

NASDA <u>0. About GLI Mission</u>

T he GLI is an optical sensor designed to observe the atmosphere, ocean, land, and cryosphre.

T he GLI was first suggested by the Earth Environment Observation Committee (EEOC) of JAPAN in 1990.

N ASDA has been developing this since 1993 as a general purpose medium spatial resolution visibleinfrared imager to cover atmosphere and land observation as well as ocean color observations.

T he GLI will be launched by NASDA H-2 rocket at Tanegashima Space Center in 1999.

NASDA <u>I-I ADEOS-II Satellite</u>

AMSR Advanced Microwave Scanning Radiometer (AMSR), Global Imager (GLI), SeaWinds, Polarization and Directionality of the Earth's Reflectances DOF (POLDER), and Improved Limb Atmospheric Spectrometer II (ILAS-II). DCS GLI Solar array paddle (PDL). Communications and Data Handling Subsystem DTL-ANT (C&DH), Inter Orbital Communication Subsystem (IOCS), Mission Data CCR MDF ILAS-II Processing Subsystem (MDP), Direct Transmission for Local users (DTL) and DTL-Antenna (DTL-ANT), Direct Transmission Subsystem (DT), POLDE Cube Corner Reflector (CCR). Data Collecting System (DCS) and Antenna DT ESA SeaWinds C&DH (DCS-ANT), and Earth Sensor Assembly (ESA). PDL x Z Earth Observation Research Center

NASDA _______ <u>1-4 GLI Channel Specification</u>

	VNIR			SWIR			MTIR	
(lkm result	dian)		(ikm resol	ution)		(Ihm read	lest hoge)	
chl	380(10)	0 A C	ch24	1050(20)	LA C	ch.30	3.715(0.33) () A C
ch2	400(10)	0	ch25	1135(70)	۱.	ch31	6.700(0.5)	١
ch.3	412(10)	0	ch26	1240(20)	LAC	ch32	7.300(0.5)	A
ch-lp	443(10)	OLA C	ch27	1380(40)	4	ch33	7.500(0.5)	A
ch5p -	460(10)	OLA C				ch.34	8,600(0.5) (DLA C
ch6	490(10)	0	(250m rese als 2.9	hation)	1.4.0	ch35	10.80(1.0) (DLA C
ch7p	520(10)	O A C	-620	2210(200)	LAC	ch.36	12.00(1.0) (DLA C
ch8p	545(10)	O A C	CR29	2210(220)	LAC		unit (µm)	
ch9	565(10)	OL		unit [nm]				
ch10	625(10)	0						
ch11	666(10)	0	6	1 ~	ş			
ch12	680(10)	0						
ch13	678(10)	LAC		1	- W.	C	- 4 1 - !	
ch14	710(10)	0			•	Cros	s tracking sca	
ch15	710(10)	LAC			9 6	Altit	ude	:803 km
ch16	749(10)	0				Inclin	nation	: 98.6 deg.
ch17	763(8)	LA			2.3	Swat	h width	:1600 km
ch18	865(20)	0		C NOTE S		Dece	lution	• 1 km
ch19	865(10)	LAC	1 			Keso.	ubnoint)	· 1 Km
(p:piec	ewise linear	}				(5.	dopolint)	. 250 III
			AD		N CODE	Tilt :	angle	: 20 deg.
(25%m resol		140		· OCEAN	N CODE	Perio	od	: 101 min.
(R4U	44MM(70)		L V	: UCEAN		Recu	rrent Period	4 days
CN21	343(30)		Ļ	: LAND	UEDE	Loco	l timo	· 10.30AM
CN22	000000000000000000000000000000000000000		A	:ATMOSI	HERE	Loca	u unic	. 10.30ANI
CR23	843(110)	LAC	C	: CRYOSP	HERE	🛛 🛛 Data	rate	:4.1Mbps

