iscoustics of Boundary Lavers

The role of the surface shear siress "divole"
(d3V 55,159(1979))
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At low mezn flow Mach numbers we may use Lighthill's

equation: '
1% ..V"’} }: = _a_t ((90“';"_,'> - a‘k(rog VL! _\_EV(AAA‘Q_I))
, Jﬁ? %Y, 4

Take the Fourier transform w.r.t.(x1,x3,t), and let k = (k1,0,k3).

%-z(@‘ 2 } ;: - 5 . 2 (I)(X= OO
¥y S / |

transform of viscous
Reynolds stress effects.

Use the Green's function G(xz,yz) defined bv:

(BL*QE )G = J(xu-9,) (11)

99,*

————

¥(£)

(Vo

. ‘y”z_ ) ‘Y"’L -
namely: G(xy,4,)= = 34 cos (¥4, ) H{x-9) ¥ @ “cos () Hioom)

This satisfies the radiation condition and -BG/QXZ = Q,4~= 03
95/3y; = 0, vy, = O,
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Aoply Green's Theorem to equations (I), (II) (as on paze 2.3)
in the region Yy > 0:

o0

G(zu%;\‘:SA +i]J3L. (111)

B, ®) = Glxyyo _Y’)
: K 9, = ¢

]
On x, = +0 the x.-component of the momentum eguation (rage 1.2)

becomes:
a ) A
9p — 4p 2 (dird) = -po B0
V%, 9 A

Hence, when viscous stresses within the boundary layer are neglected
in comparison with Reynolds stresses we obtain from (III):

"

60
A A A
F(-&l 0—‘) iy ‘ov-&s' ?__\,’l. : G(OJHL)S{.E'D‘ HLJJ"
‘ ) X('ﬁ-) % x, =4 o r :
surface pressure
"known" from the
distrioution of
ﬂV'V in boundary
represents the modification layer
of the turbulence induced
surface pressure due to
the surface shear stress

ov; Rz,

The Light h;ll Curle view is to interpret this fcrce as a surface
"dipole" source of sound, It is actually an acoustic sink! To see
this note that in the acoustic region 1/k S é‘ houndary layer

width, 4
H® KUuZy +1 va
[ ] A k‘}" v K
V.(%6) = 2= ({1~ ,
s s Pow m[(-iwv)]
) A .
(see page 4.20),. This may be us2d to calculate ‘Qvi/sz in
A

terms of ? , which is constant thrcugh the toundary layer at

low wavenumbers.




Hence, the surface pressure in the acoustic region is given dy:

1

L

. ¥(%) gua(o,m)s“(g,u,%um
| {X(g) + %*F(J%—_%%—?)

in which F(z) is defined on paze 4.21. Re(F)> 0, .'. shear

()

)

stress reduces the surface pressure.

The 2csustic ra2diation:

“ N ; '
Since © may be ‘rezarded as constan®t across the boundary layer

when kd§ <c 1, it follows that the far field acoustic pressure

satisfies the correspondence

X, = ':.:m.GmQ i ¥ (k) = %cn& ' W = %S&Q&mc{

-e

in equation (*), where & , o are spherical polar angles:

* X

turbulent region

A A S S A S L A

1f 2(kym) (k= (k1,0,k3)) denotes the power spectral deansity
of
oA

A = (T9,
. Y@ |Gl Sdy - c/'af I M RATE

Al = 9 e Q(R,0) D DX
c\w@ + "E_,M'S&QF(JQN»M

where: AL acoustic rzdiation intensity per unit area of wall

into De

i

solid angle; D = freguency interval.

lote: v/) ey uty? . 81w o(5°) .

