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Plasma Microturbulence Project Goal:
The Plasma Microturbulence Project is dedicated to the development, application, 
and dissemination of computer applications for the direct numerical simulation of 
plasma microturbulence (further information at http://fusion.gat.com/theory/pmp)

• An important problem — The transport of energy associated with plasma 
microturbulence is the key issue determining the size (and cost) of a burning 
plasma experiment (a key goal of the US magnetic fusion program).

• Computer simulation as a ‘proxy’ for plasma experiments:
– Better diagnostics
– Direct tests of theoretical models
– Modeling experimental facilities before construction (or formal proposal)

• Key Issue — The ‘fidelity’ of the computational model
– Continual improvements to the numerical model
– Detailed comparisons between simulation and experiment
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Three Ways to Study Plasma Turbulence
Experiments Analytic Theory

Direct Numerical Simulation

QuickTime™ and a
 decompressor

are needed to see this picture.
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Our Game-Plan for the Direct Numerical 
Simulation of Plasma Turbulence

• Develop “high-fidelity” numerical models
– Very good now… but there is always room for improvement

• Benchmark numerical models against
– Each other – Experiments 

⇒ Use simulations as “Proxies” for experiment
– Easier to build – Easier to run
– Easier to diagnose – More scope for parameter variations

(with the proper tools) •  Turn “physics” on/off
•  Vary machine size
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We Support a 2x2 Matrix of Kinetic Codes for 
Simulating Plasma Core Turbulence

Continuum PIC

Flux Tube GS2 SUMMIT

Global GYRO GTC

• Why both Continuum and Particle-in-Cell (PIC)?
– Cross-check on algorithms
– Continuum was most developed (already had kinetic e’s , δB⊥)
– PIC is catching up (and may ultimately be more efficient?)

• If we can do Global simulations, why bother with Flux Tubes?
– Efficient parameter scans
– Electron-scale physics, (ρe, δe=c/ωpe) << Macroscopic scale
– Turbulence on multiple space scales (ρe, ρi, & meso scales all at once)
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… and One Fluid Code for 
Plasma Edge Turbulence
BOUT (X.Q. Xu,     ) 

• Braginskii — collisional, two fluid
electromagnetic equations

• Realistic ×-point geometry
(open and closed flux surfaces)

• Collisional equations not always valid

⇒ Need to develop a kinetic edge
code for realistic simulations 
of plasma edge turbulence
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PIC Code Performance Scales 
Linearly to ~ 103 Processors

• Integrates GKE along 
characteristics 
⇒ Many particles in 5-D phase 

space
⇒ Interactions through self 

consistent electric & 
magnetic (in progress) fields

⇒ Parallel particle advance scales 
favorably on massively parallel 
computers

IBM SP

Cray C-90

GTC Performance Scaling
(problem size increasing

with # of processors)
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Continuum Code Performance Scales
Linearly to ~ 103 Processors

• Solves GKE on a grid in 5-D 
phase space
– Eliminates particle noise
– Codes implements

• Kinetic electrons
• Magnetic perturbations

• Achieves ~linear scaling 
using domain decomposition
– Linear scaling persists to more 

processors if problem size is 
increased with # of processors

GYRO on seaborg (32 modes)

64 128 256 512 1024 2048
processors

64

128

256

512

1024

2048

Scaling with 
Fixed Problem Size
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Improving Code Fidelity:
Kinetic Electrons and δB

Why is this Important?
• Kinetic electrons

(have kinetic ions already)
→ Electron heat transport
→ Particle transport
– ρe-scale turbulence

• Electromagnetic (δB⊥)
– Finite-β corrections to ITG, etc.
– Kinetic ballooning modes

• Natural to implement together 
(e’s carry much of the current)

• Successfully implemented in 
three of four core turbulence codes

QuickTime™ and a
 decompressor

are needed to see this picture.