NASDA/GLI/GAIT

NASDA ______ 2-2 GLI Project Schedule

					***											199	71						÷.						199	•											19	**						Т						20	00					
	13	1	_	۱	,	•	•	10	11	12	ı	,	3	٠	1	•	1	•	٠	10		1 1	2			,	•		•	,	•	•	10	"	12	1	3	1	•	1	4	,		۱	H	i i	1	Ŧ			3	•		•	,	4	٠	10		_
		Т	т	T	r		;			7	-	-	- 1	-	- !	-	-	-	-		-	<u>.</u>	-	Т	-		-+		-	· •	-	-	_	-	-	-	Т	-	-					_	,		T	-	-	-	- 7	_	-	_		_	-		_	+
			1	1	ĀČ	ÊČ	S	-		-		-	-	-	-1	-†	-1		-	1-	t	t	t	t	÷	+	- †		-+	+	-+	+	-+	-+	-1	1	+	÷	+	+	-	AC	EC)\$.	H.	Ú.	nc)	1;-		-+-	-ŀ		-+			\vdash	+	┢	+	ł
Vilestone		1	Ţ.	1	1	Δ	÷					_	_	_	_		_1		_	Ē	Δ	-18	M	м,	t	1	T		T	1	t	1	1	1	1	1	1	1	#	t	1		Δ	-	1	L	tz	1-	-+-	-+-	t	-1	-+	-t	-		٢î	t	÷	t
Deption .			+-	+	i	÷	÷				-	-		-+	-+	-+	-	_	-	L	1	÷.	4.		1		4		4	4	.1	-1	4		1	. Р	T P			h				_		1	4	T.	- 4-4		T		_				Γ.	L		I
Anaron .	-+-+	٠ŧ.	+	÷۲	+	ł	<u> </u>	-	-	-	-		-+	-+	-ŀ	-+	-	-	-	┝	┢	÷	+-	+	ł	-+	÷	+	+	+	-+	-+	-+		5	- Ŧ	-1	Ŧ	÷			-	д	-	-	1-	Α.		-+-	-+	-+	-+	-	-		L	ļ	Ļ.	÷	Ļ
	-++	-+	+-	+-	t		÷						-†	-+	-+	-+	-1		-	-	t	÷	ŀ	÷	╉	÷	-+	-+	-+	╉	-+	-+	+		-	+	-+	-1	┽	-+	-	-		-	+-	+-		-	+-	-+	-+	+	-+			-	┝	┢	+	ł
			p	esk	'n	1.4		PD	IA į	1			PC	R	2	ľ			~	CI	ĎЯ	-	in	фk	m	ent	20	on	t	t	• †	t	Ť	нŔ	-1	1	-	-	÷	-	+		-	••••	-	1-	1	1.	- -	~+	-ł	-ł	- -	- 1		H			-	ł
rocessing Facility		. F	ন	Ŧ	+		-1	Υ.					Z	E.				-	_		Ę	-	-	- F		+	- 1-			Ż	7Ę	+				4	-	ZÎ.	1		1					1-	1	1-	t	-1-	+	-†	-+	1		-	<u>+-</u>	┢		t
)		-	-	+	ļ.,	i					_	_	_	-ŀ	_	-	-		_		Ι.	Ļ.	Ŧ	-	Ŧ	-	-	_	4	4	-	4	4	-	Ţ		_	Ţ			1	-	_		igc	or R	hm	17	-	-1-	Alo	-	rit	hm			L.	1		t
		1	1		Ļ€'	Yel	10	om	рu	er i	57	50 M	n ,	- [-1				-	FZ	3	+-	ł	+-	· ∔	÷	÷	÷	÷	4	-+	-+-		+	- 1	nab	n H		UNIC	WB U			-	. 71	n İk	dal	ion	í		. Ja	Ne Y	Ű.	ж	up		_	ļ	Ļ.,	-	Į.
	• + +	-+-	+•	┝	┢─	÷			-	-				-		-+	-+			ΗĶ	÷,	H F	ý	đ٧	dis (çà	mp	uh	٢	yşt	em,	۱ł	-+	+	-t	-				-	-		-7	_		1-	<u> </u>	1-	4	÷	1	-1	-	Ì		Ы		┝	-	ł
		1	1	t	1	ţ.	~			7			-1	-†	-†		-†	-	4		*	÷	±	-	. 	-	-t-	=	-	a‡a	-		≍t	t	f	Ŧ	-	1	+	1	-	L	4			F	F	F	Ŧ	干	- 1-	-1	-	7		4		┝	-	t
