         | 13 (10)                | 12 (.10)                        | 23 (.11)                              |
| Level 1                        | Residual              | 108.5                   | 108.5                  | 99.2                            | 98.3                                  |
| Random<br>Effects (Level<br>2) | (1,1)<br>Intercepts   |                         |                        | 13.8                            | 13.7                                  |
|                                | (1,2)                 |                         |                        |                                 | -1.3                                  |
|                                | (2,2) Slopes          |                         |                        |                                 | .24                                   |
|                                | AIC                   | 19303                   | 19304                  | 19215                           | 19211                                 |
|                                | -2LL                  | 19301                   | 19302                  | 19211                           | 19203                                 |

#### Example #2, Model from Page 13, Age Fixed Effect, Random Slope & Intercept for Hospitals



# Other things to consider

- Variance Structure
  - We used "unstructured" but there are MANY others
  - Be careful; some software uses same term for different variance
- Estimation Method
  - We used "REML"
  - REML method will be VERY slow (and might not work) on large data sets

# 3 Things to Remember about Fitting Data to Multilevel Models

- 1. Look at your data make eye contact
  - Check the # of clusters
  - Check the range of sample size across clusters
  - Be creative Graph something!
- 2. Center independent variables; let the reference group represent a typical person
  - Important for interpretation
  - Important for convergence (be nice to your software!)
- 3. Model fitting is ITERATIVE particularly for Multilevel Models
  - you will have to fit more than 1 model before you are finished!

#### Sources of Information that might be helpful when you use multilevel models (Page 13)

1. Carolina Population Center, A SAS User's Guide to Stata

http://www.cpc.unc.edu/services/computer/presentations/sas\_to\_stata/sas\_to\_stata.html This site does not include information for running "mixed" SAS models in Stata but it is a great general guide to Stata if you are used to programming in SAS.

2. UCLA Academic Technology Services

http://www.ats.ucla.edu/stat/

A great site for many needs!

- a. <u>http://www.ats.ucla.edu/stat/sas/default.htm</u> specifics for SAS
- b. <u>http://www.ats.ucla.edu/stat/stata/default.htm</u> specifics for Stata
- c. <u>http://www.ats.ucla.edu/stat/examples/alda.htm</u> Gives code for running data examples in Singer & Willet *Applied Longitudinal Data*. Extra nice because it gives code in Mplus, MLwiN, HLM, SAS, Stata, R (S+) and some SPSS!
- Singer, J. D. (1998). Using SAS PROC MIXED to Fit Multilevel Models, Hierarchical Models, and Individual Growth Models. *Journal of Educational and Behavioral Statistics*, Vol. 24, 323-355.
- 4. SAS online doc 9.1 about the mixed procedure<u>http://support.sas.com/91doc/docMainpage.jsp</u>
- 5. Centre for Multilevel Modelling, Research Unit, University of Bristol; distributor for MLwiN software. <u>http://www.cmm.bristol.ac.uk/</u>
   36

# Thank you for attending and for your participation!

- Cindy: <u>cindylc@bu.edu</u>
- Susan: <u>slvland@bu.edu</u>



Bedford Center for Health Quality, Outcomes, & Economics Research



## MODEL WITH 3 LEVELS

FROM http://ssc.utexas.edu/consulting/answers/sas/sas99.html

PROC MIXED DATA = sasdata METHOD = ML COVTEST ; CLASS school classrm ; MODEL math = english / SOLUTION ; RANDOM INT / TYPE = UN SUBJECT = school ; RANDOM INT / TYPE = UN SUBJECT = classrm(school) ; TITLE 'Three-level Junior School Project model'; RUN ;