’! -
A1 = 2t & = x/2 if surface shear stress is neglected!
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Lievmann's Theorv - for low rach number mean flows

Isentropic incident
mean flow

— Uy RIGID BODY

from page 2.4:

_ 'DC'\'(J‘-,‘_;;é,‘l‘)(@m‘i)j(;.’(‘xcjzj AT
Y -

B(E,t) = —_

+ 2§ [(AER"Y E,r)\/.,,(:o_,rlol’io(t
% Yz -

Tais is valid for arbitrary control surface 2, . Let 2. Dbe
the smooth surface marking the outer edge of the boundary layer,

then
3t) = 2 <§ G(2,9,6.0)07(y, O dZ T
9k =
v o= poundary layer displacement velocity.
ilote: : 5 v
* .
For 2-dimensional flow ~ & = Jo gl - u':‘ﬁo(z“
the direction « teing parallel to the surface.
. * 5§ ' §
nence: 28 =-1 | dy, == | Uy = ’U‘/M

ioeo, 'U_ = uw 2.—5* .
ax
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5.5

Lievmann's nypothesis: 2 —> S:

B(x,t) <

2§ G(x,9; 60 v(y,dS dT.
rls S 7 -

Justification: for low ilacnhn number flows:

(i) The case of a curved surface for which

boundary layer _-. surface radius of ¢ acoustic
width curvature wavelength

i.e., Fee R o2& N (~ O&/H))

"he orincipal contributions to the integral zre from components
of U (y,€) having lensth scales A 0(R) (since when z is in the
far field the smallest length scale of variation of Gv 0( R));
smaller scale variations integrate to zero over surface elements

DS, AT - 0(8.2) in which G may be regarded as ccnstant. This
implies that phase differences between the integrands on S and
Z. are of no importance.

(ii) The plane boundary layer:

The length scale of G 4 /ii,; ohase differences are
- again negligible,




zxXample: Curved surface:

fg T d4ds = 0 if G is assumed to be constant
' (i.e., if retarded vosition

differences are ignored)
g §Cv‘¢l$ rjg G ardS

oy,
v 12 |9 GardS _ .
e ot (since in order of
magnitude
93/ F v (1/c)d5/3t)
ol
hence: P « U zﬁ'édaéu- Riiue : Dipole radiation
: _B s oYy
¢ =l o]
fe
Ixamnle: ixisymmetric boundary layer on a sphere.

w{t,6) = = P, (cosh)

(§ o dsS = 0). | ¥

Ffor a compact sphere

¢ = 1 e
z;—\g'é—%-f \zc;’l

Y, = yi(1 + 583: 5 - (see page 2,11)
2 |yl

Hence: D

2 s @) Z“[zx[.,_,-(é)]?su‘t}mei’(wa)u.@ow

Po ll.tcl"l 96"'

aee

ﬂzcroQ[alv,] ~ R MUtes8.

2c = Lat 1l

L]



Zffective renresentation of displacement velociiy in terms of

boundary layer vorticity:

: 3
o . v
(e,t) = = | 2E(EgET)-gavdiydT
e - | 6(z,9)60(2aY), Alx,,lr
9‘3

+ error ~ C(3 /R),
where Vg = tangential coordimate. 95/dy varies dy a negligzible
amount across the boundary layer, hence,

A\

ntegrztins by varts:

(2D

2(x,t) = @ 3(x,y:t,C) . 2_ f (&A}_{.)‘(dyn d3 d¥¢
(S :
evaluated on integral across
the surface S the boundary layer

i.e.,

q 00
v 3_ (Q A7) d7,

~ L a tically 93
9t coustically b, o

niote: This is actually an exact equality for components of the
field variables whose lengzth scale is large compared with
the boundary layer width. Indeed, neglecting compressibility
in the boundary laver, we have

v

-dl'f (\(2 AY-) .

Integrate across the boundary layver and invoke the
voundary laver zprroximation:
o0

e - _(a_g)g _( ) 2 v)-} Jm(w. Mdx, = -G-‘;“)o *a%‘j(wz);aa«k, <k

rls o%Xn be




5.8

Idezalized btcundary laver model for stable, lonz wavelenczth
disturbances (Tollmien-Schlichting waves)

VORTEX SHEET i‘*x1-wt)

X, T | 777 7 7 7777

When MF<«c1 the exact equations reduce to

%_ vy = T Vs = O for x2<.J-
YO /v (wave propagates at velocity V)

Denote displacement of vortex sheet: _}; = const.e‘“(x1 - Vt).
disvlacement velocity: U = (2 > UAQ )K =-¢'X(V"“¢)K
Cl4 N,
Vorticity NS (o,o,ws),

(V = Voo - v1+)§- X5 —:-3} .

(v1+ being the x,-component of v just above the vortex sheet)

where 6.)3

Torticity convection velocity

v = (:(u VL v), 93/73t,0).

