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ABSTRACT

GYRO solves the 5-dimensional gyrokinetic-Maxwell equa-
tions in shaped plasma geometry, using either a local (fluz-
tube) or global radial domain. It has been ported to a variety
of modern MPP platforms including a number of commodity
clusters, IBM SPs and the Cray X1. We have been able to
quickly design and analyze new physics scenarios in record
time using the Cray X1: (i) transport barrier studies (Phys.
Plasmas 11 (2004) 1879), (ii) the local limit of global simu-
lations (Phys. Plasmas 11 (2004) L25), (iii) kinetic electron
and finite-beta generalizations of a community-wide bench-
mark case, and (iv) impurity transport with application to
fuel separation in burning D-T plasmas (to be submitted
to Nuclear Fusion). We report on recent physics progress
and studies. Further, we discuss GYRO performance across
several architectures.

Categories and Subject Descriptors

J.2 [Computer Applications]: Physical Sciences and En-
gineering— Physics; D.2.8 [Software Engineering]: Met-
rics—performance measures; G.4 [Mathematics of Com-
puting]: Mathematical Software—Parallel and vector im-
plementations,portability

General Terms

Performance, Theory

Keywords

GYRO, gyrokinetic, Eulerian, turbulence, parallel perfor-
mance

1. INTRODUCTION

The most promising and aggressively studied concept for
power production by fusion reactions is the tokamak. Ad-
vances in the understanding and control of tokamak plasmas
are continuously being realized, although uncertainties re-
main in predicting confinement properties and performance
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of larger reactor-scale devices. The coupled gyrokinetic-
Maxwell (GKM) equations provide a foundation for the first-
principles calculation of turbulent tokamak transport. For
years, the numerical solution of the nonlinear GKM equa-
tions has been a computational physics “Grand Challenge”.

GYRO is a code that simulates tokamak turbulence by
solving the time-dependent, nonlinear gyrokinetic-Maxwell
equations for both ions and electrons. It uses a five-
dimensional grid and advances the system in time using a
second-order, implicit-explicit (IMEX) Runge-Kutta (RK)
integrator. GYRO is the only GKM code that has both
global and electromagnetic operational capabilities. Devel-
opment has been partially funded by the Plasma Microtur-
bulence Project, a fusion Scientific Discovery through Ad-
vanced Computing (SciDAC) project [1]. GYRO has been
ported to a variety of modern MPP platforms including a
number of commodity clusters, IBM SPs and the Cray X1.
It has shown good scalability on all these platforms; the
extent to which this scalability is enhanced by greater per-
processor efficiency will be reported. Recently, the GYRO
developers have been able to quickly formulate and analyze
new physics scenarios in record time using the Cray X1 at
Oak Ridge National Laboratory (ORNL).

Section 2 reviews the GKM equations and outlines the
numerical methods used for their solution. Section 3 dis-
cusses recent physics accomplishments. Section 4 compares
the performance of GYRO across several platforms. Section
5 presents conclusions and future work.

2. GYRO OVERVIEW

2.1 Heuristic picture

The GKM equations couple the gyrocenter distribution,
f, to the electromagnetic fields, ®:

% =Lof +Lp® + {f, P} where Fo ://dvldvgf.
(1)
Ly, Lp and F are linear operators. Strictly speaking, f
measures the deviation from a Maxwellian background. For
global simulations, a linear adaptive source technique [14]
is used to inhibit the evolution of f and ® on equilibrium
scales. Within the standard gyrokinetic ordering, the sole
nonlinearity has a Poisson bracket structure. The function
f(r,vi,v2) is discretized over a 5-dimensional grid (three
spatial and two velocity coordinates), while the 3-dimensional
electromagnetic fields ®(r) = [¢, A|] are independent of ve-
locity. Here ¢ and A are the electrostatic and electromag-



netic potentials, respectively. One averages over the fast
orbital motion (gyro-orbit) to eliminate the third velocity-
space dimension (gyro-angle). However, this so-called gyro-
averaging operation introduces nonlocal spatial operators (F
above, for example) perpendicular to the magnetic field.

