ST Issues and Opportunities for Performance Extension (PE) and Burning Plasma (BP) Physics Testing

- 1. Tentative 10-MA concept
- 2. Data required from PoP
- 3. Scientific opportunities of PE
- 4. Cost scale, technology, savings

Martin Peng, ORNL@PPPL

Burning Plasma physics Topical Group Magnetic Fusion Concepts WG

July 15, 1999 Snowmass Village, CO

Small-Size ST Devices Have Been Envisioned for PE and FED Stages

Advance in Fusion Energy Technology

ST PE Device Has Potential for Testing Long-Pulse D-D, and Pulsed Q~1 and Q~10

Near-Term ST Devices	N STX /M A ST		DTST			VNS	PP-like
Development	ProofofPrinciple		Performance			Fusion Energy	
Stage			Extension			Development	
M ode of	No-	Wall-	D-D	Q~1	Q~10	Q~1	Q>10
operation	Wall	Stabilized	H~1	H~1	H~3	Driven	Sustained
Majorradius (m)	0.85		~12			~11	
A spectratio	≥1.25		1.4			1.4	
Toroidal field (T) atm ajor radius	0.3-0.6		09	1.7	1.7	2	1
Plasmacument (MA)	1-2		~5	~10	~10	~	10
Edge safety factor	10-5		~10			~10	
Plasm a cross section elongation	2-2.5		3			3	
Normalbeta $eta_{\mathbb{N}}$ (% Tm /M A)	5	8	3.5	35	5	4	8
A verage toroidal beta $eta_{ ext{T}}$ (%)	25	40	23	23	34	27	50
A verage density $(10^{20} \mathrm{m}^{-3})$	0.5	05	05	1	0.7	11	12
A verage tem perature (keV)	1	1.6	3	7	15	9	16
abla p-driven current fraction (%)	40	70	50	50	90	50	90
Plasmadrivepower (MW)	6–11		25	35	4	40	25
NBIenergy (keV)	70–80			110		400	400
Fusion power (MW)	_		—	36	40	66	260
H (ITERH98H) [Kandaun, 1998]	1-2		1	12	3	1	3
Plasmaflattop (burn) time (s)	1–5		~100	~10	~10	~1000	
N eutron wall load (M W fm^2)	—		d. 0			1.0	4.0
Neutron fluence/year (MW/m ²)	_		~0.003			~0.3	~12

Q~1 and Q~10 Modes Are Possible for 10-MA PE Device Within "No-Wall" Regime

NSTX Research Plans Capabilities to Investigate Key ST Physics Issues in the Next 4-5 Years

Database Needed from PoP to Support Design of PE Device (Driven VNS Mode)

- Properties of noninductive ramp-up of large current (≥ 0.5 MA, in ~ 5 s)
- Plasma heating up to the "no-wall" limit ($\beta_T \sim 25\%$, $\ell_i \sim 0.2-0.3$, $q_0 \sim 2-3$)
- Confinement scaling in ρ* and v* and H(ITER98H) ~ 1, with p-profile consistent with above β_T limit

– Factors in ρ^* and ν^* are ~ 0.7 and 0.1, respectively, from PoP to PE

- Maintaining p and j-profiles for several τ_E (~1 s), then for ~ τ_{skin} (~3 s), for $I_{\nabla p}/I_p \sim 40\%$, $I_{CD}/I_p \sim 60\%$
- Conditions for NTM and large-ELMs avoidance
- NBI ion orbit confinement (HHFW included) for H&CD with minimized TAE, "fishbone" impact
 - $-~\rho_{\text{NB}}{}^{*}$ and $\Delta_{\text{NB}}{}/a$ in PoP similar to $\rho_{\alpha}{}^{*}$ and $\Delta_{\alpha}{}/a$ in PE
- Plasma boundary and divertor operation
 - − Inboard limited, ND: SOL M_B~4, f_{exp} ~10, L_{conn}~10 m→ heat flux ~1 MW/m², lower H
 - − DN, SN: SOL M_B~2, f_{exp} ~2, L_{conn} ~4 m→ heat flux ~10 MW/m², higher H

Additional Database Needed from PoP to Support Design of Limited-Pulse BP Test in PE Device

- H(ITER98H)~2 via broad μ-turbulence suppression (ITB formation)
 - Understand degree of neoclassical ion transport
- Maintaining p and j-profiles for several τ_E (~2 s) without reducing "no-wall" β limit
 - Compatibility among heating, transport, and p profiles
 - May need to adjust ρ_{NB}^* , Δ_{NB}/a , and HHFW, NBI parameters
- Plasma boundary and divertor operation
 - Reduced heaitng power (to ~6 MW) reduces DN, SN divertor heat flux ~5 MW/m², which is consistent with higher H.