Cn the basis of linear theory:

Lav), = 1l (7 - L)z, - F)
(‘.?31\ X)3 = 0
flence: .
od
3 @am)gax, = - wn S (V-Ua) f 3%9&-534%

X, 0

1r

- onI (V-Ug) = 2
rls

in agreement with the zeneral

relation on page 5.7

ki



Application of Lievmann's method near edzes

5.9

Up

174
' /- RIGID PLATE

Aoproximate form of Green's function for sources near the edge:

G(x, ¥; t, 1) = f(x, y3s t, 1) {(Yi + yg)i + yl} :

X2

x3

N smoothly varying as function of y-

Principal contribution to .

2
B(x,t) from edge provided
by ®a¥)qys (@y¥)y. Assume: —> (9*3)1 = A(yy, Y3 Telkr
3
Y= nydrodynamic wavenumber,
o A A, taken to be of same order
4 1 2 ¢ - =
) Then | (@avdy = 83(y5, 75, 1lel®y,
Bl = - «}/dyzdy3drf‘(5, y3; t, r)Al(yz, y3,'r)x
® 2\% ] 1ky '
+ I 1
2 2.3
0 (Yl + y2)
By = - *.jf&ygdyjdrf(i, V33 s TIA (5, vg, T
™ iky,
x y2e dyl
2 2.1 2 2.4 :
o] 7
(yl + Y2) {(yl + y2) + yl}
i,e., 5

Bl Iy (-1xké) - 7 (-1k8) 0(1/(x8)¥)  as xs = 0:
B

2 7, (~1x6) - {i(-inéj'

12

0(1) as x§ - =, }

i

. (33A1)|dominant when Wf¢e 1. This implies that Liepmann's method
is valid near the edze vrovided that Wi <e<l.
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Acoustic/Mean Flow interaction at a Leading Edge

X2

= Up

e X
Tollmien-Schlichting Y 1

wave i(nx,-wt)
T e °M
-p------

R ————y
WMM

RIGID PLATE

Incident sound wave:

c# _ CP ei{ko(x1cose + x251n6) -LJt}
1 )
Surface conditions: Vo = 3PNk, = A, o 10ux, - wt)

for X, = +0Q respectively and x> 0.

The amplitudes U, of the Tollmien-Schlichting wave displacement
velocities will be determined from a leading edge Kutta condition.

How

3 |- ('
v2(x1,+0) (- €)

§_ .",_(U-r *U_) + ::__(Ta-' “.-)E-Q-

¢ (‘K:(,-lf-lf')

{5(mew) -4 ()]

The "pumping" motion around the leading edge is produced by the

Vo (X1 ,=0)

asymmetric part {s(v+ +v_). i.e., v, - v_ is indeterminate,

(Y take V+ = V-

in the boundary conditions.

This result is eguivalent to applying the condition that the kx’ £
o ) Md
wall layers cannot be a net source/sink of fluid( § v.dS =[(uw-wa v, °°)

i“iotion on opposite sides of plate 180%ut of phase
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The calculation of <#> accordingly constitutes the following
diffraction problem:

ind = +
a ¢ #S ¢I ,-(KX,-L-J(-)

where (i) c)c#/)xz = U, X, > 0,x, = C;

- 3]

(ii) < , ?4*/3:{2 are continuous for x, < O, Xy = 03

(1iii) scattered field must satisfy the radiation
condition,

This is a standard type of Wiener-ilopf problem., Application of
the Kutta condition leads to

(2R &, o (-‘5_9>

Near the leading edge the diffracted component of the acoustic
‘varticle velocity on the "surface" of the plate is

-(wEtTly)
uy(xy,20) = ( 9)‘9- ()
u2(x1,0) = 0.
This can be used to work out the dissipation\pﬁ\acoustic energy |
(see page 4.2) per unit span:
’TT‘ = fa‘5~ “)A¥-°eiJ’ﬁJ”1
od od
o 20 [ wiesar | (st midnch, oy
0 o
ilaking use of the ceneral low Strouhal number result (page 5.7)
9w . 2 S (Ray), dyy
1o
we find j.é (XX~ WE)
p v-k ) b8 . w
94.\'% ( (%~
=E -y y .l "Q (C)
‘L o 4z3h»(L9)

