
5.1

Acoustics of Boundary Layers

'The role of the surface shear stress "dioole"
(J3V 55., 159(1979))

t/o

.Q,
-w//////////////

At low mes-n flow Mach numbers we may use Lischthill's
equation:

.

Take the~?ourl_er transform w.r.t . (x., ,x, ,t ) , and let_ k =

transform of
Reynolds' stress

VISCOUS
effects.

Use the Green's function G(x2,y2) defined by:

namely:

This satisfies the radiation condition and

3G/3y2 = 0, y2 = 0.

(ii)

2 = 0,Xo= 0;



5.2

Apply Green's Theorem to equations (I), (II) (as on page 2.3)

in the region y? > 0;

00

On x-, = +0 the x^-coraponent of the momentum equation (case 1.2)
ci. £. ~~

becomes:

Hence, when viscous stresses within the boundary layer are neglected

in comparison with Reynolds stresses v/e obtain from (III):

surface nressure

represents the modification
of the turbulence induced
surface pressure due to
the surface shear stress

"
f

"known" from the
distribution of

PV.V. in boundary
r° x J layer

The Lighthill-Curle view is to interpret this force as a surface
"dipole" source of sound. It is actually an acoustic sink! To see
this note that in the acoustic region 1/k>*> <J~~ = boundary layer
width,

(see page 4.20). This may be used to calculate '̂ vi/}x2 in

terms of ]p , which is constant through the boundary layer at

low wavenunbers.
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5.3

Hence, the surface pressure in the acoustic region is given by:

(*)
YHL)

in which F(z) is defined on page 4.21. Re(51)> 0, .*. shear

stress reduces the surface pressure,

The acoustic radiation;

Since "p may be-regarded as constant across the boundary layer

when kJ~«£.<L 1, it follows that the far field acoustic pressure

satisfies the correspondence

k,

in equation (*), where & , <$ are spherical polar angles:

turbulent region

If Q(k,to) (k = (k^Ojk-i)) denotes the power spectral density
of

tr.en:

where:

into

Mote:

= acoustic radiation intensity per unit area of wall

= solid angle;. Zito = frequency interval.

I = <x> at & = T/2 if surface shear stress is neglected!



5.4

Lienmann's Theorv - for low Mach number mean flows

Isentropic incident
mean flow

U00

From pase 2.4:

= - f 16fe
-L^

This is valid for arbitrary control surface 2 • •lje"t 2 ^e

the smooth surface marking the outer edge of the boundary layer,
then

3(x,t) = 2

boundary layer displacement velocity.

Ilote:
?or 2-dimensional flow - <s =
the direction *t being parallel to the surface.

hence: =-

i.e., IT = oa .
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Lie-nmann's hypothesis: T* —*• S:

B(x,t) A
Jo

.Justification: for low Hach number flows:

(i) The case of a curved surface for which

boundary layer ^^ surface radius of ̂ f acoustic
width curvature wavelength

The principal contributions to the integral are from components
of *tT (v̂ X) having length scales > Q($) (since when z is in the
far field the smallest length scale of variation of G *- 0( t̂ ));
smaller scale variations integrate to zero over surface elements

*2

^S,.AT<~0(# ) in which G- nay be regarded as constant. This
implies that phase differences between the integrands on S and
*£, are of no importance.

(ii) The plane boundary layer:

The length scale of G- v* <T/^» J phase differences are
again negligible.



5.6

1

Zxanmle: Curved surface:

A d3 0

v. 1 ci Q<1
~ I3* —

^^t

if G is assumed to be constant
(i.e., if retarded position
differences are ignored)

- i ̂ TSJ G
' I ft-J - (since in order of

magnitude

hence: .,TT2 : Bioole radiation

example: Axisymmetric boundary layer on a sphere.

•û ?n(cos£)

or dS = 0).

For a comuact snhere

G

Yi

*1

Hence: p v*

If "

- |x - Y|

A
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Effective representation of displacement velocity in terms of

boundary layer vorticity:

a - f?€fe,5
J 31.

-J- error

where y . = tangential coordinate. 3o/3y varies by a negligible»̂ *c
amount across the boundary layer, hence, integrating by parts:

3(x,t) GKx,v;t,T) . 1. f (fciAv

^

d3

evaluated on
the surface S

integral across
the boundary layer

i.e.,

acoustically "S.1

r
2.