- The **PROC MIXED** statement lists the SAS dataset used in the analysis, **sasdata**. It also uses the **ML** or maximum likelihood estimation method. The **COVTEST** option requests covariance parameter estimates and associated test statistics be printed on the output.
- The **CLASS** statement tells **PROC MIXED** that **school** and **classrm** are classification variables. The **MODEL** statement tells **PROC MIXED** that the dependent variable, **math**, is a function of the intercept or grand mean estimate and the English test score variable. Like all SAS regression and general linear model procedures, **PROC MIXED** assumes the presence of an intercept in the model unless the user explicitly specifies an option (**NOINT**) telling **PROC MIXED** to fit a no intercept model. The **SOLUTION** option has **PROC MIXED** print out regression parameter estimates, standard error estimates, and associated test statistics in tabular form.
- There are two **RANDOM** statements shown in the **PROC MIXED** syntax. The first **RANDOM** statement features the keyword **INT**, which tells **PROC MIXED** to estimate separate intercept values for each classroom and school. The **TYPE = UN** option tells **PROC MIXED** to use an unstructured covariance matrix for the random effects and the **SUBJECT = school** option tells **PROC MIXED** that the clustering variable is the school. You may also include a **SOLUTION** option on the the **RANDOM** statement to obtain parameter estimates for the individual classrooms and schools.
- The second **RANDOM** statement is identical to the first, except that instead of using school as the clustering variable as is the case in the first random statement we now use **classrm(school)** as the clustering variable. SAS interprets **classrm(school)** as "classroom within school". With the inclusion of both **RANDOM** statements the **PROC MIXED** syntax now estimates variances for intercepts at the school level *and* the classroom within school level, as well as the covariances between these random parameter estimates. These statistics represent the amount of variance attributable to school and classroom membership, and the relationships between schools and classrooms intercepts.

#### CONDITIONAL MODEL: FIXED EFFECT OF AGE BUT NO RANDOM EFFECTS

PROC mixed DATA=in.cindy\_data2 covtest; title2 'MIXED covtest - MODEL mh\_score\_sameslope=age/solution'; MODEL mh\_score\_sameslope=age/solution; RUN; quit;

Model Information

| Data Set                  | IN.CINDY_DATA2     |
|---------------------------|--------------------|
| Dependent Variable        | mh_score_sameslope |
| Covariance Structure      | Diagonal           |
| Estimation Method         | REML               |
| Residual Variance Method  | Profile            |
| Fixed Effects SE Method   | Model-Based        |
| Degrees of Freedom Method | Residual           |
|                           |                    |

|             | Dimensions |      |
|-------------|------------|------|
| Covariance  | Parameters | 1    |
| Columns in  | Х          | 2    |
| Columns in  | Z          | 0    |
| Subjects    |            | 1    |
| Max Obs Per | Subject    | 2565 |

#### Number of Observations

| Number | of | Observations | Read     | 2565 |
|--------|----|--------------|----------|------|
| Number | of | Observations | Used     | 2565 |
| Number | of | Observations | Not Used | 0    |

#### Covariance Parameter Estimates

| Cov Parm | Estimate | Standard<br>Error | Z<br>Value | Pr Z   |
|----------|----------|-------------------|------------|--------|
| Residual | 123.83   | 3,4592            | 35.80      | <.0001 |

#### Fit Statistics

| -2 Res Log Likelihood    | 19641.5 |
|--------------------------|---------|
| AIC (smaller is better)  | 19643.5 |
| AICC (smaller is better) | 19643.5 |
| BIC (smaller is better)  | 19649.4 |

| Effect    | Estimate | Standard<br>Error | DF   | t Value | Pr >  t             |
|-----------|----------|-------------------|------|---------|---------------------|
| Intercept | 81.2689  | 6.9667            | 2563 | 11.67   | <.0001              |
| age       | 0.2866   | 0.1072            | 2563 | 2.67    | <mark>0.0076</mark> |

#### PROC glm gives the same answer as PROC mixed

PROC glm DATA=in.cindy\_data2; title2 'GLM - MODEL mh\_score\_sameslope=age/solution'; MODEL mh\_score\_sameslope=age/solution; RUN; quit;

