Microturbulence in Fusion Plasmas

For the

Plasma Microturbulence Project

Plasma Microturbulence Project Goal:

The Plasma Microturbulence Project is dedicated to the development, application, and dissemination of computer applications for the direct numerical simulation of plasma microturbulence (further information at http://fusion.gat.com/theory/pmp)

- *An important problem* The transport of energy associated with plasma microturbulence is the key issue determining the size (and cost) of a burning plasma experiment (a key goal of the US magnetic fusion program).
- *Computer simulation* as a 'proxy' for plasma experiments:
 - Better diagnostics
 - Direct tests of theoretical models
 - Modeling experimental facilities before construction (or formal proposal)
- *Key Issue* The 'fidelity' of the computational model
 - Continual improvements to the numerical model
 - Detailed comparisons between simulation and experiment

Three Ways to Study Plasma Turbulence

Experiments

Analytic Theory

Direct Numerical Simulation

QuickTime[™] and a decompressor are needed to see this picture.

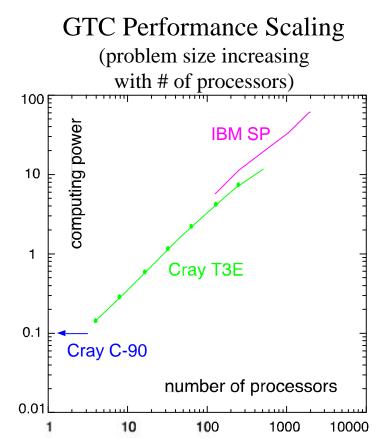
Our Game-Plan for the Direct Numerical Simulation of Plasma Turbulence

- Develop "high-fidelity" numerical models
 - Very good now... but there is always room for improvement
- Benchmark numerical models against
 - Each other Experiments
- \Rightarrow Use simulations as "Proxies" for experiment
 - Easier to build
 - Easier to diagnose (with the proper tools)
- Easier to run
 - Easier to diagnose More scope for parameter variations
 - Turn "physics" on/off
 - Vary machine size


We Support a 2x2 Matrix of Kinetic Codes for Simulating Plasma Core Turbulence

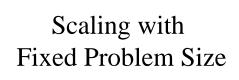
	Continuum	PIC
Flux Tube	GS2	SUMMIT
Global	GYRO	GTC

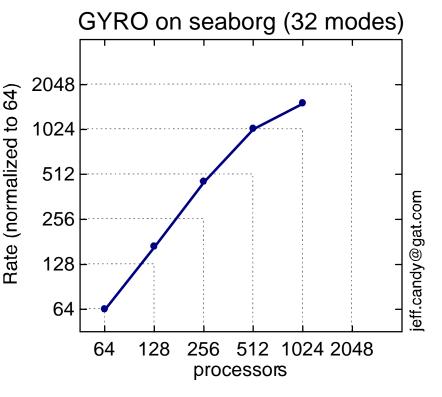
- Why both Continuum and Particle-in-Cell (PIC)?
 - Cross-check on algorithms
 - Continuum was most developed (already had kinetic e's, dB_{A})
 - PIC is catching up (and may ultimately be more efficient?)
- If we can do Global simulations, why bother with Flux Tubes?
 - Efficient parameter scans
 - Electron-scale physics, $(\mathbf{r}_{e}, \mathbf{d}_{e} = c/\mathbf{w}_{pe}) \ll$ Macroscopic scale
 - Turbulence on multiple space scales (\mathbf{r}_{e} , \mathbf{r}_{i} , & meso scales all at once)


... and One Fluid Code for Plasma Edge Turbulence BOUT (X.Q. Xu, 5)

- Braginskii collisional, two fluid electromagnetic equations
- Realistic ×-point geometry (open and closed flux surfaces)
- Collisional equations not always valid
- ⇒ Need to develop a kinetic edge code for realistic simulations of plasma edge turbulence

PIC Code Performance Scales Linearly to ~ 10³ Processors


- Integrates GKE along characteristics
 - ⇒ Many particles in 5-D phase space
 - ⇒ Interactions through self consistent electric & magnetic (in progress) fields
- ⇒ Parallel particle advance scales favorably on massively parallel computers



Y-axis: the number of particles (in milions) which move 1 step in 1 second

Continuum Code Performance Scales Linearly to ~ 10³ Processors

- Solves GKE on a grid in 5-D phase space
 - Eliminates particle noise
 - Codes implements
 - Kinetic electrons
 - Magnetic perturbations
- Achieves ~linear scaling using domain decomposition
 - Linear scaling persists to more processors if problem size is increased with # of processors

Improving Code Fidelity: Kinetic Electrons and **d**B

Why is this Important?