		T	1	Τ.	Ι.	1	Re	aui	ren	-	4°		1						T	1	Г	1	t	T	T	T	T	Ť	Ť	Ť	T	T	T	t	1	1		1		"Ť	1	T				t	1-	1-	+-	-†-	t	-†	+	-†			<u></u>	+		t
		-	4.	÷	ļ	÷	<u> </u>	-		-1				-	-+	-	_∔		00		к.,	-	ek te	-pr	-	τ.	-	_	+	+	-	-	-	-	1		1	1	T	1	1	Ц		-		Γ.	1	1	T	T		1	1					L		E
	-+-+	+	+-	+	ŧ	÷	÷		-		-		-+	-+			-+		4	F	F	7-	F	Ŧ	Ŧ	Ά	+	-+	+	+	+	+	-+	-+	-+	-		4	+	-	4	Н	-			4	-	4-	+	-	-	-	4	-1				Ľ.,		F
	++	-+-	+-	+	to	ól k	R F	eq	uhi	mi	nt	+	-+	-1	-		-+	••••		-	⊢	÷	┢	÷	-H	H	-+	÷	-+-	÷	-+-	+	-+	-+	-	+	-	╉	+	-+	-+	Н			-	-+-	╂	+-	+-		-+-	-+-	-+	-+				-	L	ŀ
ligher Products	++	+	+-	†·	t	1		t i i		1		-	-+			-+-	-+	-	ĸ	F	t	t	÷	┢	+	ŀ	-+		+	+	-+		-+	+	-+	÷		-+-	+		-+	H	-			╉╍	ŧ	4-		-+-	-†-	-+-	-+	-+				┝	-	ł
W ²	11	1	t	t	1	<u>+</u>	•	-	1		1	-	-7	-1	-1	-	-7		Т		t	t	-	t	1	It	t	t	+	t	+	-+	-+	+	-		÷	t	+	+	+	Ħ		-		t-	 -	t	+-	-t-	÷	-†	-+	-+				h	-1	ł
ORC)		T	1	1	1	1				1			Em	iró	nm	em	t †		T		t	1	-	t	Ħ	t	-1	20	CAR	LTO.		1	-+	†	1	T	SCH	Inc	• :	Sol		M.O	-	-		t-	1-	t	+-	-	-†	-†	-+		-			h		t
		1	1.	1.	Į.	4					_			pe,		on 	_	_	I	Γ	E	1	T	L	Г	I		aracı 	4	+100		T	Ι	1	1	1	K 136		-				_	_		1	12	E	.t	Ē	1	T	1							L
	- -		1.	+ -		i -					-			- 1					-	-	F		Ŧ	Ŧ	닅	4	÷		+	+	-		j-	-	τ	-	-	-	-			Ż	Υ.			Ι.,	1.	E										Γ.		Г
	++	-+-	+-	+-	+-	÷-	÷				-+	-i	-+	-ł	-+		-	-		⊢	┢	÷	┢	╞	-+-	H	-+-	-+	+	+	-+	-+-	-+	-+	-	H	_PI	hes	•	4∔	+	4				₋	÷	₽	╇	4	+	-+-	+	-+				L	-	┡
	++		+-	+-		÷	-	-		-1		-+	-ł	-+	-ł	-+	-†	-1		⊢	┢━	+	+	╋	÷	ŀ	-+-	+	÷	÷	+	+	+	-+		H	+	┿	÷	+	+	+				╞	+	1 -	+-	-+-	-+	-+	+	-i	-	_				┝
ligorithm integration	++	+	+-	+-	1	+-		-	-	-	1	-1	-†	-+	-t	-+	-1			⊢	t	+	+-	$^{+}$	÷	ŀŀ	-†-	-	~+	t	-+-	+	+	-+	÷	Ħ	+	╉	+	+	+	+			-	┝	┝	ŧ-	┿	╋	╋	-t-	-+-	-+		-			+	⊦
DAC)	11		1	1	1	T				Pn	odi			_1	-*	igo	CTU CTU	h			1-	t	t	t	11	It	t	-	+	t	-†	1	-†	青	na	*+	-+-	╈	+	+	+	1	-1	-	-	t	t	t-	┢	+	+	-t	+	-†	-1	-	-			t-