The GLM Procedure

| Number | of | Observations | Read | 2565 |
|--------|----|--------------|------|------|
| Number | of | Observations | Used | 2565 |

The GLM Procedure

Dependent Variable: mh\_score\_sameslope

|                  |             |        | Sum o     | of         |           |         |
|------------------|-------------|--------|-----------|------------|-----------|---------|
| Source<br>Pr > F |             | DF     | Square    | es Mea     | n Square  | F Value |
| Model<br>0.0076  |             | 1      | 884.98    | 66         | 884.9866  | 7.15    |
| Error            |             | 2563   | 317379.25 | 96         | 123.8312  |         |
| Corrected To     | otal        | 2564   | 318264.24 | 62         |           |         |
|                  |             |        |           |            |           |         |
| R-Square         | Coeff Var   | Root M | SE mh_so  | core_sames | lope Mean |         |
| 0.002781         | 11.14087    | 11.127 | 94        |            | 99.88402  |         |
|                  |             |        |           |            |           |         |
|                  |             |        | Standard  |            |           |         |
| Parameter        | Estimate    | 2      | Error     | t Value    | Pr >  t   |         |
| Intercept        | 81.26893187 | 6.     | 96671265  | 11.67      | <.0001    |         |
| age              | 0.28656649  | 9 0.   | 10719438  | 2.67       | 0.0076    |         |

#### UNCONDITIONAL MODEL - TOTAL VARIANCE WITHOUT FIXED AND WITHOUT RANDOM EFFECTS

PROC mixed DATA=in.cindy\_data2 covtest; title2 'MIXED covtest - MODEL mh\_score\_sameslope= /solution'; MODEL mh\_score\_sameslope= /solution; RUN; quit;

The Mixed Procedure

Model Information

| Data Set                  | IN.CINDY_DATA2     |
|---------------------------|--------------------|
| Dependent Variable        | mh_score_sameslope |
| Covariance Structure      | Diagonal           |
| Estimation Method         | REML               |
| Residual Variance Method  | Profile            |
| Fixed Effects SE Method   | Model-Based        |
| Degrees of Freedom Method | Residual           |

#### Dimensions

| Covariance  | Parameters | 1    |
|-------------|------------|------|
| Columns in  | Х          | 1    |
| Columns in  | Z          | 0    |
| Subjects    |            | 1    |
| Max Obs Per | Subject    | 2565 |

#### Number of Observations

| Number | of | Observations | Read     | 2565 |
|--------|----|--------------|----------|------|
| Number | of | Observations | Used     | 2565 |
| Number | of | Observations | Not Used | 0    |

#### Covariance Parameter Estimates

|          |          | Standard | Z     |      |
|----------|----------|----------|-------|------|
| Cov Parm | Estimate | Error    | Value | Pr Z |

Residual 124.13 3.4668 35.81 <.0001

#### Fit Statistics

| -2 Res Log Likelihood    | 19646.0 |
|--------------------------|---------|
| AIC (smaller is better)  | 19648.0 |
| AICC (smaller is better) | 19648.0 |
| BIC (smaller is better)  | 19653.9 |

| Effect    | Estimate | Standard<br>Error | DF   | t Value | Pr >  t |
|-----------|----------|-------------------|------|---------|---------|
| Intercept | 99.8840  | 0.2200            | 2564 | 454.05  | <.0001  |

#### RANDOM INTERCEPTS FOR HOSPITALS AND AGE FIXED EFFECTS

PROC MIXED DATA=in.cindy\_data2 covtest; title2 'MIXED covtest; class sta; MODEL mh\_score\_sameslope=age/solution; RANDOM int / subject=sta ;'; CLASS sta; MODEL mh\_score\_sameslope=age/solution ddfm=bw; RANDOM int / subject=sta type=un; RUN; quit;