- Kinetic electrons (have kinetic ions already)
 - \rightarrow Electron heat transport
 - \rightarrow Particle transport
 - r_e -scale turbulence
- Electromagnetic (dB_{\wedge})
 - Finite- β corrections to ITG, etc.
 - Kinetic ballooning modes
- Natural to implement together (*e*'s carry much of the current)
- Successfully implemented in three of four core turbulence codes

SUMMIT: An Electromagnetic Flux-Tube PIC Code

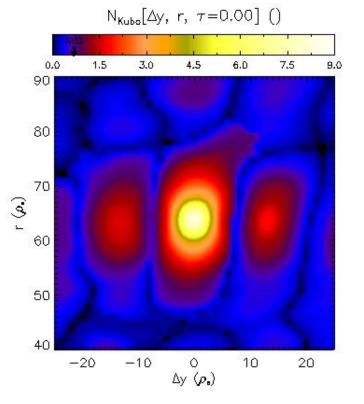
QuickTime[™] and a decompressor are needed to see this picture.

Current 'state-of-the-art'

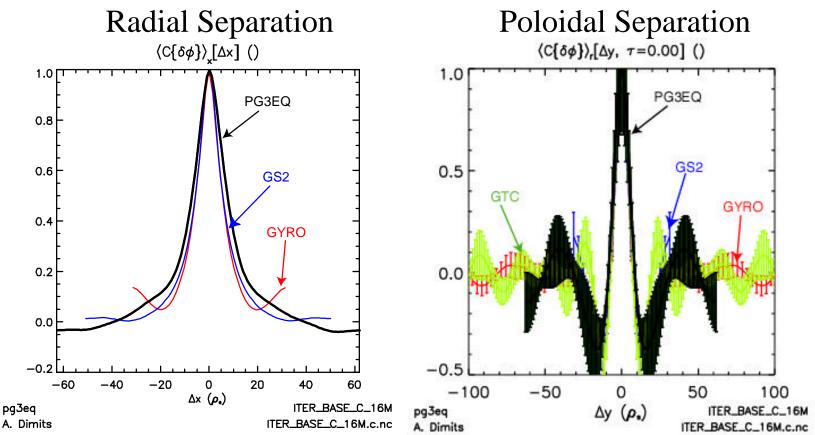
Spatial Resolution

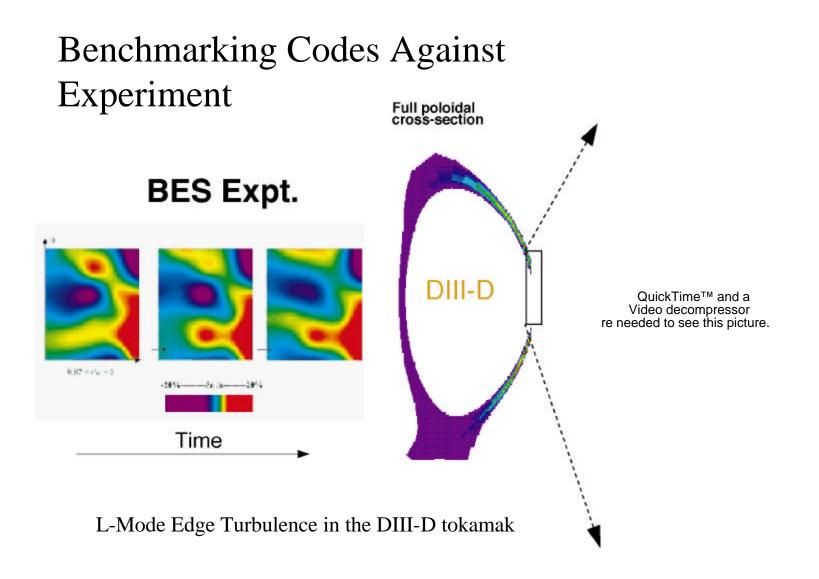
- Plasma turbulence is quasi-2-D
 - Resolution requirement along B–field determined by equilibrium structure
 - Resolution across B–field determined by microstructure of the turbulence.
 - $\Rightarrow ~ 64 \times (a/\rho_i)^2 ~ 2 \times 10^8 \text{ grid points to}$ simulate ion-scale turbulence at burning-plasma scale in a global code
 - Require ~ 8 particles / spatial grid point
 - $\Rightarrow \sim 1.6 \times 10^9 \text{ particles for global ion-turbulence simulation at ignition scale}$
 - ~ 600 bytes/particle
 - \Rightarrow 1 terabyte of RAM