The first attempts to solve the GKM equations made use
of the particle-in-cell (PIC) method [13, 7] as it provided a
relatively straightforward algorithm to numerically evolve
a PDE with complicated characteristics (particle orbits).
However, PIC codes stagnated for many years in the depth of
physics that they were able to treat: only cases without elec-
tron dynamics (so-called adiabatic electron) were tractable,
and probably not the best way to treat real electrons. In con-
trast, Eulerian solvers [8, 9] like GYRO have proved their
effectiveness for treating the complexities of electromagnetic
turbulence.

2.2 Basic equations

First, a fully spectral decomposition of the fluctuating
quantities (f, ¢, Aj|) is made,

¢ = Z bn(r,0) e~ nle—a(me] (2)

The integer n labels toroidal eigenmodes. Linear studies,
still very important for research problems, can be carried
out using a single value of n. In Eq. (2), ¢ is the toroidal
angle, 0 is the poloidal angle and q is the safety factor (which
measures the helicity of the equilibrium magnetic field). Al-
though the physical field, ¢, is 2w-periodic in 6, the Fourier
representation has the implication that the Fourier coeffi-
cients, ¢, are nonperiodic, and satisfy the phase condition

n(r,m) = e g (7, — ). ()

Since ¢ is real, the coefficients satisfy ¢;, = ¢_n.

In the following, we work with a transformation of the
normalized gyrocenter distribution function fs. Note fs,
denotes the nth toroidal harmonic of the normalized gyro-
center distribution function fs. We use a transformation of
fsp, to eliminate the time derivative of A given by hs, =
fon+2zsav)s(GA|)n, where 2 is the charge, as = ns/Ts, ns(r)
is the equilibrium density, Ts is the equilibrium temperature,
and G is the gyro-averaging operator. And, in the this paper,
we restrict attention to circular s — « (simple) geometry for
brevity. Thus, the spectral form of the gyrokinetic equation,
including collisions, in terms of hs,, is

ag;n — C[hsn - ZsOés’U”s(gAH)n] = RHS,, (7-7 9’ )\7 6) (4)
_ [Lus(n0) o ey n 0
RHS,, = |: Roq 90 + Wy, —+ W4 o

(hsn + 2sas(Gus) ) (5)
—1s Was (GUs)n + 21(q/7)ps {Gus, h}n

where us = ¢ —v|s4, and

vye(r,0) = o \/ 215 () (1 — A\B(r, 9)) . (6)

Above, ps = ¢s/Qei is the ion-sound gyroradius, cs = \/Te/m;
is the sound speed, Qc; = eB/m; is the ion cyclotron fre-

quency, Ro is the plasma magjor radius, B(r, 0) is the effec-
tive magnetic field strength, and o is the sign of the par-
allel velocity. The two velocity coordinates are (e, A). It
is important to note that v depends on the mass through
ts = /mi/ms (the equations are normalized to the primary
ion mass m;). For electrons, ue ~ 60, making the parallel
term stiff and difficult to treat numerically. The bracket
{-,-} describes nonlinear E x B and magnetic flutter dy-

namics. The curvature drift coefficients, wél) and w(({), as
well as the diamagnetic frequency ws, are given by
a a
wis = kops {L—ns—l-(e—?)/Z)LTs] , (7
R 2T \B
wy = keps———e|1——
ds P 2 RO < 2
[cos O + (s6 — amup sin f) sin 6] (8)
r . ; 275 ABY .
wy, = —ips———¢€|1l—"—]sinf . 9
ds P ZSBR() < 2 ( )

Above, kg = nq/r is the poloidal wavenumber, s is the mag-
netic shear and amup is the MHD pressure gradient. The
source of free energy to drive instabilities is embodied in the
ws term, where Lyns(r)/a and Lzs(r)/a are the normalized
density and temperature gradient scale lengths. For typical
parameters, turbulent fluxes tend to peak at kgps ~ 0.2.
The Maxwell equations are written in terms of the hsg,, as

Mjon Njon+1

Zaszf (1—-Rs)pn = z 25V[Ghsy] |
s=1

s=1
(10)
) 2 Njon+1 Njon+1
G, b S e ViR = 3wVl |
¢ s=1 s=1

(11)

where nion is the number of ion species (electrons are de-
noted by s = nion + 1), and Rs = V[GG] is a velocity-space-
integrated double gyroaverage. We avoid the disastrous
Ampére cancellation problem by rewriting the V[vﬁsAH ,,] term
in an equivalent form that lends itself to a more robust nu-
merical calculation. To do electrostatic simulations, one nor-
mally sets A = 0, which is consistent with the limit 8. — 0.