Model Information - SAME AS PREVIOUS

Class Level Information - SAME AS PREVIOUS

Dimensions

| Covariance  | Parameters    | 2   |
|-------------|---------------|-----|
| Columns in  | Х             | 2   |
| Columns in  | Z Per Subject | 1   |
| Subjects    |               | 100 |
| Max Obs Per | Subject       | 50  |

Number of Observations - SAME AS PREVIOUS

Convergence criteria met.

| Covariance Parameter Estimates |         |          |          |       |        |
|--------------------------------|---------|----------|----------|-------|--------|
|                                |         |          | Standard | Z     |        |
| Cov Parm                       | Subject | Estimate | Error    | Value | Pr Z   |
| UN(1,1)                        | sta     | 22.5315  | 4.0028   | 5.63  | <.0001 |
| Residual                       |         | 101.62   | 2.8928   | 35.13 | <.0001 |

Fit Statistics -2 Res Log Likelihood 19307.4 AIC (smaller is better) 19311.4 AICC (smaller is better) 19311.4 BIC (smaller is better) 19316.6

| Effect    | Estimate | Standard<br>Error | DF   | t Value | Pr >  t |
|-----------|----------|-------------------|------|---------|---------|
| Intercept | 78.7023  | 6.4190            | 99   | 12.26   | <.0001  |
| age       | 0.3222   | 0.09846           | 2464 | 3.27    | 0.0011  |

#### TRY RANDOM INTERCEPT AND SLOPES WITH AGE FIXED EFFECTS

PROC MIXED DATA=in.cindy\_data2 covtest; title2 'MIXED covtest; class sta; MODEL mh\_score\_sameslope=age/solution; RANDOM int age/ sub=sta ;'; CLASS sta; MODEL mh\_score\_sameslope=centered\_age/solution ddfm=bw; RANDOM int AGE/ subject=sta type=un; RUN; quit;

Model Information - SAME AS PREVIOUS

Class Level Information - SAME AS PREVIOUS

Dimensions

| Covariance  | Parameters    | 4   |
|-------------|---------------|-----|
| Columns in  | Х             | 2   |
| Columns in  | Z Per Subject | 2   |
| Subjects    |               | 100 |
| Max Obs Per | s Subject     | 50  |

Number of Observations - SAME AS PREVIOUS

#### Iteration History

| Iteration                | Evaluations      | -2 Res Log Like                                                      | Criterion                              |
|--------------------------|------------------|----------------------------------------------------------------------|----------------------------------------|
| 0<br>1<br>2<br>3         | 1<br>2<br>1<br>1 | 19641.50320947<br>20371.61345768<br>20316.71210782<br>20261.43913630 | 0.00820025<br>0.02485562<br>0.07610033 |
| <br>44<br>45<br>46<br>47 | 1<br>3<br>1<br>1 | 19426.26183053<br>19423.61289844<br>19420.66092771<br>19417.73292534 | 22914568.715                           |

WHOOPS!!!!!!!

WARNING: Did not converge.

#### Covariance Parameter Values At Last Iteration

| Cov Parm                                  | Subject           | Estimate                         |
|-------------------------------------------|-------------------|----------------------------------|
| UN(1,1)<br>UN(2,1)<br>UN(2,2)<br>Residual | sta<br>sta<br>sta | 0<br>-7.1270<br>0.2559<br>101.18 |

#### IT IS IMPORTANT TO CENTER INDEPENDENT VARIABLES - LET'S START OVER WITH FIXED EFFECT FOR AGE AND NO RANDOM EFFECTS (CONDITIONAL MODEL)

PROC mixed DATA=in.cindy\_data2 covtest; title2 'MIXED covtest - MODEL mh\_score\_sameslope=centered\_age/solution'; MODEL mh\_score\_sameslope=centered\_age/solution; RUN; quit;