Temporal Resolution


- Studies of turbulent fluctuations
 - Characteristic turbulence time-scale $\Rightarrow c_s/a \sim 1 \ \mu s \ (10 \ time \ steps)$
 - Correlation time >> oscillation period $\Rightarrow \tau_c \sim 100 \times c_s/a \sim 100 \ \mu s$ (10³ time steps)
 - Many τ_c 's required
 - $\Rightarrow T_{\text{simulation}} \sim \text{ few ms}$ (5×10⁴ time steps)
 - 4×10⁻⁹ sec/particle-timestep (this has been achieved)
 - \Rightarrow ~90 hours of IBM-SP time/run
- ⇒ This resolution is achievable
 ∠ Heroic (but within our time allocation)
 (Such simulations have been performed, see T.S. Hahm, Z. Lin, APS/DPP 2001)
- Simulations including kinetic electrons and *dB* (short space & time scales) are not yet practical at the burning-plasma scale with a global code

Data Analysis & Visualization: The Bridge to Our User Communities


Interactive Data Analysis with GKV


- Productive data exploration
 - \Rightarrow "Granularity"
 - Significant results from a few commands
 - Flexible data exploration
- Standard analysis routines
 - Spectral density
 - Correlation functions
 - ..
- Custom Analysis
 - Particle Trapping
 - Heat Pulse Analysis

Quantifying the Importance Of particle trapping

Benchmarking Codes Against Each Other $C_{df}(r, Dz, t=0 | r')$

Major Computational and Applied Mathematical Challenges

- Continuum codes solve an advection/diffusion equation on a 5-D grid
 - Linear algebra and sparse matrix solves (LAPAC, UMFPAC, BLAS)
 - Distributed array redistribution algorithms (we have developed or own)
- Particle-in-Cell codes advance particles in a 5-D phase space
 - Efficient "gather/scatter" algorithms which avoid cache conflicts and provide random access to field quantities on 3-D grid
- **Continuum** and **Particle-in-Cell codes** perform elliptic solves on 3-D grids (often mixing Fourier techniques with direct numerical solves)
- Other Issues:
 - Portability between computational platforms
 - Characterizing and improving computational efficiency
 - Distributed code development
 - Expanding our user base
 - Data management

Q-1: What Has the Plasma Microturbulence Project Accomplished?

- Our expanding user-base enables MFE program to use terascale computing to study plasma turbulence
 - GS2 available as a web-based application
 (GS2 has more than 20 users beyond the GS2 development group)
 - GYRO user group (currently ~10 users) is expanding
- Kinetic electrons and δB enables new science
 - Electron heat flux Particle flux ρ_e -scale turbulence
 - Allows turbulence to tap the free-energy from electron gradients
 - Allows turbulence which is fundamentally electromagnetic (for example, kinetic ballooning modes)
 - Allows accurate modeling of actual tokamak discharges (and detailed comparisons between codes and experiment)