The object V above is the 2-dimensional velocity-integration
operator, defined as

VIR) = Y [ deeve

L d(AB)
0 V1-)B
For concreteness, we note that V[1] = 1, V[e] = 3/2 and
V[’U”] =0.
Finally, we remark that nonlinear simulations normally
reach a statistical steady state on a timescale much shorter
(100x) than an energy confinement time. To be precise, for

typical tokamak parameters, we normally run simulations
out to ¢ ~ 1000(a/cs).

fS(Tﬂ 97 ®; €, )‘7 o; t) . (12)

2.3 Discretization schemes



We briefly sketch the type of discretization scheme used in
each dimension. A detailed treatment is beyond the scope
of the present paper.

e toroidal angle: fully spectral [see Eq. (2)].

e radius: linear advective derivatives on f are treated
with upwind differences, whereas derivatives on fields
are treated with centered differences. The gyrooper-
ators G and R are approximated using a (banded)
pseudo-spectral technique. The order of all discretiza-
tions is adjustable at run-time.

e poloidal angle: for f, there is no fixed grid in 6.
Instead, the transformation

v||s(r7)‘79) 0 0

— = Q(r,\)=— 13

Rog(r) 00 — & )87' (13)

is used to eliminate the singularity at bounce points,
vjs = 0. Then, an upwind scheme in 7 is used to

discretize 0f/01. Centered differences only are used
on 7-derivatives of fields, otherwise numerical insta-
bility will result. The use of a 7-grid (leading to a
different set of points in 6 for every value of ) for
the GK equation dictates that the Maxwell equations
are solved by expansion of fields in complex finite-
elements: ¢(r;,0) = 3., ci,F}(0). The F}, satisfy
the phase condition in Eq. (3).

e velocity-space: A transformation property of Eq. (12)
under integration over 6 is used to recast the velocity-
space integration. Then, in both ¢ and A, an exact
Gauss-Legendre quadrature scheme is numerically gen-
erated (by nonlinear root-finding) at run-time. This is
different at each radius and for different plasma equi-
libria.

e nonlinearity: The nonlinear Poisson bracket is eval-
uated with a conservative difference-spectral analogue
of the Arakawa method. This scheme ensures exact
conservation of density and generalized entropy at van-
ishing time step (independent of grid resolution).

e collisions: Collisions are represented by a second-
order diffusive-type operator in A. This operator is
split from the collisionless problem and an irregular-
grid generalization of the Crank-Nicholson method is
used.

e time-advance: A 2nd-order IMEX RK scheme is used,
with the electron parallel motion (9/80) in Eq. (6)
treated implicitly. This is exceptionally complicated
due to the use of a 7-grid, as well as the presence of
the field quantity us (see Eq. 6) in the advection. How-
ever, the implicitness is crucial for the elimination of a
numerical instability connected with pathological elec-
trostatic Alfvén waves. Indeed, our experience shows
that the numerical difficulties associated with kinetic
electrons become rapidly more severe for radial boxes
larger than about 80p.

2.4 Comparison with other GK codes

Table 1 shows a brief comparison of gyrokinetic codes. In
Table 1, we have the following abbreviations: UM=Univ.
of Maryland, GA=General Atomics, PPPL=Princeton,

Table 1: Gyrokinetic codes comparison.

| Code | Lab | Type | Loc | Glb | Elc | Shp |
GS2 UM Euler ° ° °
GYRO GA Euler ) ° ° °
GTC PPPL/UCI | PIC °
TUBE UCol PIC . .
PG3EQ LLNL PIC °

UCI=Univ. of California at Irvine, UCol=Univ. of Col-
orado at Boulder, LLNL=Lawrence Livermore National
Lab, PIC=particle-in-cell, Euler=Eulerian, Loc=Local,
Glb=Global, and Elc=Electromagnetic, and Shp=Shape.
Throughout the development of GYRO, various bench-
marking efforts have been undertaken. Linear comparisons
with GS2, and nonlinear comparisons with PG3EQ), are re-
ported in [3]. More recently, global comparisons with GTC
have been reported in [4]. In that work, GYRO results are
shown to agree with those from GS2 and PG3EQ in the limit
where the latter flux-tube simulations are valid. The results
of Ref. [4] are discussed in more detail in the next section.