#### Model Information

| Data Set                  | IN.CINDY_DATA2     |
|---------------------------|--------------------|
| Dependent Variable        | mh_score_sameslope |
| Covariance Structure      | Diagonal           |
| Estimation Method         | REML               |
| Residual Variance Method  | Profile            |
| Fixed Effects SE Method   | Model-Based        |
| Degrees of Freedom Method | Residual           |

#### Dimensions

| Covariance  | Parameters | 1    |
|-------------|------------|------|
| Columns in  | Х          | 2    |
| Columns in  | Z          | 0    |
| Subjects    |            | 1    |
| Max Obs Per | Subject    | 2565 |

#### Number of Observations

| Number | of | Observations | Read     | 2565 |
|--------|----|--------------|----------|------|
| Number | of | Observations | Used     | 2565 |
| Number | of | Observations | Not Used | 0    |

#### Covariance Parameter Estimates

| Cov Parm | Estimate | Standard<br>Error | Z<br>Value | Pr Z   |
|----------|----------|-------------------|------------|--------|
| Residual | 123.83   | 3.4592            | 35.80      | <.0001 |

#### Fit Statistics

| -2 Res Log Likelihood    | 19641.5 |
|--------------------------|---------|
| AIC (smaller is better)  | 19643.5 |
| AICC (smaller is better) | 19643.5 |
| BIC (smaller is better)  | 19649.4 |

|                           | Solution f        | or Fixed Ef<br>Standard | fects        |                |                  |
|---------------------------|-------------------|-------------------------|--------------|----------------|------------------|
| Effect                    | Estimate          | Error                   | DF           | t Value        | Pr >  t          |
| Intercept<br>centered_age | 99.8958<br>0.2866 | 0.2198<br>0.1072        | 2563<br>2563 | 454.56<br>2.67 | <.0001<br>0.0076 |

#### RANDOM INTERCEPTS FOR HOSPITALS AND FIXED AGE EFFECTS WITH CENTERED-AGE

PROC MIXED DATA=in.cindy\_data2 covtest; title2 'MIXED covtest; class sta; MODEL mh\_score\_sameslope=centered\_age/solution;RANDOM int/ subj=sta;'; CLASS sta; MODEL mh\_score\_sameslope=centered\_age/solution ddfm=bw; RANDOM int / subject=sta type=un; RUN; quit;

Model Information - SAME AS PREVIOUS

Class Level Information - SAME AS PREVIOUS

Dimensions

| Covariance  | Parameters    | 2   |
|-------------|---------------|-----|
| Columns in  | Х             | 2   |
| Columns in  | Z Per Subject | 1   |
| Subjects    |               | 100 |
| Max Obs Per | s Subject     | 50  |

Number of Observations - SAME AS PREVIOUS

Convergence criteria met.

#### Covariance Parameter Estimates

| Cov Parm | Subject | Estimate | Standard<br>Error | Z<br>Value | Pr Z   |
|----------|---------|----------|-------------------|------------|--------|
| UN(1,1)  | sta     | 22.5315  | 4.0028            | 5.63       | <.0001 |
| Residual |         | 101.62   | 2.8928            | 35.13      | <.0001 |

#### Fit Statistics

| -2 Res Log Likelihood    | 19307.4 |
|--------------------------|---------|
| AIC (smaller is better)  | 19311.4 |
| AICC (smaller is better) | 19311.4 |
| BIC (smaller is better)  | 19316.6 |

| Effect       | Estimate | Standard<br>Error | DF   | t Value | Pr >  t |
|--------------|----------|-------------------|------|---------|---------|
| Intercept    | 99.6457  | 0.5363            | 99   | 185.80  | <.0001  |
| centered_age | 0.3222   | 0.09846           | 2464 | 3.27    | 0.0011  |

