The SURFRAD aerosol optical depth product and 11-year climatology

John A. Augustine

Earth System Research Laboratory Global Monitoring Division Boulder, Colorado

Previous U.S. Aerosol Optical Depth (AOD) Climatologies

- Flowers et al. (JAM, 1969), 29 stations across the U.S., 1961 - 1966
- Michalsky et al. (JGR, 2001), 9 stations, Northeast quadrant of U.S., 1992 - 1999
- Holben et al. (JGR, 2001), 3 U.S. stations (Maryland, Oregon, New Mexico), 1993 - 1999

These all include effects of large volcanic eruptions

The SURFRAD AOD climatology contains no effects from volcanic activity

SURFRAD Network

Operational since 1995

Surface Radiation Budget + ancillary measurements for research

Fort Peck, Montana

Multi-Filter Rotating Shadowband Radiometer

Nominal MFRSR filter profile

* AERONET channels

Langley Calibration

Long and Ackerman clear-sky identification method used to objectively define Langley-plot points

Time series of mean 1-2 month mean Langley calibrations

Computing Aerosol Optical Depth:

- •Interpolate V_o to a particular day using a periodic function, and correct it to the appropriate earthsun distance
- •Compute "total optical depth" ($\Sigma \tau$) for each MFRSR 2-min. measurement (V)

$$V = V_o e^{-m \sum \tau}$$

 Subtract the effects of molecular scattering and ozone absorption

$$\tau_{a} = \Sigma \tau$$
 - τ_{m} - τ_{o}

Aerosol optical depth product

Comparison to NASA's AERONET

Collocated at Bondville, IL and Sioux Falls, SD

Composite annual multi-spectral AOD time series

Mean Angstrom Exponent

inversely proportional to particle size

log-normal particle size distribution -- may not be always appropriate

	BON	FPK	GWN	TBL	DRA	PSU	SXF
Jan.	1.54	1.26	1.57	0.95	0.98	1.06	0.87
Feb.	1.66	1.33	1.70	1.17	1.06	1.21	1.23
Mar.	1.50	1.19	1.55	1.15	0.90	1.11	1.29
Apr.	1.27	1.00	1.28	0.96	0.65	0.99	1.09
May	1.19	1.12	1.38	1.02	0.76	1.32	1.00
June	1.53	1.28	1.51	1.24	1.02	1.68	1.18
July	1.57	1.44	1.51	1.48	1.30	1.70	1.11
Aug.	1.61	1.65	1.58	1.42	1.13	1.66	1.40
Sep.	1.63	1.40	1.67	1.27	1.03	1.46	1.36
Oct.	1.50	1.26	1.54	1.14	1.06	1.29	1.12
Nov.	1.60	1.22	1.40	1.02	0.83	1.26	1.18
Dec.	1.50	1.15	1.33	0.96	0.78	0.94	1.23
Annual	1.50	1.27	1.50	1.15	0.96	1.31	1.17

Decadal tendency of Network-wide 500nm AOD

0.01 decrease/decade (-6%)

Aerosol optical thickness over the oceans as measured by satellite (ISCCP DX radiance) and SAGE

Mischenko and Geogdzhayev (GEWEX NEWS, May 2007)

Goodwin Creek, Mississippi

Bondville, Illinois

PENN STATE

Fort Peck, Montana

Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity

A. L. Westerling,^{1,2*} H. G. Hidalgo,¹ D. R. Cayan,^{1,3} T. W. Swetnam⁴

18 AUGUST 2006 VOL 313 SCIENCE

Updated wildfire statistics

Table Mountain, Colorado

Without major fire years

Sioux Falls, South Dakota

Summary

- 11-year AOD record (1997-2007) completed for SURFRAD
- Highest AOD in eastern U.S., lowest in west
- Springtime Asian dust signature prominent in western U.S.
- AOD decreased slightly over the U.S.from 1997 to 2007 -- similar over the oceans
- AOD decreases only in the eastern U.S.
- Decadal AOD *increase* at two western stations is consistent with increased frequency *and duration* of Rocky Mt. wildfires

- Climate-change induced drought may be increasing wildfire frequency and duration in U.S.west -- increasing AOD there would be a negative feedback to greenhouse-gas warming
- AOD record is not long enough to give confidence to the observed tendencies
- Longer time series are needed

The SURFRAD aerosol optical depth product and 11-year climatology

Questions?

Possible future Surface Energy Budget Network -- SEBN

500nm channel calibration results for May and June 2005

500-nm channel results: 1 2005 05 19 82 500nm AM 7.313 0.9763 1535.44 -0.175 0 2 2005 05 19 71 500nm PM 7.332 0.9763 1565.50 -0.223 0 3 2005 05 22 58 500nm AM 7.302 0.9751 1521.45 -0.194 0 4 2005 05 23 71 500nm AM 7.309 0.9747 1532.29 -0.196 0 <u>-5 2005 05 27 57 500nm PM 7.371 0.9733 1633.59 -0.284</u> 1 6 2005 06 06 77 500nm AM 7.303 0.9703 1529.48 -0.207 0 7 2005 06 07 79 500nm AM 7.312 0.9701 1544.90 -0.218 0 8 2005 06 08 68 500nm AM 7.291 0.9698 1513.34 -0.196 0 -9 2005 06 11 81 500nm AM 7.266 0.9691 1475.71 -0.182 0 10 2005 06 14 78 500nm AM 7.302 0.9685 1531.21 -0.187 0 11 2005 06 14 70 500nm PM 7.285 0.9685 1505.65 -0.231 0 12 2005 06 18 67 500nm AM 7.326 0.9679 1569.71 -0.190 0 13 2005 06 19 79 500nm AM 7.325 0.9677 1568.76 -0.199 0 14 2005 06 23 70 500nm AM 7.275 0.9672 1493.27 -0.209 0 15 2005 06 27 60 500nm AM 7.362 0.9669 1628.63 -0.265 0 16 2005 06 30 73 500nm AM 7.298 0.9667 1528.80 -0.220 0 average y intercept = 1542.36 weighted average y intercept = 1540.09 y int std. dev. = 43.09 1475.71 y int minimum = y_int maximum = 1633.59 AOD error 0.028 = 1633.59 rejected because gt 1 sigma from mean 1475.71 rejected because gt 1 sigma from mean 1493.27 rejected because gt 1 sigma from mean 1628.63 rejected because gt 1 sigma from mean 1569.71 > 1.5 sigma from refined mean, rejected by 2nd pass New sample (reduced to 11 values): 1535.44 1565.50 1521.45 1532.29 1529.48 1544.90 1513.34 1531.21 1505.65 1568.76 1528.80 refined average y intercept = 1534.26 refined weighted average y_intercept = 1534.97 refined y int std. dev. = 19.40 refined y int minimum = 1505.65 refined y_int maximum = 1568.76

=

0.013

refined AOD error

Error analysis: σ^{0} $(\sigma\tau)^{2} = (\sigma V_{o}/mV_{o})^{2} + (\sigma V/mV)^{2}$

 $\sigma \tau = \sigma V_o / m V_o$

Whole-network time series of monthly mean 500nm AOD

Date

Calibration problem

MFRSR calibration

ScienceDaily (Sep. 1, 2004) — The area burned by wildfires in 11 Western states could double by the end of the century if summer climate warms by slightly more than a degree and a half, say researchers with the U.S. **Department of Agriculture Forest** Service and Pacific Northwest Climate Impacts Group at the University of Washington.