3. RECENTPHYSICSACCOMPLISHMENTS

Development of the GYRO core solver began in 1999, and
all physics capabilities in the original design specification
were realized in 2002. Refinements to the numerical schemes
were added after that and concluded by early 2003. For the
last year, the developmental focus has been on usability and
support for a growing user base. Currently, there are four
users at GA, two at PPPL and one at the Univ. of Texas.

The following subsections detail some of the more impor-
tant findings made in the last year:

1. Comparison with DIII-D L-mode p. experiments:
An exhaustive series of global, full-physics GYRO sim-
ulations of DIII-D L-mode p.-similarity discharges was
made. In these famous experiments, only a single di-
mensionless parameter was varied: p. = ps/a. The
GYRO calculations matched experimental results for
electron and ion energy transport [2] within experi-
mental error bounds. The Bohm-scaled diffusivity of
the experiments was also reproduced, for which in-
clusion of electron collisions together with equilibrium
sheared rotation was found to be crucial. These were
the most physically comprehensive tokamak turbulence
simulations ever undertaken.

2. Evaluation of minimum-q theory of transport
barrier formation: It was shown that a minimum-gq
surface (where s = 0) in a tokamak plasma does not act
as the catalyst for ion transport barrier formation [5].
Although there are theories of this process in the litera-
ture which argue that a barrier should form near s = 0,
the reality of this process had never been convincingly
demonstrated with simulation. Using the X1, it was
clearly shown that transport is smooth across an s = 0
surface due to the appearance of gap modes.

3. The local limit of global GK simulations: A con-
troversial transport scaling study by Lin et al. [10]
substantially overestimated the Cyclone base case [6]



benchmark value as ever-larger global simulations (at
successively smaller p.) were run. This contradicted
the local hypothesis, which states that global and flux-
tube simulations should agree at sufficiently small p..
Lin repeated the same study with minor revisions in
2002 [12] and yet again in 2004 [11] obtaining an ion
diffusivity, xs, still 36% higher than the Cyclone value.
Lin’s global scenario was revisited with GYRO [4],
with the finding that at small p., x; closely matches
the Cyclone value. Further, it was shown that for these
large-system-size simulations, there is a very long tran-
sient period for which y; exceeds the statistical aver-
age. By running simulations for twice as long as the
Lin simulations (900 a/cs versus 400 a/cs), a true sta-
tistical turbulent steady state was recovered.

4. Particle and impurity transport: The first sys-
tematic gyrokinetic study of particle transport was
made, including impurity transport and isotope ef-
fects. We found that in a burning D-T plasma, the
tritium is better confined than deuterium, with the
implication that the D-T fuel will separate as tritium
is retained. This conclusion was found to be inde-
pendent of temperature gradient and electron collision
frequency.

4. GYRO PERFORMANCE

In this section we describe the performance of GYRO on
five separate platforms. As mentioned previously, GYRO
has been ported to a variety of modern MPP platforms in-
cluding a number of commodity clusters, IBM SPs, an SGI
Altix, and a Cray X1. Since code portability and flexi-
bility are considered crucial, only a single source is main-
tained. Thus the ports to new architectures often involve
nothing more than creating a new makefile. This is men-
tioned now because, although the single-source philosophy
has made GYRO a very portable code, the single-source
requirement has consequence of preventing some machine-
specific code optimizations which adversely affect perfor-
mance on other architectures. However, this requirement
does not preclude certain machine-specific optimizations.
For example, GYRO has had some vectorization for the X1.
The changes were minimal and in some cases simultaneously
beneficial on other architectures. These changes were mostly
the addition of directives, but there were selected instances
of rank promotion/demotion, and an instance of “pushing”
a loop down into a subroutine call.