#### RANDOM SLOPES AND INTERCEPTS FOR HOSPITALS WITH CENTERED-AGE FIXED EFFECT

PROC MIXED DATA=in.cindy\_data2 covtest; title2 'MIXED covtest; class sta; MODEL mh\_score\_sameslope=centered\_age/solution;RANDOM int centered\_age/ subj=sta;'; CLASS sta; MODEL mh\_score\_sameslope=centered\_age/solution ddfm=bw; RANDOM int centered\_age / subject=sta type=un; RUN; quit;

Model Information - SAME AS PREVIOUS

Class Level Information - SAME AS PREVIOUS

Dimensions

| Covariance  | Parameters    | 4   |
|-------------|---------------|-----|
| Columns in  | Х             | 2   |
| Columns in  | Z Per Subject | 2   |
| Subjects    |               | 100 |
| Max Obs Per | Subject       | 50  |

Number of Observations - SAME AS PREVIOUS

#### Convergence criteria met.

| Covariance Parameter Estimates |         |          |          |       |        |
|--------------------------------|---------|----------|----------|-------|--------|
|                                |         |          | Standard | Z     |        |
| Cov Parm                       | Subject | Estimate | Error    | Value | Pr Z   |
|                                |         |          |          |       |        |
| UN(1,1)                        | sta     | 22.5389  | 4.0041   | 5.63  | <.0001 |
| UN(2,1)                        | sta     | 0.1540   | 0.5776   | 0.27  | 0.7897 |
| UN(2,2)                        | sta     | 1.85E-17 |          |       |        |
| Residual                       |         | 101.63   | 2.8928   | 35.13 | <.0001 |

| Fit Statistics           |         |
|--------------------------|---------|
| -2 Res Log Likelihood    | 19307.3 |
| AIC (smaller is better)  | 19313.3 |
| AICC (smaller is better) | 19313.3 |
| BIC (smaller is better)  | 19321.1 |

|              | Solution f | for Fixed Ef | fects |         |         |
|--------------|------------|--------------|-------|---------|---------|
|              |            | Standard     |       |         |         |
| Effect       | Estimate   | Error        | DF    | t Value | Pr >  t |
|              |            |              |       |         |         |
| Intercept    | 99.6468    | 0.5363       | 99    | 185.79  | <.0001  |
| centered_age | 0.3205     | 0.09843      | 2464  | 3.26    | 0.0011  |

#### START WITH THE UNCONDITIONAL MODEL

PROC mixed DATA=in.cindy\_data4 covtest; title2 'MIXED covtest - MODEL mh\_score\_diffslope= /solution'; MODEL mh\_score\_diffslope= /solution; RUN; quit;

Model Information

| Data Set                  | IN.CINDY_DATA4     |
|---------------------------|--------------------|
| Dependent Variable        | mh_score_diffslope |
| Covariance Structure      | Diagonal           |
| Estimation Method         | REML               |
| Residual Variance Method  | Profile            |
| Fixed Effects SE Method   | Model-Based        |
| Degrees of Freedom Method | Residual           |

#### Dimensions

| Covariance  | Parameters | 1    |
|-------------|------------|------|
| Columns in  | Х          | 1    |
| Columns in  | Z          | 0    |
| Subjects    |            | 1    |
| Max Obs Per | Subject    | 2565 |

#### Number of Observations

| Number | of | Observations | Read     | 2565 |
|--------|----|--------------|----------|------|
| Number | of | Observations | Used     | 2565 |
| Number | of | Observations | Not Used | 0    |

#### Covariance Parameter Estimates

| Cov Parm | ov Parm Estimate |        | Z<br>Value | Pr Z   |
|----------|------------------|--------|------------|--------|
| Residual | <b>108.51</b>    | 3.0305 | 35.81      | <.0001 |

#### Fit Statistics

| -2 Res Log Likelihood    | 19301.1 |
|--------------------------|---------|
| AIC (smaller is better)  | 19303.1 |
| AICC (smaller is better) | 19303.1 |
| BIC (smaller is better)  | 19309.0 |

| Effect    | Estimate | Standard<br>Error | DF   | t Value | Pr >  t |
|-----------|----------|-------------------|------|---------|---------|
| Intercept | 95.3253  | 0.2057            | 2564 | 463.47  | <.0001  |