	II	T	Τ.	1		1				<u>_</u> F	ALC:	TIC:	100	<u>"</u>	- 5	PH		Cal	- 100	<u> </u>	Г	T	E	T	Т	It	T	1	Ì	Ť	T	T	T	R	ep	хt	1	1	1		1		-	-	-	t	t-	t	t	1	T	t	十	+	-1	-1		-		t
	++	-	+-	-	Ì	ł					-	4	-	-	_	-	_	_		Γ.	F	F.	F	1.	Ŧ	I.	T	1	Ŧ	Ŧ	Ŧ	Ŧ	Т	-+	4	H.	1	I	T	_	1	_		_	_	Г		1	F	T	Т	Τ	Т	\Box						Ē
	++	+	+	+-		÷		-	-	-	-+	-+	.Ą	-+	-+-	-+-	-+		~	-	ini	ivri	m.	┢	+	┢┢┯	-+-	-+	+	+	+	+	+	+	+	₽	+-	+	+	-	+	-	+	-				-	╋	+	+	_	+	-+	_			-		┡
	++	+	╈	+	<u>+</u> -	+		-+	-	-	+	+	-†	-+	-+	+	-+	-+	-	⊢	ŀ∙	ро	rt –	+	+	╟	╋	-t	+	+	+	+	-+	+	+	₽	+	╉	+	+	+	-	-	-		┢─	╂	₽	╇	+	+	+	╋	-+	-	-+			-	┝
ligorithm	++	+	+	1-	+-	1-		-+	-1	-1	-+	t	1	-	-†	+	1	-	-	\vdash	⊢	1	t	+	+	Ħ	-+	+	t	÷	+	+	╉	-12	c†	łt	┽	┽	$^{+}$	╉	┽	-	-	\neg		┝	t	Ł	╋	+	╉	┽	┿	-+	-	-+		-		h
Development	TI	T	Г	1	17	1			-	-	-	-	igc.	n		-	1				t.	1	7	T	T	17	4 ig	ori	3	- 163		÷.	1	-	Т	Ħ	+	1	1	+	1	-1	-	-		t.,	t_	t.	+	+	-†	+	-†	+	-	-	-			h
RC)		1		Ι.		i					_[34			10	L	Γ	Г	T.	dě	Yel	opr	nei	nt (Т	Т	Т	Т	П	Т	Suş	ppo	ort	Ph		• 4			Ľ		1	JON L	"	Т	-1	-	-1	-1					Г
	++	+-	+	+	<u>+</u> _	1	-		-		-	Ph	asi	ьţ	幸	4	4	P		• :	żΞ	Z	¥	Ŧ	Ŧ	Ŧ	Ŧ	Ph	194	3	+	Ŧ	Ŧ	Ŧ	4	Ŧ	Ŧ	-	-	-		-	Z	-				扫	₽	4	-	-	-	_	_					ſ
	-+-+	+-	+-	+-	ļ	÷	-	-+	-	-+	+	+	-+	-+	-+	-+-	-+	-+	-1	-	┢╌	┢	┢	╀	+	┢	+	-+	╋	╋	-+-	+	+	-	4	+	4	+	+		+	-		-		-		₽	∔-	╇	+	+	4	4	_	-+			-	Ļ
feeding	-++	-17	tī	1	1	i v	-		-		+	-눈	, t	÷	a.		+	-	-		to	te	1	÷	+	+	+	÷	1	t	÷.	÷+-	+	+	╉	+	╉	+	+	+	+	+	-+					ł-	+	+	+	-+-	-+	-+	-+	-			-+	ŀ
	++	ť	1	17	1	. "			۴,	-	-	- e	1		1	Ň	'n	-†	-7	1	571 (1	ï	.ə/#	φ.	$^{+}$	-1	~		I N	1110	۴,-	+	+	╉	+	-+-	+	+	-+-	+	-+	-	-+		+-	-	1-	+-	+	╋	╈	-+-	-+	-	-+		-	⊢	F
	11	1	T	1										t	Ī	1	_	_			Ľ	t	t	t	t	t	t	Ť	t	t	t	t	1	Ť	t	t	204	iÞ		Re		10	t			t	t	1-	t	+	t	+	$^{+}$	-†	-1	-†		-		t-
	TT	1	1	Γ.	L.	1				_			1					_	_		Γ	Γ	Г	Γ	Γ	Γ	Δ			÷	-	-	-			*	-	- 1			- 31		' ±				<u>.</u>	는	÷	=		Δ	T	1						Γ
		1	1	1	<u> </u>	<u>}</u>			1					-1		1	i	i			1	Ľ	Ľ	1	1	ſ	ſ	T	F	L	<u>.</u>		Т.	.Г		1	Ľ.	T	T	T	T		-1			Ľ	Γ.	E	Г	T	T	Г	T	-1	- 1					Г