W
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. / 4
To evaluate l\ from (3) the REAL par
used;

after averazing

-I-;L._,

ts of (&), (£) must bve
over a wave period 2% /w ‘we obiain:

T o= - 2p R s (48) Re(wix) <O

HEGATIVD!

o~
<

since Re( /S ) must be positive becaus

4 Y
nlichting wave propagates in the

the Tollmien-

positive x, -alre tion.
lote:

¢ The acoustic particle velocity of the incident wave makes
no contribution to T because o

f the asymmetry of the
voundary layer waves. '

1.84,

IC ZNZRGY I35 EXTRACTED FI
G AT A LIADING ZDGE

,
’
O
S

3

3
§
vl

We can define an emission cross-section:

rated acoustic nower
cident power flux

4sin®(%0)
Re ()

Maximum energy is extracted for

6= % . No energy is
transferred at O = O since no surface waves are excited




The Trailing Zdge Problem

RS
.

i

Uo

RIGID PLATE

In this case no Tollmien-Schlichting waves are involved in the
interaction, although a vortical wake is formed in which(on linear
theory) vorticity convects downstream at the mean flow velocity U

The principal component of WAL is found to ne
v X ' l‘(’(c’ef"‘)é)
(wa¥), = -2 (24,%,) U, P S (48) §(x )
%, = @lUe

and the relevant component of the acoustic particle velocity
for use in the energy transfer integral of page 4.2 is

. My .
uy(%4,0) = ———Z‘E‘ ¢ SW(’:J)'Q-‘(“H “It) (x;> 0).
X, °

Use of the real parts of these expressions in ] = Io°f"‘ﬁ3'\¥ 9_042“[;
and an average over a wave period yields:

T = 2¢p, B snr (1 0). (W)
2p. Ua 1B 1l el 0) >0

1]

i.e., ACOQUSTIC ENERGY IS DISSIPATED AT A TRAILING EDGE
. . . . 2y
Absorption cross-section: . = 4sin“(£0)

Y|
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AW 1]

Pive has
square
cross-section

2s <« d,h 2< @

Linear theory will ve applied to determine the threshold velocity
V. (n=1,2,3,...) of the eigenfreguencies AN

from the zeneral theory of pace 5.4:

2z,1) = o 26(2,95 6, 0(aw)d dT
2Y. -
jet  J — _
e 20 Gy EDvalaldZdr
_ T3¢ _
_ Al
Approximation: For a thin symmetric jet, the volume integral

can be neglected, i.e., the effect of jet
instabilities is of minimal importance,

Enerzgy is extracted from the mean flow to maintain the
acoustic oscillations in the pipe, and this occurs through
the action of the wall jets downstream of the 1lip A (cefey - _
result on page 5.12 for 2 leadinz edge).
In the Liepmann approximation, and settinz 3 = -9¢/dt,
we czn write
Fl2,¢) = - § Gz, 95610 (9,TVdSAT
S y U .
displacement velocity

(determined from leading edge
Kutta condition)




Simplified analyticzal model:

|t
w
m

N \' A
)
e — h
1

The analytical prodvlem is eguivalent to:

Find 75 such that:

(1) (%, - €) .
D_ﬁ(x1,io,x3) =4 U,L for x,> s, |x3| < %h (1)
33x2

where Y =  wavenumber of displacement thickness waves on A3,

(ii) In the mouth: A

. (’2}) = E_‘f’) = q(x1)e'l“)c for \x1|< s,\xBl < 3n
‘;zi— z"’ -0 331_ x‘-;‘c . .
()
(iii) Pressure is continuous across the jet:
¢X2 =+0 - ?sxz = =0 for lx‘ll< Sy ,XB,‘%}“
(C)
(iv) Kutta condition:

q(x1) is finite as x, —>» s = 0 .

- . : ~iwt
flote: explicit dependence on time factor e ¢
' suppressed,

will bSe

L]
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(99

Conditions (A), (B) define effective monopdle source distridbutions
on interior/exterior wall AB.

Introduce time-harmonic Green's functions S(§,j;1)
which satisfy: 2

(_&2. + Vl) 9: = Q ; 'Dg*/axz = ié‘(x1 - J1)

on respectively the sides'x2 = +0, }x3\<%h of the upper wall of the
pipe. (k = wW/e).