J

00

liote: This is actually an exact equality for components of the
field variables whose length scale is large compared-v/ith
the boundary layer width. Indeed, neglecting compressibility
in the boundary layer, v/e have

V 3 = -<iiv(uoAv).

Integrate across the boundary layer and invoke the
boundary layer approximation:



5.8

Idealised boundary layer model for stable, Ion? v/avelength

disturbances (Tollinien-Schlichting waves)

^UCD
•VORTEX SHEET «i(*Xi -«~>t)

fc
x.

V/hen

?Z%&Z22ZZXZ^^

the exact equations reduce to

v2 = G for x2<c<T

(wave propagates at velocity V)

Denote displacement of vortex sheet: ^ = const.e°^x1 ~ Vt'

displacement velocity: IT" = / £. + U.A J

Vorticity :

v/nere

= (0,0,^-,),

, = (v - u«»- v1+)<$~3x2 -r-3
1 j .

(v1+ being the x^-component of v just above the vortex sheet)

Vorticitv convection velocitv

v =

• '•$
• •: 5

On the basis of linear theory:

= 0

Hence:

in agreement with the general
relation on page 5.1



Application of Liepmann's method near edges 5.9

'co

RIGID PLATE

Approximate form of Green's function for.sources near the edge:

G ( x , yj t, T) = f ( x , y,; t, T) { (y2 + yjM + ) i .
J 11 2 1 /

^ smoothly varying as function of y.

Principal contribution to

B(x,t.) from edge provided

^ * Assume:

vC= hydrodynamic wavenumber,
A1, Ap taken to be of same order.

Then

i.e.,

/"

B

B
- J

t,

jf dy2dy3-dTf(jt, y3; t,

!• ^3y

dy 2 dy 3 dTf(x , y

x r l ( y i ^ y | ) ^
» D

, y , T)X

as

0(11

." . ( w . v ) , dominant when Mj*^ i. This imiDlies that Liepmann's methodw* ̂ — |
is valid near the edse nrovided that



Acoustic/Mean Plow interaction at a Leading Edge

5.10

Tollmien-Schlichting
wave

o

zRIGID PLATE

Incident sound wave:

& ei-5k0(xlCosfr + x2sin8) -

V2 =Surface conditions:

for Xp = +0 respectively and

-\T

0.

1 - wt)

The amplitudes "tf̂  of the Tollmien-Schlichtine wave displacement
velocities will be determined from a leadine- edse Kutta condition.

IMOV/

The "pumping" motion around the leading edge is produced by the

asymmetric part i(v + v_). i.e., v+ - v_ is indeterminate,

.'. take v = v_

in the boundary conditions.

This result is ecuivalent to apnlying the condition that the
"

wall layers cannot be a net source/sink of fluid ( ̂ v.dS s "0
Motion on opposite sides of plate 1SO out of phase
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The calculation of cfe> accordingly constitutes the following
diffraction problem:

Find cp = <i + cf>
^ Yi x .-(**,-*»

where (i) <3^/3x2 = i/^ -e x1 > 0,x2 = 0;

(ii) 4» » "3<^/3x2 are continuous for x1 <_ 0, x2 = 0;
(iii) scattered field must satisfy the radiation

condition.
This is a standard type of Wiener-Hopf problem. Application of
the Kutta condition leads to

. ; jit.*.1 4. s*. (-;e)
Near the leading edge the diffracted component of the acoustic
particle velocity on the "surface" of the plate is

-t'(w £**/*.)
(A)

*1

U2(x1f0) 0.

This can be used to work out the dissipat-ion__pf acoustic energy
(see page 4.2) per unit span:

[3)

Making use of the general low Strouhal number result (page 5.7)

2r=
^t

we find
^

J -ffcî )̂ , = "

(C)



s 1'^ • ' '

To "evaluate |l from (3) the REAL parts of (A), (C) must be
used; after averaging over a wave period 2T/u we obtain:

T = -

NEGATIVE! since Re(6J/v.) must be positive because the Tollmien-
Schlichting wave propagates in the positive x., -direction.

Note: The acoustic particle velocity of the incident wave makes
no contribution to TT" because of the asymmetry of the
boundary layer waves.

i.e.,

ACOUSTIC ENERGY 13 EXTRACTED FROM THE M.2AH

FLOW AT A LEASING EDGE

V/e can define an emission cross-section:

= edge generated acoustic power
incident power flux

4sin-(i0)

Re(x)

Maximum energy is extracted for Q- = + -jf .No energy is
transferred at 0 = 0 since no surface waves are excited.