ADEOS-II GLI/AMSR Algorithm Development

Earth Observation Research Center

Categories of Products on GLI Science Mission

. Standard products (by fixed algorithms)

1. Production by planning

Processing all data,

Using 4-pixel/ line resampling data for Atmosphere and Ocean

Using 16-days composite data for Land and Cryosphere

2. Production by order

Processing only ordered data (10% of all data)

Using Full resolution (1km) data

3. Research products (by under research algorithms)

Production by manual operation at EORC

General Flow of Data and Algorithm modules

on GLI Science Mission (Ver. 1.8 by GAIT)

[production by planning)

<16 Sep., 1997>

http://www.eorc.nasda.go.jp/ ADEOS-11/GLI/flo

Atmosphere

(PL N	ame)
G15 G16 G21 G30 G33 G36 G42 G43 G50 G56 G56 G60	Vonder Prata Rosenfeld Kuji Isaka Pinker Takamura Ohta Uchiyama King Nakajima
663	501

ARAE	Aerosol angstrom exponent
ARER	Aerosol effective radius
AROP	Aerosol optical thickness
ARTY	Aerosol type
CESR	Cloud free shortwave radiation
CLER wo	Cloud effective particle radius(.w.water cloud,
CLED o	Cloud flags dataset(pixel by pixel)
CLFD2.3	Cloud flags dataset
CLER P	Cloud fraction(pixel by pixel)
CLFR	Cloud fraction
CLGTHK	Cloud geometrical thickness
CLHT w/i	Cloud top height(_w/water cloud, _i ice cloud)
CLOP p	Cloud optical thickness(pixel by pixel)
CLOP with	Cloud optical thickness(_wiwater cloud, _ilice cloud)
(CLPS	Cloud phase)
CLTT p	Cloud top temperature(pixel by pixel)
CLTT w/i	Cloud top temperature(_w:water cloud, _i:ice cloud)
CLTY p	Cloud type
Ci,WP w/r	Cloud kquid/ice water path(_w:water cloud, _i:ice cloud)
PAR	Photosynthetically active radiation(downward and upward flux)
PACP	Precipitation
SSRB	 Surface shortwave radiation budget (downward and upward fluxes)
TSPB	TOA shortwave radiation budget(downward and upward fluxes)
WVP p	Column water vapor amount(pixel by pixel)
WVP	Column water vapor amount