Potentials generated by the source districutions:
2-d-3 "
. < 9,
clvi(m = 4 109)G,(29)dy ar, 2 ﬁz("&-‘i.)o(jl

S

mcuth disvlacement
thickness effect

(D)

Condition (C) 2cross the mouth becomes:

Ckr (il )4‘0,3'3) + #i (x’)+ol 23) = | c#‘*(a'J-OJ k] ) + #:_ (3(‘”-0/ x&)

Buts $ (x,,+0, xy) << 42 (z,,+6,%5)

#;4. (:n -0, :3) << 4’_ (a”-o' xJ)

Hence, the mouth condition is taken as:

L

CF+(I,,+O,13) = (x,,=0, =) (£)

for ,x1l¢ S, lx3[¢ ih.




liow when X, lies within the mouth (\x4<.s):

.gj = S:(E‘qz) = -‘l.lnlg-"_) + a:

where 2? = x1/s, M = y1/s, and

)
1]
|

1. .
+ = 37 1ln(ses2h) - 1koh/Un s

. 2
a = % ln{(zﬂs/h)sinh(wd/h)> - %_H . tan{k (2 + X)fi(k h) /uﬂ}

in which ‘N is the "end-correction" of the oven end 2.
Using equation (D) in (Z£) ‘we find:

1

[ atmiaje - nfan = £(5), (] < 1)

-1
- - .
- . ien T ivoeis
F(g) = <o~[e**Ma(n - €)dn - 5 |Q+ —=2— ] “(a, + 2_)
) 2 e +
1
-
where g = f a(y)dy , and €& = Ws, the reduced
-1 ‘ frequency.

The general solution of this singular intezral eguation is:

j£ _J:;_l_ F'(n)dn -
2(1--5 )

f F(n)an
ln(2) (l-
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This solution involves the two unknown constants <, Ve They are

eliminated as follows:

Integrate over the mouth (Igle1):

1 .
Q+ — J/. F(n) dn_ _ 4
"ln(e) -1 (l =-n ) ’ ’

Apply the Zutta condition that q(X) is finite as § —» 1 = C:
1

¥
Q - % -/. F'(n) (l—iil) an = 0.
~1 l-n _
BEvaluating these integrals we obtain the two linear ecuations in
wy V_ 3 '
* o ivoeie v Hél)‘(e)
Q+ (ln(2). - im(a, + a_)) + = = 0
€ - 2¢
ie :
iv_e by $7)
0
(Q + -f---> - =2 gﬁ(l) (ed + 15{Y) (&) | =0
€ 2 o

The condition for 2 non-trivial solution yields the characteristic
equation giving W = W (V)
F(e) + 1n(2) - im(a, + a_) =0,

where

(1)

1 ()}

F(e) = -mél) (e)/e{Hél)(s) + iH
Substituting for a_, a_s
sin{k L + (2k h/m)F(e) + 1(k n)2/2n} = 0,

and therefore,

k L + (2kx h/m)F(e) + 1(k h)2/2w =nw (n=1,2,3,..)
where

. 2n .
L= 2+ )\ + = " In {U(h/s)z/ensinh(nd/h)}




+

fote that [ defines the effective lenzth of tre pi

r(’
(U]
(3
n}

.0
|-
i
0
=
<
®

0% end-corrections.

2
iw_h 2h
= - n )
Hence we have: w=w i . - — F(e)) (*)
2ncl TL
where
w‘n = mrc/L, en = Kns’

in which X, = wavenumber of the displacement thickness
wave at frequency LJn.
The second two terms in the curly brackets represent respcectively
radiation dampinz and displacement thickness effests. Interior
voundary layer effects are important in vpractice, and these can
ve formally incorvorated %y adding on to the RHE of (*)

. \‘ l,
. \y T 1
S (g Ve (0 }
h

We can now write: ~n = () + ‘iJYQP,V) ’
in whiech 5— is real, 1%t follows that the nth mode can be excited
provided that Im(®) » 0, i.e., that

i

Jd > o.

in cther words if:

4
-Im F(e_ ) > nrh 4 L (2rt Vi + (vy- 1) Xi
' =yt 2h2 nc { }

To use this result we must express '&n in terms of the
radian frequency aJn. The simplest hypothesis is that the
wall Jets on AB have a top-nat profile, in thes lcng wavelenzth

limit we then have (c.f., Tage 5.9):