#### TRY THE CONDITIONAL MODEL WITH CENTERED-AGE FIXED EFFECT

PROC mixed DATA=in.cindy\_data4 covtest; title2 'MIXED covtest - MODEL mh\_score\_diffslope=centered\_age/solution'; MODEL mh\_score\_diffslope=centered\_age/solution; RUN; quit;

MIXED covtest - MODEL mh\_score\_diffslope=centered\_age/solution

The Mixed Procedure

Model Information

| Data Set                  | IN.CINDY_DATA4     |
|---------------------------|--------------------|
| Dependent Variable        | mh_score_diffslope |
| Covariance Structure      | Diagonal           |
| Estimation Method         | REML               |
| Residual Variance Method  | Profile            |
| Fixed Effects SE Method   | Model-Based        |
| Degrees of Freedom Method | Residual           |

Dimensions

| Covariance  | Parameters | 1    |
|-------------|------------|------|
| Columns in  | Х          | 2    |
| Columns in  | Z          | 0    |
| Subjects    |            | 1    |
| Max Obs Per | Subject    | 2565 |

Covariance Parameter Estimates

|          |          | Standard | Z     |        |
|----------|----------|----------|-------|--------|
| Cov Parm | Estimate | Error    | Value | Pr Z   |
| Desidual | 100 40   | 2 0202   |       | . 0001 |
| Residual | 108.48   | 3.0303   | 35.80 | <.0001 |

#### Fit Statistics

| -2 Res Log Likelihood    | 19302.3 |
|--------------------------|---------|
| AIC (smaller is better)  | 19304.3 |
| AICC (smaller is better) | 19304.3 |
| BIC (smaller is better)  | 19310.1 |

| Effect       | Estimate | Standard<br>Error | DF   | t Value | Pr >  t |
|--------------|----------|-------------------|------|---------|---------|
| Intercept    | 95.3201  | 0.2057            | 2563 | 463.41  | <.0001  |
| centered_age | -0.1285  | 0.1003            | 2563 | -1.28   | 0.2006  |

#### ADD RANDOM INTERCEPTS FOR HOSPITALS

```
PROC MIXED DATA=in.cindy_data4 covtest;
title2 'MIXED covtest; class sta; MODEL mh_score_diffslope=centered_age/s;
RANDOM int / sub=sta ;';
CLASS sta;
MODEL mh_score_diffslope=centered_age/solution ddfm=bw;
RANDOM int / subject=sta type=un;
RUN; quit;
```

Model Information - SAME as PREVIOUS

Class Level Information - SAME as PREVIOUS

Dimensions

| Covariance  | Parameters    | 2   |
|-------------|---------------|-----|
| Columns in  | Х             | 2   |
| Columns in  | Z Per Subject | 1   |
| Subjects    |               | 100 |
| Max Obs Per | r Subject     | 50  |

Number of Observations - SAME as PREVIOUS

Convergence criteria met.

Covariance Parameter Estimates

| Cov Parm | Subject | Estimate | Standard<br>Error | Z<br>Value | Pr Z   |
|----------|---------|----------|-------------------|------------|--------|
| UN(1,1)  | sta     | 13.7747  | 2.9989            | 4.59       | <.0001 |
| Residual |         | 99.2002  | 2.8361            | 34.98      | <.0001 |

#### Fit Statistics

| -2 Res Log Likelihood    | 19210.9 |
|--------------------------|---------|
| AIC (smaller is better)  | 19214.9 |
| AICC (smaller is better) | 19214.9 |
| BIC (smaller is better)  | 19220.1 |

|              | Solution f | or Fixed Ef | fects |         |         |
|--------------|------------|-------------|-------|---------|---------|
| Standard     |            |             |       |         |         |
| Effect       | Estimate   | Error       | DF    | t Value | Pr >  t |
|              |            |             |       |         |         |
| Intercept    | 96.5423    | 0.4405      | 99    | 219.19  | <.0001  |
| centered_age | -0.1181    | 0.09715     | 2464  | -1.22   | 0.2242  |