SUMMIT:  An Electromagnetic 
Flux-Tube PIC Code
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Current ‘state-of-the-art’ 
Spatial Resolution

• Plasma turbulence is quasi-2-D
– Resolution requirement along B–field 

determined by equilibrium structure 
– Resolution across B–field determined 

by microstructure of the turbulence.
⇒ ~ 64×(a/ρi)2 ~ 2×108 grid points to 

simulate ion-scale turbulence at 
burning-plasma scale in a global code

– Require ~ 8 particles / spatial grid point 
⇒ ~ 1.6×109 particles for global ion-

turbulence simulation at ignition scale
– ~ 600 bytes/particle
⇒ 1 terabyte of RAM

⇒ This resolution is achievable

Temporal Resolution
• Studies of turbulent fluctuations

– Characteristic turbulence time-scale
⇒ cs/a ~ 1 µs (10 time steps)

– Correlation time >> oscillation period
⇒ τc ~ 100× cs/a ~ 100 µs 

(103 time steps)
– Many τc’s required

⇒ Tsimulation ~  few ms 
(5×104 time steps)

– 4×10-9 sec/particle-timestep
(this has been achieved)

⇒ ~90 hours of IBM-SP time/run

* Heroic (but within our time allocation)
(Such simulations have been performed, see T.S. Hahm, Z. Lin, APS/DPP 2001)

• Simulations including kinetic electrons and δB (short space & time scales) 
are not yet practical at the burning-plasma scale with a global code
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Data Analysis & Visualization: 
The Bridge to Our User Communities

Interactive Data Analysis with GKV
• Productive data exploration

⇒ “Granularity”
– Significant results from 

a few commands
– Flexible data exploration

• Standard analysis routines
– Spectral density
– Correlation functions
– …

• Custom Analysis
– Particle Trapping
– Heat Pulse Analysis
– …

Quantifying the Importance 
Of particle trapping
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Benchmarking Codes Against Each Other
Cδφ (r,∆ζ,τ=0 | r')

Radial Separation

PG3EQ

GS2

GYRO

Poloidal Separation
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QuickTime™ and a
Video decompressor

are needed to see this picture.

Benchmarking Codes Against 
Experiment

L-Mode Edge Turbulence in the DIII-D tokamak
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Major Computational and 
Applied Mathematical Challenges

• Continuum codes solve an advection/diffusion equation on a 5-D grid
– Linear algebra and sparse matrix solves (LAPAC, UMFPAC, BLAS)
– Distributed array redistribution algorithms (we have developed or own)

• Particle-in-Cell codes advance particles in a 5-D phase space
– Efficient “gather/scatter” algorithms which avoid cache conflicts and provide 

random access to field quantities on 3-D grid

• Continuum and Particle-in-Cell codes perform elliptic solves on 3-D grids 
(often mixing Fourier techniques with direct numerical solves)

• Other Issues:
– Portability between computational platforms 
– Characterizing and improving computational efficiency
– Distributed code development
– Expanding our user base
– Data management
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Q-1:  What Has the Plasma Microturbulence 
Project Accomplished?

• Our expanding user-base enables MFE program to use 
terascale computing to study plasma turbulence
– GS2 available as a web-based application

(GS2 has more than 20 users beyond the GS2 development group)
– GYRO user group (currently ~10 users) is expanding

• Kinetic electrons and δB enables new science
– Electron heat flux – Particle flux – ρe-scale turbulence
– Allows turbulence to tap the free-energy from electron gradients
– Allows turbulence which is fundamentally electromagnetic 

(for example, kinetic ballooning modes)
– Allows accurate modeling of actual tokamak discharges 

(and detailed comparisons between codes and experiment)
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Q-2:  How has the SciDAC team approach 
changed the way you conduct research?

• Closer contact with other SciDAC centers
– The Fusion Collaboratory (connection to fusion community)
– PERC to characterize and improve code performance
– CCSE for efficient parallel solvers on unstructured grids
– “Advanced Computing for 21st Century Accelerator Science and 

Technology” SciDAC center on PIC methods

• Improved interaction within Fusion community
– Multiple-institution code development groups
– Users who are not part of the code development group

• Common data analysis tools
– Improved characterization of simulation results
– Facilitates comparisons 

• Among codes •   Between simulations and experiment 
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Q-3:  What Software Tools does the 
Plasma Microturbulence Project Provide?