TN



\n

fe

For €Y 0.8 -Im(?) = 0.46/¢ ,
‘hence the threskold velocities V are given by

v nén? ns/zs 2nl 1 ¥ N
(‘- - 1.84L° 0.92h \ ch® { | }

Zxample (Coltman 1976,JASA 60,725):

-

s = £,35 ém, h=1.8 cm, L. = 62 em, ¢ = 54000 cm sec” '

S = 0,15 ezs, ‘R = 0.21 cgs, & = 1.4

i . -
v v,oo= 802 n<(1 + Q.031n3/2) cm sec 1
'n frequency Hz Vn predicted 'Vn measured by
Coltman (1976)
cm.sec-1 em.sec™t
1 250 827 : 6u0
2 500 | 1234 1200
3 750 1613 1700
4 1000 2002 -

[pM]



Displacement thickness thecry of trailing edze noise

Conventionzl estimates of the edge noise are usually 5zsed on

the so-called evanescent wave thecry:

U
—__»
X2
[ SENIRNIIENIE S S ST S S e X4
RIGID HALF-PLANE
u N\
—l EVANESCENT WAVE FRONTS
SCATTERED SOUND

Schematic illustration of the evanescent wave theory
of trailing edge noise. Turbulent fluctuations
translating to the right would generate exponentially
decaying, potential flow disturbances beneath the
boundary layer if the plate were absent. The sound
is calculated by a consideration of the diffraction
of these waves at the edge.

This takes no account of changes in the large scale turbulence

characteristics 2s it translates past the edge.
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Represeptaticn of a low Strouhal number boundary
layer disturbance by means of a displacement
thickness surface wave.

U —»

——— . e —

DISPLACEMENT THICKNESS WAVE )
STEADY MEAN FLOW )

U —>

A low Strouhal number (b)S*/U4:¢1) boundary laver disturbance
can be modelled as a displacement thickness surface wave., This is
a valuable aporoximation, vecause the dominant surface pressure
fluctuations occur in O.1$.73*/U < 1. In the wake there can
exist two types of wave modes:

1. Asymmetric waves, for which Vs is continuous znd the pressure

p 1is continuous,

)

. Symmetric (or pulsational) modes, for which

Vs changes sign, but p is still continuous.

“WYhen a low Strouhal number disturbance in the boundary layer
is incident on the edge it is transformed into a combination of
these wake modes. The result is that, in addition to the usual
edze noise radiation (predicted by evanescent wave theory), 2
weaker dipole component is also present, the axis of the dipole
being z2ligned with the mean flow direction. The dipole arises
from the net radiation from two equal end opposite mononole
sources, The first nas strength

0
1Y X,
m = J vfel 1™ dx1,
oo * '
wWhere vy 1s the displacement velocity amplitude of the surface

wave, and YT is its wavenumber,
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in the wake. %Phe net radiation from these equal znd opposite monopoles

is a divole whose strength is proportionzl to

Wo-%

and which therefore vanishes if the proverties of the turdbulence
do not chanze at the edgze,.
in +the acoustic far field:
p(r,8) = =PI F + M - MI‘ 1 =M + MI 2 ei(k T +%/4)

2(1:)(11-)’ 1_1 + (M - M )cosB| \" 1 - M2

o ) sinie) + sampifis =My 1 -2 NP coste)
Mo MJ\1 =M+ Mg (1« Heos®)E(1 + (M-Mg)cosh

1

| |

usual evanescent additional dipole
wave prediction contrivbution
where:
M= U/c ; MI = convection Mach number of incident

surface wave;

i convection Macn number of symmetric wake mode.




Comparison with evansecent wave theory:

o
|

- 20logqq I p(r.O)/p (r 90")'

5 b=
/ .
7 Acoustic field shapes for M = Mg = 0.3,
’,/’ MI = 0.6M: = Evanescent waVve theory;
.10 - -"= = = Displacement thickness theory.
& is measured from the mean flow
direction.
1 1 1 |
5 T —
N
[=]
2 0
e
—
=
e
o 5
&
=
Q
N
-10
100 140 180

20 60