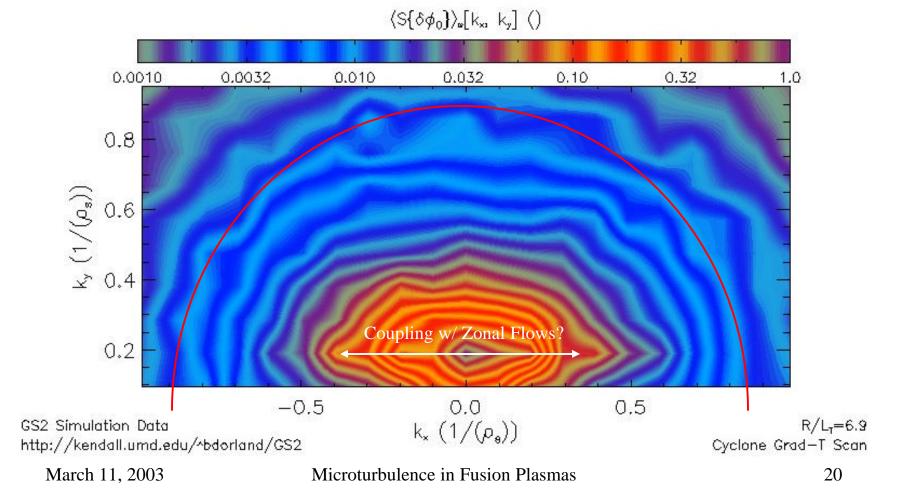
Q-2: How has the SciDAC team approach changed the way you conduct research?

- Closer contact with other SciDAC centers
 - The Fusion Collaboratory (connection to fusion community)
 - PERC to characterize and improve code performance
 - CCSE for efficient parallel solvers on unstructured grids
 - "Advanced Computing for 21st Century Accelerator Science and Technology" SciDAC center on PIC methods
- Improved interaction within Fusion community
 - Multiple-institution code development groups
 - Users who are not part of the code development group
- Common data analysis tools
 - Improved characterization of simulation results
 - Facilitates comparisons

• Among codes • Between simulations and experiment Microturbulence in Fusion Plasmas

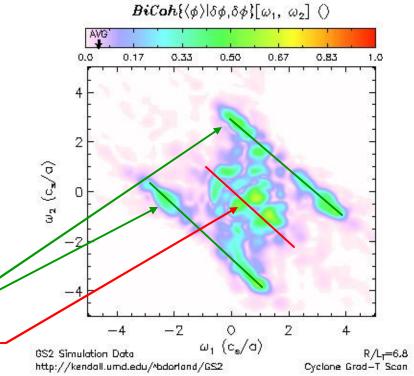
Q-3: What Software Tools does the Plasma Microturbulence Project Provide?

- Plasma microturbulence simulations codes
 - GS2 (available as a web application on Linux cluster at U. of MD)
 - GYRO (distributed to users at PPPL, MIT, U of Texas, ...)
 - SUMMIT (users at U of CO, LLNL, UCLA)
 - GTC (users at PPPL, UC Irvine)
- GKV a package of Data analysis and visualization tools
 - Open source w/Users manual written in IDL (product of RSI)
 - Interfaces with all PMP codes
 - Users at LLNL, PPPL, U of MD, U of CO, U of TX, UCLA, ...
- Tools from Other ISIC's \Rightarrow see previous viewgraph


Q-4: What are our Plans for Next Year?

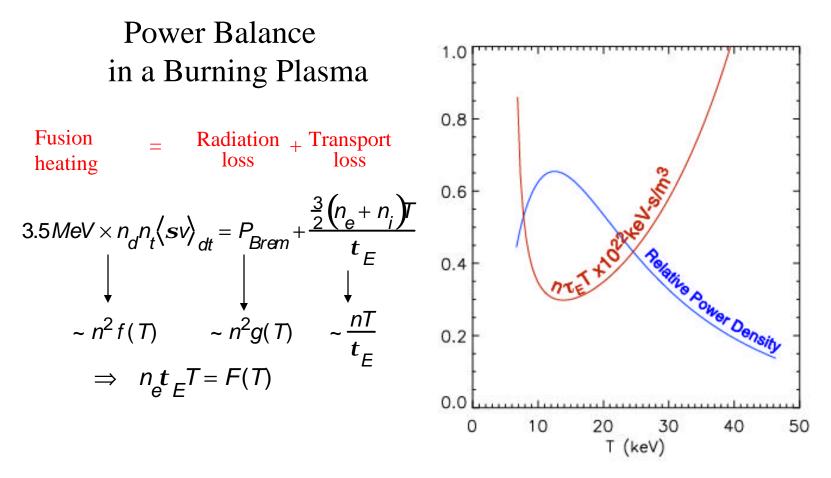
- Continue to expand our user base within the MFE community
 - GS2 GYRO Summit GKV
- Complete development of
 - SUMMIT (global geometry, complete code merge, ...)
 - GTC (kinetic electrons and δB)
 - GKV (additional diagnostic routines, interface to HDF5 files)
- Apply these tools to the study of plasma microturbulence
 - Continued code benchmarking (among codes and with experiment)
 - Continue to use codes to study plasma microturbulence
 - Emphasis on electron-driven turbulence and effects of δB
 - Understand mechanism for the termination of the inverse cascade

Q-5: Anticipated Resource Needs?