The Trailing Zdse Problem

5.13

U,

RIGID PLATE

WAKE

In this case no Tollmien-Schlichtin? waves are involved in the
.Interaction, although a vortical wake is formed in ;which(.on linear
theory) vorticity convects downstream at the mean flow velocity U

The principal component of

- - 2 i

.
vx A ~

is found to be

and the relevant component of the acoustic particle velocity
for use in the energy transfer integral 'of page 4.2 is

Use of the real parts of these expressions in
and an average over a wave period yields:

| j = p& £?AU ' !l ̂  £

2 p.

i.e., ACOUSTIC ENERGY is DISSIPATED AT A TRAILING a

Absorption cross-section:



The Jet-Drive Mechanism of the Organ Fine

5.H

v/-

Pipe has
square
cross-section

2s d,h

Linear theory v/ill be applied to determine the threshold velocity

V (n = 1,2,3,...) of the eigenfrequencies £Jn«

From the general theory of page 5.4:

3(x,t) =

*1et

Approximation: For a thin symmetric jet, the volume integral
can 'be neglected, i.e., the effect of jet
instabilities is of minimal importance.

Energy is extracted from the mean flow to maintain the
acoustic oscillations in the pipe, and this occurs through
the action of the wall jets downstream of the lip A (c.f.,
result on page 5.12 for a leading edge).

In the Liepmann approximation, and setting 3 = -
we can write

displacement velocity
(determined from leading edge

Kutta condition)



Simplified analytical model:

5.15

2s-~
V

N V A | S B

-^-d^ h
t

- -..,. ff

The analytical problem is equivalent to:

.Find such that :

=ir-ir.-e
X

for x.,> s, |x3|<th (A)

v/here X- = wavenunber of displacement thickness v/aves on /\5.

(ii) In the mouth:

* -iut

vs +C

for Jx.,1 < s,|x5| <. ih

(2)

(iii) Pressure is continuous across the ,jet:

(iv)

= -i-O = -0 for jx.,1 <: s,

Kutta condition:

x is finite as x1 s - 0 .

(C)

rlote: explicit dependence on time factor e""1 ° will be
suppressed.



C •) £;/ » I C

Conditions (A), ("3) define effective monopdle source distributions

on interior/exterior wall AB.

Introduce time-harmonic C-reen's functions t-i

which satisfy:

on respectively the sides Xp = +0, |x,J<̂ h of the upper wall of the

pipe, (k =

Potentials generated by the source distributions:

r r ^I t,̂ )S,(s,OĴ ( ±j v.*'
 S

mouth displacement
thickness effect

Condition (C) across the mouth becomes:

But:

Hence, the mouth condition is taken as:

for



Now when x. lies within the mouth (\x_j\cs):

5.17

where = x.,/s, "£ » y-,/3, and

'+ = 7' ln(se/2h) -

. tank

in v/hich is the "end-correction" of the open -end B.

Using equation (D) in (S) .we find:

f q(n)ln|c - n|dn = F(c), D
-1

ei£nln(n - Q

where r1
I Q

-1

, and €r = vcs, the reduced
frequency,

The general solution of this singular integral equation is

q(C) F'(n)dri -
n-C

In i

F(n)dn
(l-n2)1
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This solution involves the two unknown constants Q, VQ. They are
eliminated as follows:

Integrate over the mouth (rt|<l):

1
T /* r- I \+ ••*•_ / F(ri) dn
nn. (2)̂  (l - n*)* '

Q

Apply the Kutta condition that q(x) is finite as 1 —* 1 - 0 :

1

Q -} f f'M- f1-1-2-! ̂ - o,
•^^ \1 - n /

Evaluating these integrals we obtain the two linear equations in

Q + — lnC2). --)(• '• 2e
ic

« ( c\ ̂ M ̂
2. • H(1) (,el + 1H.

(1) (e)

The condition for a non-trivial solution yields the characteristic
equation giving CJ = (o (V)

P(e) + ln(2) - iir(a+ + a_) = 0,

where

P ( e ) » -1H^1) (

Substituting for a+, a_:

sinjk L + (2k V f f ) P ( e ) * i(k h)-2/2ir | = 0,

and therefore,

k L + (2k h / i r )p (c ) + i(k h)2 /27r = .nff (fl =

where

L * t 5| - ln j / l (h/S) 2 /eTrsinh(Trd/h)}
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liote that [^ defines the effective length of the pipe inclusive
of end-corrections.