#### ADD RANDOM SLOPES FOR HOSPITALS

PROC MIXED DATA=in.cindy\_data4 covtest; title2 'MIXED covtest; class sta; MODEL mh\_score\_diffslope=centered\_age/s;RANDOM int centered\_age/ sub=sta;'; CLASS sta; MODEL mh\_score\_diffslope=centered\_age/solution ddfm=bw; RANDOM int centered\_age / subject=sta type=un; RUN; quit;

Model Information - SAME as PREVIOUS

Class Level Information - SAME as PREVIOUS

Dimensions

| Covariance  | Parameters    | 4  |
|-------------|---------------|----|
| Columns in  | Х             | 2  |
| Columns in  | Z Per Subject | 2  |
| Subjects    | 100           |    |
| Max Obs Per | s Subject     | 50 |

Number of Observations - SAME as PREVIOUS

Convergence criteria met.

#### Covariance Parameter Estimates

| Cov Parm | Subject | Estimate | Standard<br>Error | Z<br>Value | Pr Z   |
|----------|---------|----------|-------------------|------------|--------|
| UN(1,1)  | sta     | 13.6631  | 2.9943            | 4.56       | <.0001 |
| UN(2,1)  | sta     | -1.2676  | 0.5829            | -2.17      | 0.0297 |
| UN(2,2)  | sta     | 0.2425   | 0.1647            | 1.47       | 0.0704 |
| Residual |         | 98.3452  | 2.8578            | 34.41      | <.0001 |

#### Fit Statistics

| -2 Res Log Likelihood    | 19203.4 |
|--------------------------|---------|
| AIC (smaller is better)  | 19211.4 |
| AICC (smaller is better) | 19211.4 |
| BIC (smaller is better)  | 19221.8 |

| Effect       | Estimate | Standard<br>Error | DF   | t Value | Pr >  t |
|--------------|----------|-------------------|------|---------|---------|
| Intercept    | 96.5216  | 0.4389            | 99   | 219.90  | <.0001  |
| centered_age | -0.2264  | 0.1111            | 2464 | -2.04   | 0.0416  |

### Sources of Information that might be helpful when you use multilevel models:

1. Carolina Population Center, A SAS User's Guide to Stata

http://www.cpc.unc.edu/services/computer/presentations/sas\_to\_stata/sas\_to\_stata.html This site does not include information for running "mixed" SAS models in Stata but it is a great general guide to Stata if you are used to programming in SAS.

#### 2. UCLA Academic Technology Services

http://www.ats.ucla.edu/stat/

A great site for many needs!

- a. <u>http://www.ats.ucla.edu/stat/sas/default.htm</u> specifics for SAS
- b. http://www.ats.ucla.edu/stat/stata/default.htm specifics for Stata
- c. <u>http://www.ats.ucla.edu/stat/examples/alda.htm</u> Gives code for running data examples in Singer & Willet *Applied Longitudinal Data*. Extra nice because it gives code in Mplus, MLwiN, HLM, SAS, Stata, R (S+) and some SPSS!
- 3. Singer, J. D. (1998). Using SAS PROC MIXED to Fit Multilevel Models, Hierarchical Models, and Individual Growth Models. *Journal of Educational and Behavioral Statistics*, Vol. 24, 323-355.
- 4. SAS online doc 9.1 about the mixed procedure<u>http://support.sas.com/91doc/docMainpage.jsp</u>
- 5. Centre for Multilevel Modelling, Research Unit, University of Bristol; distributor for MLwiN software. <u>http://www.cmm.bristol.ac.uk/</u>