We now compare the performance of GYRO on the fol-
lowing five platforms:

e AMD Athlon cluster
The AMD Athlon cluster at Princeton Plasma Physics
Laboratory (PPPL) has 64 2-way Athlon MP2000+
(1.667 GHz) nodes with gigabit Ethernet interconnect.
Each processor has a peak performance of 1.667 x
2 = 3.334 GFlops/s. GYRO was compiled with La-
hey/FujitsuFortran 95 L6.10c.

e IBM Nighthawk II (Power3) cluster
The IBM Nighthawk II cluster with Colony intercon-
nect at the National Energy Research Scientific Com-
puting Center (NERSC) has 416 16-way Power3 (375
MHz) nodes. The peak performance of a Power3 pro-
cessor is 375 x 4 = 1.5 GFlops/s. GYRO was compiled

using ESSL 3.3 and XL Fortran 8.1. The machine has
parallel environment 3.2 and AIX 5.1.

e IBM p690 (Power4) cluster
The IBM p690 cluster with Federation interconnect’
at ORNL has 27 32-way Power4 (1.3 GHz) nodes. The
peak rate of each processor is 1.3 x 4 = 5.2 GFlops/s.
GYRO was built using ESSL 4.1 and XL Fortran 8.1.
The machine has parallel environment 4.1 and AIX
5.2.

e SGI Altix
The SGI Altix at ORNL is a single-system image run-
ning Linux with 256 Itanium 2 processors (1.5 GHz).
The peak rate of each processor is 1.5x4 = 6 GFlops/s.
GYRO was built using the Intel Fortran 8.0 compiler
and SGI’s SCSL library.

e Cray X1

The Cray X1 at ORNL is also a single-system image
of 504 multistreaming processors. Each processor has
a peak rate of 12.8 GFlops/s. GYRO was built using
Programming Environment 5.2.0.2 and MPT 2.3.0.4.
The OS level was UNICOS/mp 2.4.17. For our bench-
marks, the Multistreaming processor (MSP) is con-
sidered the basic processing unit rather than the Sin-
glestreaming processor (SSP). Note that an MSP is
composed of four SSPs.

The current performance is described by comparing tim-
ings across architectures, as shown in the next two subsec-
tions.

4.1 Waltz standard case benchmark

This test case is 500 timesteps of the Waltz Standard
Case [3] with kinetic electrons and electron collisions, but
no electromagnetic effects. This is a flux-tube 16-toroidal
mode electrostatic (electrons and ions, 1 field) case on a
16 x 140 x 8 x 8 x 20 x 2 grid. The numerical grid resolution
used for this benchmark is the same as that used in recent
production runs. It represents, roughly, the minimum grid
size required to obtain physically accurate results. We could
have improved the scalability on all platforms by moving to
a finer grid, but felt that results for a grid of typical pro-
duction size are of greater practical value .

Figures 1-3 show the results of running the Waltz stan-
dard case benchmark on the various platforms mentioned
above. Figure 1 shows the seconds per timestep — the ulti-
mate measure of how well this code does on any machine.
Figure 2 shows the average MPI time per timestep. Figure 3
shows the average collision time per timestep. We chose the
MPI communication time and the collision time in addition
to the entire run-time because they demonstrate interesting
performance characteristics across the test platforms.

A few observations can be made from Figures 1-3. First,
Figure 1 shows for this benchmark that the X1 is four times
as fast as the nearest competitor. Second, Figure 2 clearly
shows that the communication time on the X1 is an order
of magnitude less than the next best. This is due to the
fact that GYRO consumes a lot of bandwidth, and the X1
is designed to provide more bandwidth than the other plat-
forms. Collisions on the X1 were several times slower than

! Striping across Federation adapters currently inhibits MPI
performance. IBM recommends not striping until a later
microcode release, thus striping is not currently enabled on
this machine.
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Figure 1: Seconds per timestep on the Waltz standard case benchmark.
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Figure 2: MPI time per timestep on the Waltz standard case benchmark.
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Figure 3: Collision time per timestep on the Waltz standard case benchmark.

competing platforms until recent optimizations dramatically
improved its performance. Figure 3 shows that the collision
calculations are slightly slower on the X1 than the Altix
and Power 4 platforms. However, in terms of seconds per
timestep, the X1 is still a factor of 4 better than the next
best machine. We also see from Figures 1 and 2 that the
IBM Power4 cluster with Federation interconnect compares
favorably with the other machines and that it scales fairly
well even with its current handicap (see footnote 1.)