• Plasma microturbulence simulations codes
– GS2 (available as a web application on Linux cluster at U. of MD)
– GYRO (distributed to users at PPPL, MIT, U of Texas, …)
– SUMMIT (users at U of CO, LLNL, UCLA)
– GTC (users at PPPL, UC Irvine)

• GKV — a package of Data analysis and visualization tools
– Open source w/Users manual — written in IDL (product of RSI)
– Interfaces with all PMP codes
– Users at LLNL, PPPL, U of MD, U of CO, U of TX, UCLA, …

• Tools from Other ISIC’s ⇒ see previous viewgraph
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Q-4:  What are our Plans for Next Year?
• Continue to expand our user base 

within the MFE community
– GS2 – GYRO – Summit – GKV

• Complete development of 
– SUMMIT (global geometry, complete code merge, …)
– GTC (kinetic electrons and δB)
– GKV (additional diagnostic routines, interface to HDF5 files)

• Apply these tools to the study of plasma microturbulence
– Continued code benchmarking (among codes and with experiment)
– Continue to use codes to study plasma microturbulence

• Emphasis on electron-driven turbulence and effects of δB
• Understand mechanism for the termination of the inverse cascade
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Q-5:  Anticipated Resource Needs?
• Computer cycles!

– Kinetic electrons ⇒ More time steps/simulation
– More users ⇒ More simulations
– Presently have ~ 5 Mnode-hrs between NERSC & ORNL 

• Network infrastructure to support data transfer
– Between computer centers – To mass storage
– To user's home site for data analysis and visualization

• Data storage (and management)
– Potentially a large problem 

(We just don’t save most of the available simulation data at present)
– Need to do more work in this area

(Develop a data management system linked to the Exp’t database?)
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Characterizing Plasma Turbulence 
Isotropic at large k Anisotropic at small k

Coupling w/ Zonal Flows?



March 11, 2003 Microturbulence in Fusion Plasmas 21

3-Wave Coupling?
〈φ〉(kx) with δφ(k1) and δφ(k1+ kxex)

• Compute Bicoherence
– Measures phase coherence 

between selected data:

〈φ〉(kx), δφ(k1), δφ(k1+ kxex)
– Phase coherence 
⇒ Coupling

• Infer coupling between 
ITG turbulence and:
– Geodesic-Acoustic modes
– Zonal Flows

• And, all this only took a few minutes with GKV!
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Microturbulence Sets the Minimum Size of a 
Burning Plasma Experiment

Power Balance 
in a Burning Plasma
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Empirical Confinement Laws
(based on world tokamak data base)

Assume:

τE = C0 Ip
α1 Bα2 nα3 Pα4 Rα5 …

Choose {C0, αn} by regression

The Good News:
It works reasonably well 
(design basis for many experiments)

The Bad News:
τE ~ I R1.5/vP

⇒ n τE T ~ Ip
2

… and enough Ip for ignition costs 
more than Congress has been
willing to pay
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Plasma Microturbulence Determines
Energy Confinement

• Particles (and energy) “tied” to 
magnetic field lines

• Field lines “cover” nested tori
• Two mechanisms transport 

particles (& energy) across field
– Binary Collisions

⇒ Classical transport

– Plasma microturbulence
⇒ Anomalous transport

• Anomalous  >>  Classical

⇒ Need to study microturbulence

B

Projected
Particle orbit
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GKV:  A Toolkit for 
Data Analysis and Visualization

• Data Analysis and Visualization is the Bridge Between 
Simulation ⇔ Theory & Experiment

– 3-D microturbulence simulations produce large datasets
F Data analysis must be automated

– You learn new things by looking at data in different ways
F Data analysis should be interactive

– Turbulence is a stochastic process
F Realization-independent characterization of turbulence

• GKV implements this functionality in object-oriented IDL 
(IDL is a product of RSI widely used in the fusion community)
– GKV imports data from our core turbulence codes
– From our edge turbulence code (BOUT) 
– And from experiment (NSTX, C-Mod, DIII-D, JET, …)