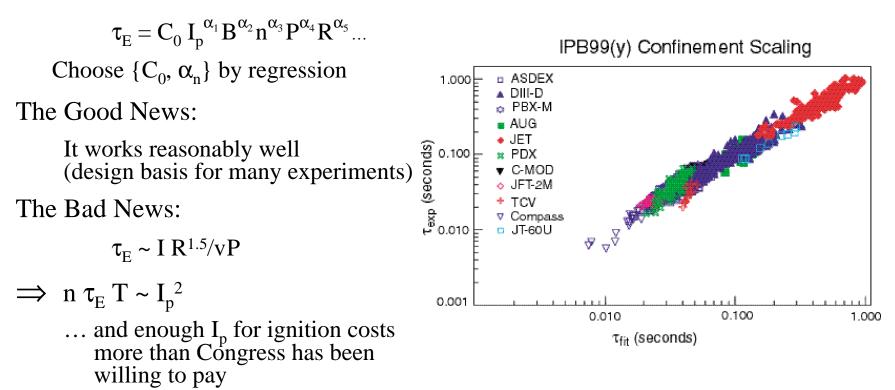

- Computer cycles!
 - Kinetic electrons \Rightarrow More time steps/simulation
 - More users \Rightarrow More simulations
 - Presently have ~ 5 Mnode-hrs between NERSC & ORNL
- Network infrastructure to support data transfer
 - Between computer centers To mass storage
 - To user's home site for data analysis and visualization
- Data storage (and management)
 - Potentially a large problem
 (We just don't save most of the available simulation data at present)
 - Need to do more work in this area
 (Develop a data management system linked to the Exp't database?)

Characterizing Plasma TurbulenceIsotropic at large kAnisotropic at small k

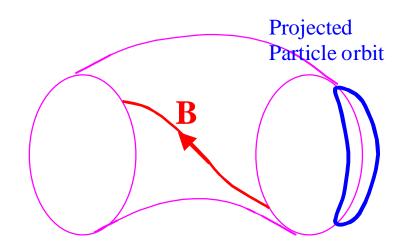
3-Wave Coupling? $\hat{afi}(k_x)$ with $df(k_1)$ and $df(k_1 + k_x \hat{e}_x)$


- Compute Bicoherence
 - Measures phase coherence between selected data:
 - áfĩ(k_x), df(k_1), df($k_1 + k_x e_x$)
 - Phase coherence
 - \Rightarrow Coupling
- Infer coupling between ITG turbulence and:
 - Geodesic-Acoustic modes
 - Zonal Flows

• And, all this only took a few minutes with GKV!


March 11, 2003

Microturbulence Sets the Minimum Size of a Burning Plasma Experiment


Empirical Confinement Laws (based on world tokamak data base)

Assume:

Plasma Microturbulence Determines Energy Confinement

- Particles (and energy) "tied" to magnetic field lines
- Field lines "cover" nested tori
- Two mechanisms transport particles (& energy) across field
 - Binary Collisions
 - \Rightarrow Classical transport
 - Plasma microturbulence
 ⇒Anomalous transport
- Anomalous >> Classical
- \Rightarrow Need to study microturbulence

GKV: A Toolkit for Data Analysis and Visualization

- Data Analysis and Visualization is the Bridge Between Simulation ⇔ Theory & Experiment
 - 3-D microturbulence simulations produce large datasets
 - The Data analysis must be automated
 - You learn new things by looking at data in different ways
 Data analysis should be interactive
 - Turbulence is a stochastic process

The Realization-independent characterization of turbulence

- GKV implements this functionality in object-oriented IDL (IDL is a product of RSI widely used in the fusion community)
 - GKV imports data from our core turbulence codes
 - From our edge turbulence code (BOUT)
 - And from experiment (NSTX, C-Mod, DIII-D, JET, ...)