4.2 Exploratory plasma edge simulation

This test case is a gyrokinetic simulation meant to ex-
plore the parameter space characteristic of the plasma edge.
Magnetic shear and safety factor are very high at the outer
plasma boundary, and equilibrium gradients are steep, mak-
ing the simulations more challenging than for core param-
eters. This is a global 28-toroidal-mode electrostatic case
with adiabatic electrons on a 200 x 10 x 10 x 28 x 28 x 1
grid.

A visualization of the results from a 504 MSP simulation
on the Cray X1 is shown in Figure 4. This plots contours
of the turbulent electrostatic potential mapped back onto
an (elongated) torus. Note the extreme elongation of the
turbulent eddies in the toroidal direction.

Table 2 compares the performance of running this ex-
ploratory simulation on several machines at relatively large
processor counts (in some cases as large as the machine al-
lowed). The “time/step” column shows the average time per
step in seconds for 400 time steps of this simulation, and the
“MPI/step” column shows the average time per step spent
in MPI. This was a collisionless simulation, therefore colli-
sion time is not reported.

This study shows, using the inverse of column 3 in Ta-
ble 2, that the Cray X1 at 504 MSPs can take almost 16
steps per second. The SGI Altix does 1.8 steps per second
with 224 processors, the IBM Power4 cluster about 1.8 steps
per second with 448 processors and the IBM Power3 machine

Table 2: Exploratory plasma edge simulation tim-
ings in milliseconds.

| Machine | procs | time/step | MPI/step |
IBM Power3 896 602.45 103.69
cluster 1344 544.58 81.44
1792 405.19 67.53
2240 431.48 73.19
2688 422.91 66.39
IBM Power4 224 994.94 209.60
cluster 448 561.21 133.90
SGI Altix 224 554.12 188.40
Cray X1 224 121.98 15.03
448 72.25 6.94
504 62.35 6.07

reaches a maximum rate of 2.5 steps per second at 1792 PEs
and beyond. Based on the peak speeds of each machine and
the data in Table 2, it is clear that the X1’s vector proces-
sors deliver greater per-processor efficiency, which leads to
greater scalability.

5. CONCLUSIONS

The GYRO development effort has reached all its original
capability objectives, although refinements are continuously
being implemented. Currently, developmental focus is on us-
ability and support for a user base that is growing. Through
the use of GYRO several important research results have
been obtained over the last year. These include detailed
comparisons with DIII-D L-mode p. experiments, a critical
assessment of the minimum-q theory of transport barrier for-
mation, a demonstration that local and global simulations
are confluent in the p. — 0 limit, and a systematic study of
particle and impurity transport.



Figure 4: Turbulent potential fluctuations in shaped toroidal geometry for plasma edge simulation.

The performance of GYRO on nonvector systems is con-
strained by communication bandwidth, which is not true
on the X1. The X1 has exceptionally high-bandwidth, low-
latency communication hardware, so communication times
for various expensive ALL TO ALL operations dropped to
the lowest levels ever for GYRO. Moreover, the powerful vec-
tor processing units each give a performance that is at least
a factor of 4 greater than the closest microprocessor-based
supercomputers.

Note that the collision step is somewhat slower on the X1
than on competing architectures. This is true despite the
several optimizations which were made to improve vector-
ization to its current state. We believe the collision step
as currently implemented has probably been optimized as
much as possible; and therefore the underlying algorithm
must be changed to effect significant improvements. In ad-
dition, we plan to review alternatives to the current sparse
solver, to improve the nonlinear step by evaluating the Pois-
son bracket fully in real space, and to implement a new par-
allel algorithm for the field solves, which currently replicates
work.

The X1 is an impressive supercomputer platform on which
new physics scenarios have been designed and analyzed in
record time. The fast communication coupled with the in-
trinsically lower processor count define a system which, for
a given production problem size, can in many cases provide
a time-to-solution which is smaller than a traditional super-
computer of any size.
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