Confinement Obtained in NSTX Aims to Enable Projections to the Next Step

STPhsmaCurrent(MA)

Complementing Capabilities of MAST and NSTX Strengthen World ST Fusion Research Program

MAST (U.K.) DND Plasma, Limiter Plasma. A=1.45 K=2.53 A=1.31 K=1.63 **P**2 **P**1 R3 **P**5 Z(m) 0.5 -2.0 -1.5 -1.0 -0.5 0.0 1.0 $\mathbf{R}(\mathbf{m})$ UKAEA

- Nearby Stabilizing Shell
- Poloidal Field Coils
- RF Heating&Current Drive
- Plasma Current Startup
- No In-vessel ECH Compression

(beta limits) (plasma shaping flexibility) (efficient sustainment) (eliminate solenoid)

⇒ Development of comprehensive database for Performance Extension step

Yes

CHI

Ex-vessel

HHFW

2.5 m

Projected Opportunities and Contributions by PE Device for Driven VNS of Similar Parameters

- Noninductive initiation and ramp-up of large current (~10 MA, in ~40 s)
- Plasma heated up to the "no-wall" limit ($\beta_T \sim 25\%$, $\ell_i \sim 0.2-0.3$, $q_0 \sim 2-3$)
- Confinement scaling in ρ* and v* and H(ITER98H) ~ 1 with p-profile consistent with above β_T limit
- Maintaining p and j-profiles for several τ_E (~10 s) for $I_{\nabla p}/I_p \sim 50\%$, $I_{CD}/I_p \sim 50\%$, Q~1, P_{DT}~40 MW
- Maintaining p and j-profiles at half I_p and B_T for > τ_{skin} (~100 s) in D-D
- Conditions for NTM and large-ELMs avoidance
- Fusion α confinement (HHFW included) and plasma heating with minimized TAE, "fishbone" impact
- Plasma boundary and divertor operation
 - − Inboard limited, ND: SOL M_B~5, f_{exp} ~20, L_{conn}~15 m→ heat flux ~2 MW/m², lower H
 - − DN, SN: SOL M_B~2, f_{exp} ~2, L_{conn} ~7 m→ heat flux ~20 MW/m², higher H

Additional Opportunities and Contributions of PE Device for Limited-Pulse BP Test in PE Device

- H(ITER98H)~3 via broad μ-turbulence suppression (ITB formation)
 - Understand degree of neoclassical transport
- Maintaining p and j-profiles for several τ_E (~10 s) without violating "no-wall" β limit ($\beta_T \sim 34\%$, $I_{\nabla D}/I_D \sim 75-90\%$, $\ell_i \sim 0.1-0.2$, $q_0 \sim 3-4$)
 - Q~10, P_{DT}~40 MW, P_{H&CD} ~ 4 MW!
 - Compatibility among α -heating, transport, and p profiles
 - May need to adjust in ρ_{NB}^* , Δ_{NB}/a
 - ~1 Wb solenoid provided to maintain 10-s flattop if needed
- Plasma burn dynamics
- Eases DN, SN divertor operation (~10 MW/m²), consistent with H~3.

Note: D-T operation for > τ_{skin} to be tested in FED stage

Scale of Cost (\$M) for Fully Enabled National PE Facility, Schedule, Plasma Technology, Savings

Costing Groups	NSTX	PE	Comments
Magnets + support	6	70	Scale with volume $\times B_{T}^{2}$
Vessel components	7	60	Scale with area \times 3 (no Carbon)
H&CD systems	9	100	NBI-32MW (\$2.5/W)
			HHFW-8MW (\$1.5/W)
			EBW-4MW (\$2/W)
Facility Modification	8	40	NSTX utilized ~20%
Diagnostics	2	20	Basic set at TFTR level
"Igloo" shields		20	30 for TFTR
Total Cost Scale	32	310	D-site facility valued at ~300

Steady state NBI, HHFW upgrade; commercial ECH system ~70 GHz

- Conceptual design to estimate cost and schedule requires ~\$30M effort; full project could begin in 5 years if approved
- Recommend *physics scoping in FY2000* to guide NSTX research