(Algorithm Code)

ATSKI	Algorithms for identifying clear sky region
ATSK2	Algorithms for identifying cloudy region
∧15К3 р	Petroyal algorithms of cloud parameters (pixel by pixel)
ATSK3	Relieval algorithms of cloud parameters(segment)
ATSK38	Correction algorithm for broken clouds
AISK4 p	 Algorithms for identifying the waterrice cloud and phase(pixel by pixel)
ATSK5	Reliveval algorithms of aerosol parameters
ATSK6 p	Refrieval algorithms of water vapor amount(pixel by pixel)
ATSK6	Reineval algorithms of water vapor amount(segment)
ATSK7	Studies of optical parameters appearing in radiative transfer processes
ATSK8	Ground-based measurements of cloud/aerosol parameters
ATSK9	Ground-based support measurements for vicatious calibration
ATSK10	Radiative transfer theory of broken cloud systems
ATSK11	Non-spherical scattering theory
ATSK12	Correlation between ATSK3(or ATSK38) and Precipiation
ATSK13	EPB(Earth Padiation Budget)
ATSK14 p	Texture analyses
ATSK15	Estimating CLTT.CLHT.CLGTHK(segment)
ATSK15 p	Estimating CLTT(pixel by pixel)
ATSK16	Algorithms for cloud fraction
ATSK17	Multi-time domain cloud screening algorithm
ATSKD	Data segmentation algorithm for atmosphere

(Products Code)

AP	Absorption coefficient of suspenderl particles
APH	Absorption coefficient of phytoplankton
CAROT	Carotinoid
CDOM	Absorption of colored dissolved organic matter
CHLA	Chlorophyll a(including CZCS like pigment)
cocco	Coccolithophoridae
FLUO	Fluorescence intensity
K490	Attenuation coefficient at 490nm
NWLR	Normalized water-leaving radiance(12bands and
	anneni radiances(Thands), (16"(F\$65), to al #65mm)
ONPP	Primary production by chlorophyll-a method
PAR	Photosynthetically active radiation
PHYCO	Phycobilin
QF_OC	Quality flag for ocean color
QF ST	Quality flag for SST
ss	Suspended solid weight
SST s	Skin Sea surface temperature
SST b	Bulk Sea surface temperature
TRICO	Tricodesmium

(Algorithm Code)

(PI Name)

G03 Barton G11 Taguchi G14 Abbott G15 Vonder G20 Michell G35 Frouin G55 Kishino G55 Kishino G65 Cota G65 Fikushima G68 Kawamura

OTSK1 :	Atmospheric correction algorithm
OTSK2	Chlorophyll-a algorithm
OTSK3 :	Accessory pigment algorithm
OISK4a:	Ecosystem model algorithm
OTSK4b:	Primary production algorithm (Natural fluorescence method)
OTSK5	K490 algorithm
OTSK6	Suspended solid algorithm
OTSK7	Colored dissolved organic matter algorithm
OTSK8	In-water ontical measurements
OTSK9	Study of in-water optical parameters
OTSK10	Measurements for atmospheric correction
OTSK11	In situ SST measurements
DTSK12	Vicarious calibration measurements
OTSK13	SST(bulk) Algorithm
DTSK14	Algorithms for estimating PAR
OTSK15	(unified to OTSK 13)
OTSKIR	SST(surface) Algorithm
OTSK17	TRICHO Algorithm
OTSK18	COCCO Algorithm
OSTK 19	AP and APH Algorithm
OATSKD	Data processing for Level-2A OA(resampling_etc)

Land

(<u>PI_Name</u>)	(Prod <u>ucts Code</u>)
G06 Fujiwara G07 Duong G12 Verstraete G13 Hock G16 Prata G18 Huete G19 Trotter G22 Awaya G24 Honda G31 Tateishi G34 Yasuoka G36 Fujiwar	APAR : Absorbed photosynthetically active radiation LBRN : Biomass burning index LBMSS : Precise biomass LGI : Lant cover type LNPP : Net primary production LST : Land surface temperature-1km ² Research ² MSH1000 : Ikm messhed data SA : Spectral abedo VGCI : Vegetation index VGI : Vegetation index