-T -L. W = (I)Hence we have: n (.)
2TTCi

where

wn = nirc/t« £
n
 = V»

in which V. = wavenumber of the displacement thickness
wave at frequency fiJ •

The second two terms in the curly brackets represent respectively
radiation damping and displacement thickness effects. Interior
boundary layer effects are important in practice, and these can
be formally incorporated by adding on to the RHS of (*)

We can now write: 6^ = U) + i <T~(P »V) ,

in which Q is real. It follows that the nth mode can be excited
provided that Im(u) > 0, i.e., that
/

cT> o.
in other words if:

-Im

To use this result we must express •* in terms of the
radian frequency k»n« -he simplest hypothesis is that the
wall jets on AB have a top-hat profile, in the long wavelength
limit we then have (c.f., page 5.9):



5.2C

Dependence of .?'(€) on real €

''''-•'• -1
'.'••$

?or € > 0 . 8 -Im(?) = 0.46/e
hence the threshold velocities Vn are given by

(*>) V/c = ̂
\^ J n 1. 0.92h ,

Example (Goltman 1976.JASA 60,725):

s « 0.35 cm, h = 1.8 cm, ^ = 68 cm, c = 34000 era sec"'

s> = 0.15 cgs, 7* = °»21 C3S» = 1.4

Vn 802 ,3/2+ 0.0311T' ) cm sec'

• n

1

2

3

4

frequency Hz

250

500

750

1000

V predicted
n

cm.sec~

827

1234

1613

2002

V measured by
n
Coltman (1976)
cm. sec"

640

1200

1700

-
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Displacement thickness theory of trailing edge noise

Conventional estimates of. the edge noise are usually based on

the so-called evanescent wave theory:

U

RIGID HALF-PLANE

U

SCATTER ED SOUND

X2

EVANESCENT WAVE FRONTS

Schematic illustration of the evanescent wave theory
of trailing edge noise. Turbulent fluctuations
translating to the right would generate exponentially
decaying, potential flow disturbances beneath the
boundary layer if the plate were absent. The sound
is calculated by a consideration of the diffraction
of these waves at the edge.

This takes no account of changes in the large scale turbulence
characteristics as it translates past the edge.
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Representation of a low Strouhal number boundary
layer disturbance by means of a displacement
thickness surface wave.

v

-. t U

DISPLACEMENT THICKNESS WAVE

STEADY MEAN FLOW

U

WAKE

A low Strouhal number (w/U<£<-1) boundary layer disturbance
can be modelled as a displacement thickness surfa.ce wave . This is
a valuable approximation, because the dominant surface pressure
fluctuations occur in O.t^-wd /U $= 1 . In the wake there can
exist two types of wave modes:

1. Asymmetric waves, for which v2 is continuous and the pressure

p is continuous,

2. Symmetric (or pulsational) modes, for which

Vp changes sign, but p is still continuous.

When a low Strouhal number disturbance in the boundary layer
is incident on the edge it is transformed into a combination of
these v/ake modes. The result is that, in addition to the usual
edge noise radiation (predicted by evanescent wave theory), a
weaker dipole component is also present, the axis of the dipole
being aligned with the mean flow direction. The dipole arises
from the net radiation from two equal and opposite monopole
sources. The first has -strength

m f v-elVi:
^

lVx dx,,
-

where v3 is the displacement velocity amplitude of the surface
wave, and ^_ is its v/avenumber.
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;Si
jft-i

The second mono pole is caused by the pulsational __ aio.de (2.)
..-. i

«<! elVSx1 , say,

in the wake. The net radiation from these equal and opposite monopoles

is a dipole whose strength is proportional to

and which therefore vanishes if the properties of the turbulence

do not change at the edge.

In the acoustic far field:

-PI 1 + M -

1 + (M -

1 - M + MT\
?
 oi(k r +T/4)

• 1 - M2

1 - M-

cos(0)

(1 -t- McosB)"-(1 + (M-Ms)cosfi,

usual evanescent
wave prediction

additional dipole
contribution

where:

M = U/c ; M- = convection Mach number of incident
1 surface wave;

Mc = convection Mach number of symmetric wake mode.
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I!
Comparison with evansecent v/ave theory:

M-0.3

•5

O
CM

-10

Acoustic field shapes for M = MS = 0.3,
= 0.6M: -!—: .Evanescent wave theory;

- - - - Displacement thickness theory'.
& is measured from the mean flow

direction.
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