(Algorithm Code)

LISKI	Algorithms for atmospheric correction and reflectance
LISK2	Algorithms for classification of vegetation and land cover
LISK3	Algorithms for estimation of biomass and carbon amount
LISK4	Algorithms for detection of vegetation changes
UTSK5	Algorithms for estimating APAR, primary production,
	and improved monthly vegetation biomass
I ISK6	Measurements of BDBF of venetation
LISK7	Development of standard spectral vegetation reflectance
	measurement methods

- measurement methods ITSK9 Land surface temperature algorithm §TSK0 Vegetation Index Algorithm ETSK10 Mosarcing Algorithm LTSK6 Precise gengraphical position

- Ancillary Data
 Ancillary Data

 NYE D1_Ancillary Data for signific calibration NYE D2_Ancillary Data
 Statistic construction of the objective Analyses

 - U(D, 1777) From the Objective Analyses
 Statistic construction objective Analyses

 NYE D4
 Statistic construction objective Analyses

 NYE D4
 Ancillary Data

 - VADSR data
 Statistic construction objective Analyses

 NYE D4
 Ancillary Data

 - VADSR data
 Statistic construction objective Analyses

 NYE D5
 Ancillary Data

 - Digital Flexibility Data
 Anv:D2

 - Digital Flexibility
 Anv:D2

 - O3 from 10MS
 NIC D4

Cryosphere

(Algorithm Code)

CTSK1 :	Cloud detection algorithm
	(1a cloud/snow discriminator.1b snow/ice discriminator)
CTSK2a1:	Algorithm for Spectrally Integrated Surface albedo
CTSK2a2:	Algorithm for Spectral surface albedo
CTSK2a3:	Algorithm for Spectrally-Integrated planetary albedo
CTSK2a4:	Algorithm for Spectral planetary albedo
CTSK2b1:	Algorithm for snow grain size
CTSK2b2:	Algorithm for snow impurities
CTSK2b3:	Algorithm for Snow covered area
CTSK2c1:	Algorithm for Sea ice classification
CTSK2c2:	Algorithm for Ice covered area
CTSK2c3:	Algorithm for Iceberg monitoring
CTSK2c4:	Algorithm for icesheet monitoring
CTSK2d ·	Algorithm for Surface temperature in cryosphere
CTSK2e ·	Algorithm for Aerosol properties over snow and ice
CTSK2f ::	Algorithm for Photosynthetic active radiation
CT5K3 ::	Algorithm for cloud properties over snow and ice
CTSK4	Algorithm for Solar Radiation Budget at TOA and Surface
CTSK5	Algorithm for AMSR combined data

 (Products Code)

 AMCD
 AMSA combined data

 AOS
 A erosol properties over snow and ice

 COS
 Cloud properties over snow and ice

 ICEB
 Icesolg properties over snow and ice

 SIC
 Sea ice odge monitoring

 SIWMG
 Snow organ size

 SIWMG
 Snow organ size

 SIWMG
 Snow iceptral properties

 SIM
 Spectral properties

 SIM
 Spectral properties abendo

 SIC
 Surface imperialune in crosphere

(Pl_Name) G49 Oishi G52 Stammes G54 Zege G58 Aoki G67 Schneider

(Products Code)

General Flow of Data and Algorithm modules on GLI Science Mission (Ver1.8 by GAIT) [production by order]

<16 Sep., 1997>

OTSK19 APg- C

nothing

Land

e.,

4-8 GLI Synthetic Data(AVHRR to GLI)

Earth Observation Research Center

http://www.eorc.nasda.go.jp/ADEOS-II/GLI/gli.html

NASDA ______ 2-1 GLI Project Organization

